• Skip to primary navigation
  • Skip to main content
SRI InternationalSRI mobile logo

SRI International

SRI International - American Nonprofit Research Institute

  • About
    • Blog
    • Press room
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Show Search
Hide Search
2d-3d reasoning and augmented reality publications November 1, 2012 Article

Multi-Sensor Navigation Algorithm Using Monocular Camera, IMU and GPS for Large Scale Augmented Reality

SRI International November 1, 2012

Citation

Copy to clipboard


Oskiper, T.; Samarasekera, S.; Kumar, R., “Multi-sensor navigation algorithm using monocular camera, IMU and GPS for large scale augmented reality,” Mixed and Augmented Reality (ISMAR), 2012 IEEE International Symposium on, vol., no., pp.71,80, 5-8 Nov. 2012

Abstract

Camera tracking system for augmented reality applications that can operate both indoors and outdoors is described. The system uses a monocular camera, a MEMS-type inertial measurement unit (IMU) with 3-axis gyroscopes and accelerometers, and GPS unit to accurately and robustly track the camera motion in 6 degrees of freedom (with correct scale) in arbitrary indoor or outdoor scenes. IMU and camera fusion is performed in a tightly coupled manner by an error-state extended Kalman filter (EKF) such that each visually tracked feature contributes as an individual measurement as opposed to the more traditional approaches where camera pose estimates are first extracted by means of feature tracking and then used as measurement updates in a filter framework. Robustness in feature tracking and hence in visual measurement generation is achieved by IMU aided feature matching and a two-point relative pose estimation method, to remove outliers from the raw feature point matches. Landmark matching to contain long-term drift in orientation via on the fly user generated geo-tiepoint mechanism is described.

Share this

Facebooktwitterlinkedinmail

2d-3d reasoning and augmented reality publications, Computer vision publications, Information & computer science publications, National security publications, Publication, Robotics, sensors, & devices publications Article

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Career call to action image

Make your own mark.

Search jobs
Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Blog

Institute

Leadership

Press room

Media inquiries

Compliance

Privacy policy

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter

日本支社

SRI International

  • Contact us
  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International