back icon
close icon

Capture phrases in quotes for more specific queries (e.g. "rocket ship" or "Fred Lynn")

Conference Paper  October 1, 2013

Detecting Anomalies in Cellular Networks Using an Ensemble Method

SRI Authors Ulf Lindqvist, Gabriela Ciocarlie

Citation

COPY

Ciocarlie, G. F., Lindqvist, U., Novaczki, S., & Sanneck, H. (2013, 14-18 October). Detecting anomalies in cellular networks using an ensemble method. Paper presented at the International Conference on Network and Service Management (CNSM’13), Zurich, Switzerland.

Abstract

The Self-Organizing Networks (SON) concept includes the functional area known as self-healing, which aims to automate the detection and diagnosis of, and recovery from, network degradations and outages. This paper focuses on the problem of cell anomaly detection, addressing partial and complete degradations in cell-service performance, and it proposes an adaptive ensemble method framework for modeling cell behavior. The framework uses Key Performance Indicators (KPIs) to determine cell-performance status and is able to cope with legitimate system changes (i.e., concept drift). The results, generated using real cellular network data, suggest that the proposed ensemble method automatically and significantly improves the detection quality over univariate and multivariate methods, while using intrinsic system knowledge to enhance performance.

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you. Expect a response within 48 hours.

Our Privacy Policy