back icon
close icon

Capture phrases in quotes for more specific queries (e.g. "rocket ship" or "Fred Lynn")

Article  June 1, 2014

Dynamic Metabolic Imaging of Hyperpolarized [2-C-13]Pyruvate Using Spiral Chemical Shift Imaging with Alternating Spectral Band Excitation

SRI Authors Jaehyeon Park, Adolf Pfefferbaum

Citation

COPY

Josan, S., Hurd, R., Park, J. M., Yen, Y.-F., Watkins, R., Pfefferbaum, A., . . . Mayer, D. (2014). Dynamic metabolic imaging of hyperpolarized [2-C-13]pyruvate using spiral chemical shift imaging with alternating spectral band excitation. Magnetic Resonance in Medicine, 71(6), 2051-2058.

Abstract

Abstract

PURPOSE:

In contrast to [1-(13) C]pyruvate, hyperpolarized [2-(13) C]pyruvate permits the ability to follow the (13) C label beyond flux through pyruvate dehydrogenase complex and investigate the incorporation of acetyl-coenzyme A into different metabolic pathways. However, chemical shift imaging (CSI) with [2-(13) C]pyruvate is challenging owing to the large spectral dispersion of the resonances, which also leads to severe chemical shift displacement artifacts for slice-selective acquisitions.

METHODS:

This study introduces a sequence for three-dimensional CSI of [2-(13) C]pyruvate using spectrally selective excitation of limited frequency bands containing a subset of metabolites. Dynamic CSI data were acquired alternately from multiple frequency bands in phantoms for sequence testing and in vivo in rat heart.

RESULTS:

Phantom experiments verified the radiofrequency pulse design and demonstrated that the signal behavior of each group of resonances was unaffected by excitation of the other frequency bands. Dynamic three-dimensional (13) C CSI data demonstrated the sequence capability to image pyruvate, lactate, acetylcarnitine, glutamate, and acetoacetate, enabling the analysis of organ-specific spectra and metabolite time courses.

CONCLUSIONS:

The presented method allows CSI of widely separated resonances without chemical shift displacement artifact, acquiring multiple frequency bands alternately to obtain dynamic time-course information. This approach enables robust imaging of downstream metabolic products of acetyl-coenzyme A with hyperpolarized [2-(13) C]pyruvate.

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you. Expect a response within 48 hours.

Our Privacy Policy