• Skip to primary navigation
  • Skip to main content
SRI InternationalSRI mobile logo

SRI International

SRI International - American Nonprofit Research Institute

  • About
    • Blog
    • Press room
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Show Search
Hide Search
Speech & natural language publications April 1, 2015 Conference Paper

Improved speaker recognition using DCT coefficients as features

SRI International April 1, 2015

SRI Authors: Mitchell McLaren

Citation

Copy to clipboard


M. McLaren and Y. Lei, “Improved speaker recognition using DCT coefficients as features,” In Proc. 40th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015.

Abstract

We recently proposed the use of coefficients extracted from the 2D discrete cosine transform (DCT) of log Mel filter bank energies to improve speaker recognition over the traditional Mel frequency cepstral coefficients (MFCC) with appended deltas and double deltas (MFCC/deltas).  Selection of relevant coefficients was shown to be crucial, resulting in the proposal of a zig-zag parsing strategy.  While 2D-DCT coefficients provided significant gains over MFCC/deltas, the parsing strategy remains sensitive to the number of filter bank outputs and the analysis window size.  In this work, we analyze this sensitivity and propose two new data-driven methods of utilizing DCT coefficients for speaker recognition: rankDCT and pcaDCT.  The first, rankDCT, is an automated coefficient selection strategy based on the highest average intra-frame energy rank.  The alternate method, pcaDCT, avoids the need for selection and instead projects DCT coefficients to the desired dimensionality via Principal Component Analysis (PCA). All features including MFCC/deltas are tuned on a subset of the PRISM database to subsequently highlight any parameter sensitivities of each feature.  Evaluated on the recent NIST SRE’12 corpus, pcaDCT consistently outperforms both rankDCT and zzDCT features and offers an average 20% relative improvement over MFCC/deltas across conditions.

↓ Download

Share this

Facebooktwitterlinkedinmail

Publication, Speech & natural language publications Conference Paper

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Our privacy policy
Career call to action image

Make your own mark.

Search jobs
Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Blog

Institute

Leadership

Press room

Media inquiries

Compliance

Privacy policy

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter

日本支社

SRI International

  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International