Microdroplet Temperature Calibration Via Thermal Dissociation of Quenched DNA Oligomers

Citation

Hall, E. W., & Faris, G. W. (2014). Microdroplet temperature calibration via thermal dissociation of quenched DNA oligomers. Biomedical Optics Express, 5(3), 737-751. doi: 10.1364/boe.5.000737

Abstract

The development of microscale analytical techniques has created an increasing demand for reliable and accurate heating at the microscale. Here, we present a novel method for calibrating the temperature of microdroplets using quenched, fluorescently labeled DNA oligomers. Upon melting, the 3ā€² fluorophore of the reporter oligomer separates from the 5ā€² quencher of its reverse complement, creating a fluorescent signal recorded as a melting curve. The melting temperature for a given oligomer is determined with a conventional quantitative polymerase chain reaction (qPCR) instrument and used to calibrate the temperature within a microdroplet, with identical buffer concentrations, heated with an infrared laser. Since significant premelt fluorescence prevents the use of a conventional (single-term) sigmoid or logistic function to describe the melting curve, we present a three-term sigmoid model that provides a very good match to the asymmetric fluorescence melting curve with premelting. Using mixtures of three oligomers of different lengths, we fit multiple three-term sigmoids to obtain precise comparison of the microscale and macroscale fluorescence melting curves using ā€œextrapolated two-stateā€ melting temperatures.


Read more from SRI