back icon
close icon

Capture phrases in quotes for more specific queries (e.g. "rocket ship" or "Fred Lynn")

Conference Paper  January 1, 2017

Optimization of Bootstrapping in Circuits



Fabrice Benhamouda, Tancrède Lepoint, Claire Mathieu, and Hang Zhou. “Optimization of Bootstrapping in Circuits.” In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2423-2433. Society for Industrial and Applied Mathematics, 2017.


In 2009, Gentry proposed the first Fully Homomorphic Encryption (FHE) scheme, an extremely powerful cryptographic primitive that enables to perform computations, i.e., to evaluate circuits, on encrypted data without decrypting them first. This has many applications, particularly in cloud computing.

In all currently known FHE schemes, encryptions are associated with some (non-negative integer) noise level. At each evaluation of an AND gate, this noise level increases. This increase is problematic because decryption succeeds only if the noise level stays below some maximum level L at every gate of the circuit. To ensure that property, it is possible to perform an operation called bootstrapping to reduce the noise level. Though critical, boostrapping is a time-consuming operation. This expense motivates a new problem in discrete optimization: minimizing the number of bootstrappings in a circuit while still controlling the noise level.

In this paper, we (1) formally define the bootstrap problem, (2) design a polynomial-time L-approximation algorithm using a novel method of rounding of a linear program, and (3) show a matching hardness result: (L — epsilon)- inapproximability for any epsilon > 0.

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you. Expect a response within 48 hours.

Our Privacy Policy