back icon
close icon

Capture phrases in quotes for more specific queries (e.g. "rocket ship" or "Fred Lynn")

Conference Proceeding  October 7, 2019

Probabilistic Inference Modulo Theories

SRI Authors Rodrigo de Salvo Braz

Citation

COPY

Rodrigo de Salvo Braz, Ciaran O’Reilly, Vibhav Gogate, and Rina Dechter. Probabilistic Inference Modulo Theories. In Proc. of the 25th International Joint Conference on Artificial Intelligence (IJCAI), 2016.

Abstract

We present SGDPLL(T ), an algorithm that solves (among many other problems) probabilistic inference modulo theories, that is, inference problems over probabilistic models defined via a logic theory provided as a parameter (currently, propositional, equalities on discrete sorts, and inequalities, more specifically difference arithmetic, on bounded integers). While many solutions to probabilistic inference over logic representations have been proposed, SGDPLL(T ) is simultaneously (1) lifted, (2) exact and (3) modulo theories, that is, parameterized by a background logic theory. This offers a foundation for extending it to rich logic languages such as data structures and relational data. By lifted, we mean algorithms with constant complexity in the domain size (the number of values that variables can take). We also detail a solver for summations with difference arithmetic and show experimental results from a scenario in which SGDPLL(T ) is much faster than a state-of- the-art probabilistic solver.

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you. Expect a response within 48 hours.

Our Privacy Policy