back icon
close icon

Capture phrases in quotes for more specific queries (e.g. "rocket ship" or "Fred Lynn")

Conference Paper  May 6, 2013

Robust Vision-Aided Navigation Using Sliding-Window Factor Graphs

SRI Authors Han-Pang Chiu, Supun Samarasekera, Rakesh “Teddy” Kumar



Han-Pang Chiu, Stephen Williams, Frank Dellaert, Supun Samarasekera, Rakesh Kumar: Robust vision-aided navigation using Sliding-Window Factor graphs. ICRA 2013: 46-53


This paper proposes a navigation algorithm that provides a low-latency solution while estimating the full nonlinear navigation state. Our approach uses Sliding-Window Factor Graphs, which extend existing incremental smoothing methods to operate on the subset of measurements and states that exist inside a sliding time window. We split the estimation into a fast short-term smoother, a slower but fully global smoother, and a shared map of 3D landmarks. A novel three-stage visual feature model is presented that takes advantage of both smoothers to optimize the 3D landmark map, while minimizing the computation required for processing tracked features in the short-term smoother. This three-stage model is formulated based on the maturity of the estimation of the 3D location of the underlying landmark in the map. Long-range associations are used as global measurements from matured landmarks in the short-term smoother and loop closure constraints in the long-term smoother. Experimental results demonstrate our approach provides highly-accurate solutions on large-scale real data sets using multiple sensors in GPS-denied settings.

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you. Expect a response within 48 hours.

Our Privacy Policy