• Skip to primary navigation
  • Skip to main content
SRI InternationalSRI mobile logo

SRI International

SRI International - American Nonprofit Research Institute

  • About
    • Blog
    • Press room
  • Expertise
    • Advanced imaging systems
    • Artificial intelligence
    • Biomedical R&D services
    • Biomedical sciences
    • Computer vision
    • Cyber & formal methods
    • Education and learning
    • Innovation strategy and policy
    • National security
    • Ocean & space
    • Quantum
    • QED-C
    • Robotics, sensors & devices
    • Speech & natural language
    • Video test & measurement
  • Ventures
  • NSIC
  • Careers
  • Contact
  • 日本支社
Show Search
Hide Search
Information & computer science publications May 1, 2014 Conference Paper

Simplified VTS-Based I-Vector Extraction in Noise-Robust Speaker Recognition

SRI International, Mitchell McLaren May 1, 2014

SRI Authors: Mitchell McLaren

Citation

Copy to clipboard


Lei, Y., McLaren, M., Ferrer, L., & Scheffer, N. (2014, 4-9 May). Simplified VTS-based I-vector extraction in noise-robust speaker recognition. Paper presented at the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’14), Florence, Italy.

Abstract

A vector taylor series (VTS) based i-vector extractor was recently proposed for noise-robust speaker recognition by extracting synthesized clean i-vectors to be used in the standard system back-end. This approach brings significant improvements in accuracy for noisy speech conditions. However, this approach incurred such a large computational expense that using the state-of-the-art model size or evaluating large scale evaluations was impractical. In this work, we propose an efficient simplification scheme, named sVTS, in order to show that the VTS approach gives improvements in large scale applications compared to state-of-the-art systems. In contrast to VTS, sVTS generates normalized Baum-Welch statistics and uses the standard i-vector model, making it straightforward to employ on the state-of-the-art i-vector speaker recognition system. Results presented on both the PRISM and the large NIST SRE’12 corpora show that using sVTS i-vectors provides significant improvements in the noisy conditions, and that our proposed simplification result in only a slight degradation with respect to the original VTS approach.

↓ View online

Share this

Facebooktwitterlinkedinmail

Information & computer science publications, Publication Conference Paper

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you.

Expect a response within 48 hours.

Our privacy policy
Career call to action image

Make your own mark.

Search jobs
Our work

Case studies

Publications

Timeline of innovation

Areas of expertise

Blog

Institute

Leadership

Press room

Media inquiries

Compliance

Privacy policy

Careers

Job listings

Contact

SRI Ventures

Our locations

Headquarters

333 Ravenswood Ave
Menlo Park, CA 94025 USA

+1 (650) 859-2000

Subscribe to our newsletter

日本支社

SRI International

  • Privacy Policy
  • Cookies
  • DMCA
  • Copyright © 2022 SRI International