back icon
close icon

Capture phrases in quotes for more specific queries (e.g. "rocket ship" or "Fred Lynn")

Article  July 7, 2020

Sparse epistatic patterns in the evolution of terpene synthases

SRI Authors Paul O’Maille



Ballal, A., Laurendon, C., Salmon, M., Vardakou, M., Cheema, J., Defernez, M., O’Maille, P.E. & Morozov, A.V. Sparse epistatic patterns in the evolution of terpene synthases. Molecular Biology and Evolution (2020).


We explore sequence determinants of enzyme activity and specificity in a major enzyme family of terpene synthases. Most enzymes in this family catalyze reactions that produce cyclic terpenes—complex hydrocarbons widely used by plants and insects in diverse biological processes such as defense, communication, and symbiosis. To analyze the molecular mechanisms of emergence of terpene cyclization, we have carried out in-depth examination of mutational space around (E)-β-farnesene synthase, an Artemisia annua enzyme which catalyzes production of a linear hydrocarbon chain. Each mutant enzyme in our synthetic libraries was characterized biochemically, and the resulting reaction rate data were used as input to the Michaelis–Menten model of enzyme kinetics, in which free energies were represented as sums of one-amino-acid contributions and two-amino-acid couplings. Our model predicts measured reaction rates with high accuracy and yields free energy landscapes characterized by relatively few coupling terms. As a result, the Michaelis–Menten free energy landscapes have simple, interpretable structure and exhibit little epistasis. We have also developed biophysical fitness models based on the assumption that highly fit enzymes have evolved to maximize the output of correct products, such as cyclic products or a specific product of interest, while minimizing the output of byproducts. This approach results in nonlinear fitness landscapes that are considerably more epistatic. Overall, our experimental and computational framework provides focused characterization of evolutionary emergence of novel enzymatic functions in the context of microevolutionary exploration of sequence space around naturally occurring enzymes.

How can we help?

Once you hit send…

We’ll match your inquiry to the person who can best help you. Expect a response within 48 hours.

Our Privacy Policy