Cross-Modal Geo-Localization: Image-to-3D Coarse Search & Fine Alignment

Han-Pang Chiu
Center for Vision Technologies
SRI International, Princeton, NJ, USA
Email: han-pang.chiu@sri.com

June 20, 2021
Outline

• **Cross-Modal Geo-Localization**
• Coarse Search
• Fine Alignment
• Conclusion
• Q & A
Image-based Geo-Localization

Goal: Estimate the 3D geodetic position (or 3D pose – including both position and orientation) based on a Query Image
Applications

Historical Imagery

Improve GPS Accuracy

Personal Photo Album

GPS Denied/Challenged Environments
Image-Based Visual Geo-Localization – Coarse Search

Matching a query image to a geo-referenced databases (Database Retrieval), which is also called Place Recognition in some fields.

$$i^* = \arg \max_{i \in 1 \ldots N} s(Q, V_i)$$

Where Q is the query descriptor, V_i are descriptors for database images, and $s(Q, V_i)$ is the similarity measure between the query and database images.
Image-Based Visual Geo-Localization – Fine Alignment

Given an initial 3D pose (from coarse search), registering the query image to the 3D geo-referenced data to further refine the 3D pose of this query image.

- It requires detailed 3D information in the database (such as 3D point cloud).
- It is also called geo-registration.

Image-Based Visual Geo-Localization
Cross-Time, Cross-View, and Cross-Modal

Cross-Time
Sample Pairs (Ground RGB)

Cross-View
Sample Pairs (Ground-Aerial RGB)

Cross-Modal
Sample Pairs (Ground RGB-OpenStreetMap)

Availability of Geo-Referenced Database
Low
High

Difficulty in Image-Based Visual Localization
Outline

• Cross-Modal Geo-Localization
• **Coarse Search**
• Fine Alignment
• Conclusion
• Q & A
Cross-Modal Localization - Coarse Search: Survey

Image-to-LIDAR

Ground RGB (Query) – Aerial LIDAR (Reference)

Image-to-Map

Ground RGB (Query) – OpenStreetMap (Reference)
Ground RGB (Query) – Aerial LIDAR (Reference)

- Traditional methods rely on hand-crafted features.
 1. **Very limited prior works** on matching ground RGB images to aerial geo-referenced LIDAR depth data for Cross-Modal Visual Localization [1] [2].
 2. **Limited to urban settings**: (a) performance depends on the availability of buildings in the image [1] [2], (b) [1] requires manually annotated building outlines of query.
 3. Evaluated on a very few queries (14 queries [1] and 50 queries [2]).

- SRI presented the first deep learning-based approach [3] that utilizes multimodal deep convolutional neural networks (CNN) to learn joint representations for ground-level RGB images and aerial LIDAR depth images.

RGB2LIDAR: Training a Joint Embedding

- Project 2.5D LIDAR depth images from 3D LIDAR point cloud for different positions and orientations.

- Cross-modal pairs closer in the geo-space should be closer in the embedding space.

First Deep Learning based Method from Cross-Modal Visual Coarse Search

Joint RGB-LIDAR Embedding

\[
\min_\theta \sum_I \sum_{L^-} [\alpha - S(I, L) + S(I, L^-)]_+ + \sum_L \sum_{I^-} [\alpha - S(L, I) + S(L, I^-)]_+ \\
(I, L) \text{ is a matching pair in the embedding. } L^- \text{ is a non-matching lidar embedding for } I \text{ and vice versa.}
\]
Ground RGB to Aerial LIDAR (GRAL) Dataset

- **Dataset with Location-Coupled Pairs:**
 - **Street-View** Images for different locations (Lat, Long) from Google using Street-View API.
 - **Lidar Depth Images** are collected for the same locations rendering aerial LIDAR 3D point clouds of same area (collected from USGS nationalmap website).

- **Dataset Available Online at** https://github.com/niluthpol/RGB2LIDAR
GRAL Dataset

Sample Pairs from the GRAL Dataset

- About **550K cross-modal pairs** collected from 143 km² area in NJ, USA.
- Weak Alignment between Pairs due to automatic collection (e.g., missing ground pixels in rendered depth images, alignment issue)

- Missing Pixels Due to Aerial Collection
- Horizontal and Vertical Alignment
- Scene Change over Time
Fusion of Appearance & Semantic

• Both Appearance and Semantic Cue for Retrieval
 ▪ Matching across modalities exhibits large disparities in appearance characteristics. Higher-level scene information is generally better preserved across inputs, from different visual sensors, capturing the same scene.

• Mixture-of-Expert Model for Retrieval
 ▪ A weighted fusion of joint embedding models trained with different combination of appearance and semantic cues
Semantic Cues from LIDAR Depth Images

LIDAR Segmentation Network is trained with Weak Cross-Modal Supervision

Approach: Training using the segmentation maps of the paired RGB images as pseudo ground-truth
Quantitative Results

- **Evaluation Metric**
 - R@K (Recall at K): percentage of queries for which the ground truth results are found within the top-K retrievals.
 - MedR: The median of the ground-truth matches in the ranking.

- **Test Set**: About 50K pairs collected from 14km2 area

- **Baselines on GRAL Dataset**
 - Baseline hand-crafted or pre-trained CNN models performs slightly better than chance.
 - Result shows difficulty of this cross-modal localization task on the proposed dataset

- **Proposed RGB2LIDAR Model**
 - Shows promising performance (i.e., R@1 of 27.6 and Median Rank 5).

<table>
<thead>
<tr>
<th>Method</th>
<th>R@1</th>
<th>R@5</th>
<th>R@10</th>
<th>MedR</th>
<th>MeanR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chance</td>
<td>0.002</td>
<td>0.010</td>
<td>0.020</td>
<td>24921</td>
<td>24921</td>
</tr>
<tr>
<td>GIST</td>
<td>0.002</td>
<td>0.016</td>
<td>0.026</td>
<td>21101</td>
<td>22479</td>
</tr>
<tr>
<td>wide-ResNet18</td>
<td>0.014</td>
<td>0.059</td>
<td>0.114</td>
<td>19028</td>
<td>20131</td>
</tr>
<tr>
<td>ResNet50</td>
<td>0.007</td>
<td>0.031</td>
<td>0.067</td>
<td>19887</td>
<td>20328</td>
</tr>
<tr>
<td>MegaDepth</td>
<td>0.9</td>
<td>3.2</td>
<td>5.1</td>
<td>1735</td>
<td>5628</td>
</tr>
<tr>
<td>RGB2LIDAR</td>
<td>27.6</td>
<td>51.1</td>
<td>57.9</td>
<td>5</td>
<td>34.5</td>
</tr>
</tbody>
</table>
Comparison with Prior Works

• **Ground RGB to Aerial Lidar based Retrieval**
 - Bansal et al.[1] evaluated on **50 queries** and reported **20% accuracy** in 5m localization in the **top-1000** ranks in $1Km \times 0.5Km$ area, whereas our method shows **34% in 5m** localization in **top-1** testing across **50K** pairs in $143km^2$ area.
 - Matei et al.[2] evaluated their approach on **14 queries in 5km^2** area and reported **R@1 of 7%**, whereas our method shows **R@1 of 27.6%** based on **50K queries in 14km^2** area

• **Ground-Aerial RGB based Retrieval**
 - We compare with a prominent cross-view localization model CVM-Net-I [3], by collecting ground panoramas and aerial satellite images for test image locations in GRAL.
 - CVMNet-I model achieves low accuracy ($R@1 = 0.7\%, R@10 = 5.1\%$) in **Ground→Aerial-Image localization**, whereas our model achieves significantly better (i.e., $R@1 = 27.6\%, R@10 = 57.9\%$) in **RGB→LIDAR**

RGB2LIDAR: Analysis

- **Analysis of Proposed Method**
 - Joint Embedding Models trained with all four combinations of appearance and semantic cues from RGB and LIDAR images perform reasonably well.
 - The fusion strategy shows large improvements over single-embedding based baselines.
 - Use of LIDAR Depth Semantic feature leads to significant improvements.

<table>
<thead>
<tr>
<th>Method</th>
<th>Evaluation Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R@1</td>
</tr>
<tr>
<td>Chance</td>
<td>0.002</td>
</tr>
<tr>
<td>A_R-A_L</td>
<td>20.3</td>
</tr>
<tr>
<td>S_R-S_L</td>
<td>10.6</td>
</tr>
<tr>
<td>A_R-S_L</td>
<td>9.5</td>
</tr>
<tr>
<td>S_R-A_L</td>
<td>18.6</td>
</tr>
<tr>
<td>A_R-A_L + S_R-A_L</td>
<td>24.8</td>
</tr>
<tr>
<td>A_R-A_L + A_R-S_L</td>
<td>22.9</td>
</tr>
<tr>
<td>A_R-A_L + S_R-A_L + A_R-S_L</td>
<td>26.7</td>
</tr>
<tr>
<td>A_R-A_L + S_R-A_L + A_R-S_L + S_R-S_L (Proposed)</td>
<td>27.6</td>
</tr>
</tbody>
</table>

A_R: Appearance Cues from RGB
A_L: Appearance Cues from LIDAR
S_R: Semantic Cues from RGB
S_L: Semantic Cues from LIDAR
A_R-S_L: Joint Embedding Model trained with Appearance Cues from RGB and Semantic Cues from LIDAR
LIDAR Depth Segmentation Results

- LIDAR Depth Segmentation Results are Grounded.
- It support our Intuition of training with Cross-modal Supervision.

Outputs from Weakly Supervised Segmentation Network

RGB2LIDAR: Towards Solving Large-Scale Cross-Modal Visual Localization, ACM MM, 2020
Qualitative Results

Query Appearance (76) Proposed (10)

Query Appearance (18) Proposed (1)

Query Appearance (2) Proposed (1)

Query Appearance (3) Proposed (1)

RGB2LIDAR: Towards Solving Large-Scale Cross-Modal Visual Localization, ACM MM, 2020
Cross-Modal Localization - Coarse Search: Survey

Image-to-LIDAR

Ground RGB (Query) – Aerial LIDAR (Reference)

Image-to-Map

Ground RGB (Query) – OpenStreetMap (Reference)
Ground RGB (Query) – OpenStreetMap (Reference)

- Related work is limited [1][2][3].
 - Focus on coarse search only - no detailed 3D information in database for fine alignment
- Problem Setting [2][3]:
 - Query Input: Google Street Views (Front, Back, Left, Right) from a panorama image
 - Reference Data: Open Street Map.

Automated Map Reading

- Fine-tune an off-the-shelf pre-trained CNN (Places205-AlexNet model) using paired GSV-OSM data.
 - A training set of 440,000 images per classifier taken from 220,000 locations in 23 different cities in the UK.
 - 75% accuracy for two test sets of 8000 images taken from the same 23 cities

Panphattarasap et al. “Automated Map Reading: Image Based Localisation in 2-D Maps Using Binary Semantic Descriptors”, IROS 2018
Route Descriptor and Turn Pattern

• Route Descriptor: Connect positions every 10 meters
• Turn Pattern: whether a left and right turn (>60 degree) presents between positions
Automated Map Reading: Experimental Results

- Using GSV and OSM data for a 2.5 km² region of London. The region consisted of 6656 GSV locations.
- 150 test routes, maximum route length (40 locations, 400 meters)

Fig. 7. Accuracy of localisation (% of correctly identified routes) versus route length using turn patterns (grey), route descriptors (yellow), and route descriptors with turn patterns (blue).

Fig. 8. Accuracy of localisation (% of correctly identified routes) versus classifier accuracy for different ranges of route length.
Geolocation by Embedding Maps and Images

- Feature Extraction: Image (Resnet 50), 4*4 feature map of 512-d vector, combine 4 inputs (32768)
- Feature Extraction: Map (Resnet18, fewer details), 4*4 feature map of 512-d vector
- Projection module: Two fully connected layers, both preceded by batch normalization and ReLu activation. (16-d)

Training set consisted of 98,767 panorama images and two tiles (152m*152 m - S1 and 76m*76m - S2) for each location.

Data Augmentation for Training: Small changes in the scale of the map tiles and the viewing directions when cropping the panoramic images to form triplets (examples of matched and un-matched image/map tile pairs inside every batch).

Triplet Loss function

You Are Here: System Pipeline

• Use the same route descriptor concept to improve the discrimination.
You Are Here: Experimental Results

- The StreetLearn data set, which contains 113,767 panoramic images extracted from GSV in the cities of New York (Manhattan) and Pittsburgh.

- Three testing data sets: each with 5,000 panoramas and 10,000 map tiles.
Outline

• Cross-Modal Geo-Localization
• Coarse Search
• **Fine Alignment**
• Conclusion
• Q & A
Cross-Modal Localization – Fine Alignment: Survey

Direct 2D-3D Registration

Nadeem et al., Direct Image to Point Cloud Descriptors Matching for 6-DOF Camera Localization in Dense 3D Point Cloud,” ICONIP 2019

Registration via 2.5D Rendering

Cattaneo et al., CMRNet: Camera to LIDAR-MAP Registration, ITSC, 2019.
Direct 2D-3D Registration

- Typical direct 2D-3D registration methods assume the 3D point cloud constructed using structure-from-motion techniques (from multiple camera images).
 - 3D representation has 2D information (such as 2D appearance) from images
- For 3D point cloud from different modalities (such as LIDAR), [1] trains a random forest classifier to match 2D and 3D descriptors.

[1] Nadeem et al., Direct Image to Point Cloud Descriptors Matching for 6-DOF Camera Localization in Dense 3D Point Cloud,” ICONIP 2019
Cross-Modal Localization – Fine Alignment: Survey

Direct 2D-3D Registration

Nadeem et al., Direct Image to Point Cloud Descriptors Matching for 6-DOF Camera Localization in Dense 3D Point Cloud,” ICONIP 2019

Registration via 2.5D Rendering

Cattaneo et al., CMRNet: Camera to LiDAR-MAP Registration, ITSC, 2019.
Registration via 2.5D Rendering

• Render 2.5D view from 3D RGBD point cloud using initial pose
 • Leverage available cross-time registration techniques for 3D pose refinement
 • Refer to cross-time fine-alignment session in this tutorial

• If no appearance information in 3D point clouds …
 • Image-Depth registration becomes difficult
 • There are works using traditional semantic features (such as skyline, building outline) for matching and registration.

Semantic Geo-Registration

- **Modified Chamfer Matching method:** Find best alignment of template T over D, by summing up distance transform values for all N skyline pixels on T.

$$\arg\min_k \sum_{n=1}^N T(i_n, j_n)D(i_n + k, j_n),$$

Refinement is only successful when sufficient portions of skyline (75%) are observed.

Augmented Reality Driving Using Semantic Geo-Registration. *IEEE VR, 2018*
Heading Refinement

- Rural area: 20~50 mph (max 60 mph).
- Urban city: Slow speed (10~20 mph) due to traffic.
- Skyline refinement is shown on a 360 degree 2.5D rendered depth map.

Training Field: 1.29 degree error, > 50% successful rate.

*90% skyline as threshold
*75% skyline as threshold

Augmented Reality Driving Using Semantic Geo-Registration. *IEEE VR*, 2018
Heading Refinement: Failure Cases

Urban city:

- Successful rate decreases to 36.97%.
- The median heading error is 0.985 degree.

Augmented Reality Driving Using Semantic Geo-Registration. IEEE VR, 2018
Semantic Geo-Registration for Navigation

- IMU Pre-Integrated Mechanism
- Visual Odometry and GPS
- Global Heading Update: We propagate opportunistic heading corrections through IMU dynamics over time to improve overall accuracy

Augmented Reality Driving Using Semantic Geo-Registration. *IEEE VR*, 2018
CMRNet: Camera to LiDAR-Map Registration

• The first end-to-end deep learning pipeline for image-depth registration to 3D pose fine-alignment.

Cattaneo et al., CMRNet: Camera to LiDAR-MAP Registration, ITSC, 2019.
CMRNet: LiDAR-image Generation

- Render LiDAR-image (depth image) using an initial pose (from coarse search).
 \[H_{init} \]
 - Project 3D points into image plane:
 \[p^i = K \cdot H_{init} \cdot P^i \]
 - Apply occlusion filter

(a) Without Occlusion Filter

(b) With Occlusion Filter
CMRNet: Network Architecture from PWC-Net

Network architecture:
• Two branches of encoder for RGB and depth images
• Decouple the feature pyramid extractors by removing the weights sharing.
• Remove the up-sampling layers and attach the fully connected layers after the first cost volume layer.
• Two branches for rotations and rotations after flow estimation

Loss:
\[\mathcal{L}(\mathcal{I}, \mathcal{D}) = \mathcal{L}_t(\mathcal{I}, \mathcal{D}) + \mathcal{L}_q(\mathcal{I}, \mathcal{D}) \]
CMRNet: Results

• Achieve 0.27 meter and 1.07 degree accuracy, starting from initial pose within 3.5 meter and 17 degree error range.
CMRNet++: Map and Camera Agnostic Monocular Visual Localization in LiDAR Maps

- CMRNet++ uses PWC-Net as the backbone network for flow prediction.
- Train CMRNet++ to predict pixel displacement.
- Run RANSAC based on point matches predicted by the CMRNet++.
Outline

• Cross-Modal Geo-Localization
• Coarse Search
• Fine Alignment
• Conclusion
• Q & A
Image-Based Cross-Model Geo-Localization

• Challenging due to large difference in appearance across modalities
• Huge potential and broad impact to many applications
• Limited works in utilizing deep learning for this problem
• **Great research direction and topics for exploration!**

*This example is from SRI ONR WAR3D project

*Special thanks to my SRI colleagues, Niluthpol Mithun and Tixiao Shan, for part of slide material