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Abstract 
Basic research in knowledge representation and reasoning 
(KR&R) has steadily advanced over the years, but it has 
been difficult to assess the capability of fielded systems 
derived from this research. In this paper, we present a 
knowledge-based question-answering system that we 
developed as part of a broader effort by Vulcan Inc. to 
assess KR&R technologies, and the result of its 
assessment. The challenge problem presented significant 
new challenges for knowledge representation, compared 
with earlier such assessments, due to the wide variability 
of question types that the system was expected to answer. 
Our solution integrated several modern KR&R 
technologies, in particular semantically well-defined frame 
systems, automatic classification methods, reusable 
ontologies, a methodology for knowledge base construction, 
and a novel extension of methods for explanation 
generation. The resulting system exhibited high 
performance, achieving scores for both accuracy and 
explanation which were comparable to human performance 
on similar tests. While there are qualifications to this 
result, it is a significant achievement and an informative 
data point about the state of the art in KR&R, and reflects 
significant progress by the field. 

Introduction  
Basic research in knowledge representation and reasoning 
(KR&R) has steadily advanced over the years, but it has 
been difficult to assess the capability of fielded systems 
derived from this research. Few systems are built, and 
even fewer are systematically evaluated in domains for 
which the criteria for success are clear-cut. To obtain a 
better idea of the state of the art of one type of KR&R 
technology, Vulcan Inc. recently conducted the Halo Pilot 
Project, the first phase of a multiphase effort to create a 
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“Digital Aristotle”, an expert tutor for a wide variety of 
subjects. The Halo Pilot was a 6-month effort intended to 
assess technology for question-answering systems, with an 
emphasis on deep reasoning, structured around the 
challenge of answering variants of Advanced Placement1 
(AP) chemistry questions for a portion of the syllabus. 

  In this paper, we present the question-answering 
system that we developed as part of this project, and the 
results of its evaluation. The system we developed used a 
combination of several modern KR&R technologies, in 
particular semantically well-defined frame systems, 
automatic classification methods, reusable ontologies, and 
a methodology for knowledge base construction. In 
addition, we extended existing explanation generation 
methods; allowing the system to produce high-quality, 
English explanations of its reasoning.  

The challenge problem itself tested new limits of KR&R 
technology, making the assessment unlike any previous 
one that we are aware of. First, because of the huge variety 
in AP question types, the domain requires a truly 
“multifunctional” solution, that is, the ability of the system 
to combine information together in novel, unanticipated 
ways. This requirement is in contrast to early Expert 
Systems, which were often built to answer just one or two 
types of questions. Second, there was substantial emphasis 
placed on the explanation of the system’s reasoning, 
demanding that the system have significant explanatory as 
well as inferential capabilities. Third, the evaluation was 
rigorous and conducted against human standards, lending 
credibility to the results, while raising some interesting 
evaluation issues. 

In the evaluation, the final system we developed 
exhibited impressive performance in the domain, in terms 
of both correctness and explanation, as judged by domain 
experts. While there are qualifications to this result, it is 
significant because it demonstrates that a novel 
combination of modern KR&R technologies can rapidly 
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produce a high-performance system for this new type of 
challenge, reflecting progress by the field as well as 
successful exploitation and extension of that technology. 
In addition, the analysis of what did not work is of interest 
and a significant contribution of this paper in its own 
right, as it provides some useful insights into directions 
for future research. 

The Challenge Task 
The domain chosen for the Pilot was a subset of AP 
chemistry, namely stoichiometry and equilibrium 
reactions, spanning about 70 pages of a college-level 
chemistry textbook (Brown et al. 2003). This domain was 
chosen to assess several important features of KR&R 
technology without taking on the entire problem of AI. In 
particular, this domain requires complex, deep reasoning, 
but avoids some areas of KR&R, such as reasoning with 
uncertainty and spatial reasoning. It presented significant 
new challenges for knowledge representation due to the 
variability of question types that occur in AP 
examinations. This variability made it infeasible for us to 
anticipate all possible question types at the time we built 
the system. Instead, our system needed to be able to 
combine its knowledge in new and potentially 
unanticipated ways in order to answer many of the 
questions. To give a sense of the wide variety of questions, 
here are some drawn from the exam used to evaluate our 
system: “Which of the following compounds will produce 
a gas when hydrochloric acid is added to the solid 
compound?” (Choices given); “The spectator ions in the 

reaction of barium nitrate with sodium sulfate are what?” 
(Choices given); “In a 100.0 milliliter sample of a 
different buffer solution, the propanoic acid concentration 
is 0.35-molar and the sodium propanoate concentration is 
0.50-molar. To this buffer solution, solid NaOH is added. 
Would the pH increase or decrease?”; “Explain why a 
solution of HClO4 and NaClO4 cannot act as a buffer 
solution”; “Determine the equilibrium constant for the 
reaction H3C6H5O7  +  3 H2O � 3 H3O+  +  C6H5O7

3-.”; 
and so on. This variability in question type continues 
throughout all example question sets we studied, and also 
in the set used in the final evaluation. It was not clear at 
the outset that a system could be constructed to perform 
competently and robustly at tasks of this sort. 

Technical Approach 

Overview 
To address this challenge, we developed a system based on 
Shaken, a knowledge capture, representation, and 
reasoning system (Clark et al. 2001). Our final system 
used a combination of KR&R technologies, principally 
automatic classification, backward inference, explanation 
technology and a semantically clean frame-based system. 
In addition, the underlying knowledge base was built on 
top of a generic (reusable) ontology, rather than built from 
scratch. A representative example of the kind of answer 
and explanation the final system produced in the final 
exam is shown in Figure 1. Questions are posed in the 

QUESTION: Sodium azide is used in air bags to rapidly produce gas to inflate the bag. The products of the decomposition 
reaction are:  
a. Na and water 
b. Ammonia and sodium metal 
c. N2 and O2 
d. Sodium and nitrogen gas 
e. Sodium oxide and nitrogen gas 
 
ANSWER (system generated): 
• What are the products of the given decomposition reaction? (1) 

• By definition, oxidation-reduction reactions occur when electrons are transferred from the atom that is oxidized to (2) 
the atom that is reduced. We need to look for changes in the oxidation states of the elements in the reaction.  
• In the reactants, the oxidation state(s) of the element Na is/are (1). In the product, the oxidation state(s) is/are (0) (3) 
• Therefore, the reaction causes a change in oxidation state.  (4) 

• Therefore, this is an oxidation reduction reaction.  (5) 
• By definition, a Binary Ionic-Compound Decomposition Reaction occurs when a binary ionic compound is heated. (6) 
• Therefore, this reaction is a Binary-Ionic Compound Decomposition reaction. (7) 
• In general, a Binary Ionic-Compound Decomposition Reaction converts a binary ionic-compound into basic elements(8) 
• In this reaction, NaN3 reacts to produce Na and N2.  (9) 

• The products of the decomposition reaction are: (d) Sodium and nitrogen gas.  (10) 

Figure 1: A question from the Halo Pilot Exam and the answer/explanation produced by our system 



system’s underlying KR language, not English (NLP was 
outside the scope of the Pilot); however, the system 
produced answers and explanations in English as 
illustrated. 

Inference 
The knowledge base was encoded in the language KM (the 
Knowledge Machine), a frame-based knowledge 
representation language with clear, first-order logic 
semantics (Clark and Porter 1999), and somewhat similar 
in spirit to KRL (Bobrow and Winograd 1977). In KM, a 
frame denotes either a class (type) or an instance 
(individual), and classes are organized into a semi-lattice. 
Frames have slots (binary predicates) whose fillers are 
axioms about the slot’s value (the predicate’s second 
argument, given the first). These axioms have both 
declarative and procedural semantics, allowing inference 
to proceed. 

Our system answers questions by interleaving two 
fundamental types of reasoning: 
• Automatic classification introduces new concepts into 

the scenario. This is a form of terminological reasoning 
commonly used in description logic (Brachman and 
Schmolze 1985).  

• Backward chaining applies problem solving methods to 
compute bindings for the query variables given in the 
original question or the variables introduced by previous 
steps of backward chaining. 

Both types of reasoning contribute to the answer and 
explanation. Explanation steps (2-5) and (6-7) in Figure 1 
correspond to steps of automatic classification that 
augment the scenario description with new terms. Steps 
(2-5) reflect the classification of the given reaction as an 
oxidation-reduction reaction, and steps (6-7) reflect two 
new concepts: the air bag’s sodium azide is a binary ionic 
compound, and the resulting reaction is therefore a binary 
ionic compound decomposition reaction. This interleaving 
of backward chaining and classification turned out to be 
critical, as classification allowed the system to realize 
when new knowledge could be brought to bear on a 
problem. For example, only as a result of classifying the 
reaction as a Binary-Ionic Compound Decomposition 
reaction (steps (6-7)) is the system then able to apply 
knowledge of how to compute the products of the reaction 
(steps (8-9)). 

Structure of the Knowledge Base 
The two types of reasoning correspond to the two principal 
knowledge structures in the system’s knowledge base: 
chemistry terms and laws. Chemistry terms are concept 
definitions, such as the term “binary ionic compound” 
used to answer the question above. Chemistry laws are 
problem solving methods and knowledge about how and 
when to use them. Laws are represented in four parts, 
using four main predicates (slots), each playing a role in 
backward chaining inference. The context slot is a 

structured representation consisting of instances, 
functions, variables, and relations. Its role is to describe 
the conditions under which the law applies. The input is 
a subset of the variables of the context – just those 
variables that must be bound for the law to apply. The 
output is that subset of variables of the context that 
will be bound by the use of the law. Finally, the method is 
one or more axioms that declaratively specify the 
relationship between the input and output variables. 
Procedurally  it can be used to compute values for the 
output variables given values for the input variables. 
An informal description of the content of the law for 
computing the concentration of a solute is shown in Figure 
2. Actual laws were encoded in KM. 

Reusing Knowledge Content 
Another important characteristic of our solution was that 
we were able to leverage pre-existing, general knowledge 
content for this task, rather than starting from scratch. For 
several years we have been building a library of 
representations of generic entities, events, and roles (Clark 
and Porter 1997, Barker, Clark and Porter 2001, Clark et 
al. 2001, Thoméré et al. 2002) and we were able to reuse 
parts of this for the Halo Pilot. We estimate that 10-20% 
of the final chemistry knowledge base was reused content 
and that much of the more general knowledge encoded for 
the Halo Pilot will in turn be reusable in future domains.  

In addition to providing the types of information 
commonly found in ontologies (class-subclass relations 
and instance-level predicates), our representations include 
sets of axioms for reasoning about instances of these 
classes. The portion of the ontology dealing with 
properties and values was especially useful for the Halo 
Pilot. Our Properties and Units of Measure ontology 
includes representations for numerous dimensions (e.g., 
capacity, density, duration, frequency, quantity) and 
values of three types: scalars, cardinals, and categoricals. 
The ontology also includes methods for converting among 
units of measurement (Novak 1995), which our system 
used to align the representation of questions with 
representations of terms and laws, even if they are 
expressed with different units of measurement. 

Concentration of Solute Law 
  Context: 
    a mixture M such that: 
      volume(M) = V liters 
      has-part(M) =  
        Chemical C such that: 
          quantity(C) = Q moles 
          concentration(C) = Conc molar 
  Input:  V, Q 
  Output: Conc 
  Method: Conc � Q/V 

Figure 2: An informal (yet faithful) representation of 
the content of a law in our system 



Explanation Generation 
In the evaluation of the system, the quality of the English 
explanations was weighted as heavily in grading as the 
correctness of answers. (Students taking the AP exam do 
not have this requirement). Taking the lesson from early 
Expert System applications that proof trees or inference 
traces are not comprehensible to users, we built into our 
system mechanisms for controlling which parts of the 
proof tree are exposed to the user, and text generation 
techniques to summarize those parts in a concise and 
readable form. 

During reasoning, KM records the rules (KM 
expressions) used to derive every ground fact. This 
produces a database of “proof tree fragments” (the 
explanation database), the key raw material for 
explanations. Simply reciting the rules used in a 
derivation still produces explanations containing too much 
detail of uninteresting inferencing (e.g., unification, 
breaking up conjunctive expressions, handling variables, 
performing unit conversion). 

To produce more appropriate explanations, KM allows 
the knowledge engineer to specify which proof tree 
fragments should be used and to author text templates to 
produce coherent English paraphrases for those fragments. 
These features allow the engineer to specify supporting 
facts that merit further explanation and allow complete 
control over the resulting English text. The supporting 
elements for the explanation of a fact need not even be the 
same as the elements used in the derivation of the fact. 

This new approach proved effective for the Halo project, 
but also has some disadvantages. First, it is more labor 
intensive for the knowledge engineer, as it requires her to 
write many rules twice: once as formal KM, and once as 
an informal paraphrase together with a supporting fact 

list. Second, there is currently no mechanism in KM to 
ensure that the informal rendition is faithful to the formal 
one, requiring that the knowledge engineer ensure that the 
paraphrase and supporting facts genuinely reflect what the 
formal KM is computing. Nonetheless, even under the 
strict time constraints of the Halo Pilot, we were able to 
encode both the formal KM and the explanation structures 
to produce many explanations that were correct and 
appropriate. 

For each of the chemistry laws and terms, we identified 
the facts that would require explanation. For each of these 
facts, the engineer tagged the fact and provided an 
explanation frame containing three pieces of information: 
an “entry text” template, an “exit text” template, and a list 
of the more specific facts on which the current explanation 
is dependent. The explanation of dependent facts is 
recursive and appears nested between the current fact’s 
entry and exit text. Figure 3 shows an example law with 
text generation template. 

The explanation of the concentration of ions for strong 
electrolytes can be requested explicitly by a user, or may 
be triggered automatically if I (the ion-concentration in 
Figure 3) appears as a dependent fact in some other 
explanation. Figure 4 shows the explanation generated for 
the output of Compute-Concentration-of-Ions when the 
input is NaOH. 

• If a solute is a strong electrolyte, the concentration of 
ions is maximal 
• Checking the electrolyte status of NaOH.  

• Strong acids and bases are strong electrolytes.  
• NaOH is a strong base and is therefore a strong 

electrolyte.  
• NaOH is thus a strong electrolyte.  

• The concentration of ions in NaOH is 1.00 molar. 

Figure 4: The explanation generated for an application 
of the law in Figure 3 

Note that the text templates and list of dependent facts in 
an explanation frame may contain arbitrarily complex KM 
expressions. In the Halo Pilot, we exploited the full power 
of this mechanism to produce fairly sophisticated 
explanations. 

Knowledge Base Construction Methodology  
In 4 months, we built the knowledge base through the 
coordinated efforts of four groups of experts. First, 
ontological engineers (working about 4 person-months) 
designed representations to support chemistry content, 
including the basic structure for terms and laws, chemical 
equations, reactions, and solutions. Second, chemists 
(working about 6 person-months) consolidated the domain 
knowledge into a 35-page compendium of terms and laws 
summarizing the relevant material from 70 pages of the 
textbook. Third, knowledge engineers (working about 15 

Compute Concentration of Ions Law 
  Context:  
    a Chemical C such that: 
      electrolyte-status(C) = E 
      ion-concentration(C) = I molar 
  Input:   E 
  Output:  I 
  Method:  if C is a strong electrolyte 
              I � max        [I-expl-1] 
           else ...          [I-expl-2] 
 
Explanation Frame [I-expl-1] 
  Entry Text: 
   "If a solute is a strong electrolyte, 
   the concentration of ions is maximal" 
  Exit Text: 
   "The concentration of ions in" C 
   "is" I 
  Dependent Facts: 
   E 

Figure 3: An example law with explanation tags and 
one of the corresponding explanation frames 



person-months) encoded that knowledge in KM, creating 
representations of about 150 chemistry laws and 65 terms. 
The laws and terms translated to many more knowledge 
base rules (sometimes as many as 40 rules per law) and 
roughly 500 concepts and relations. While building this 
knowledge base, the knowledge engineers compiled a 
large suite of test cases for individual concepts and rules 
as well as for combinations of them. This test suite was 
run daily. Finally, the “explanation engineer” (working 
about 3 person-months) augmented the representation of 
terms and laws to generate English explanations. 

An End-to-End Example 
In this section we present an example of the knowledge 
engineering effort for the knowledge that was used in 
answering a single question on the Halo Pilot exam. The 
actual knowledge base was not built by analyzing one 
question at a time. 

Figure 5 shows three of the chemistry laws as defined 
by our chemists (guided by the chemistry textbook and an 
informal analysis of previous exams). 

L.6) Solubility of ionic compounds: Given an ionic 
compound, its solubility (soluble/insoluble) can be 
determined using the guidelines in Table 4.1 in the 
book. (By definition, all ions are soluble). 

L.7) Precipitate formation: A precipitate forms when at 
least one of the products of a reaction is insoluble. 

L.9) Chemical reaction of two ionic compounds 
(metathesis reaction): The formulas for the products 
of the reaction of two ionic reactants are determined 
as follows: The cation of one reactant (if any) is 
combined with the anion of the other reactant (if 
any) to form one product, and vice-versa for the 
second product. 

Figure 5: Some chemistry laws defined by our chemists 

Metathesis Reaction 
  definition: 
    any Reaction R such that: 
      raw-material(R) = Ionic-Compound I1,  
                        Ionic-Compound I2 
  result: 
    Ionic-Compound I3 such that: 
      has-part(I3) = the cation part of I1, 
                     the anion part of I2 
    Ionic-Compound I4 such that: 
      has-part(I3) = the cation part of I2, 
                     the anion part of I1 
 
Precipitate 
  definition: 
    any Chemical C such that: 
      C = result-of(some Reaction) 
      solubility(C) = insoluble 

Figure 6: An informal rendering of some of the 
knowledge encoded to solve the sample question 

In the next step the knowledge engineers encoded the 
chemistry terms and laws by adding KM concepts, rules 
and procedure-like methods to the knowledge base. The 
encodings also made use of the description-logic-style 
automatic classification rules (called “definitions” in KM) 
described earlier. Some of the knowledge corresponding to 
the chemistry laws from Figure 5 appears in an informal, 
simplified (but faithful) representation in Figure 6. The 
KM encodings for all chemistry knowledge, explanation 
templates and exam questions are available on the Halo 
Pilot Project web site (http://www.projecthalo.com). 

The final step involved attaching explanation 
generation templates to knowledge base rules. Some of 
these explanation templates are shown in Figure 7. 

The knowledge was then used to answer questions on 
the final Halo Pilot Project exam. Multiple-choice question 
9 (MC9) from the exam describes a reaction of nickel 
nitrate and sodium hydroxide and asks for the result of the 

Explanation Frame [Metathesis Reaction definition] 
 Entry Text: "By definition, a reaction involving ionic reactants is a metathesis reaction" 
 Exit Text:  "Therefore, this reaction is a metathesis reaction" 
 Dependent Facts: none 

Explanation Frame [Metathesis Reaction result] 
 Entry Text: "In a metathesis reaction, the cation of each reactant is combined with  
              the anion of the other reactant" 
 Exit Text:  "The products of a metathesis reaction of" raw-material(R) "are thus"  
             result(R) 
 Dependent Facts: none 

Explanation Frame [Precipitate definition] 
 Entry Text: "By definition, the result of a reaction is a precipitate if it is  
              insoluble in water" 
 Exit Text:  "Therefore," C "is a precipitate" 
 Dependent Facts: solubility(C) 

Figure 7: An informal rendering of some of the explanation templates for the knowledge in Figure 6 



reaction. A simplified rendering of the KM encoding for 
this question appears in Figure 8. The knowledge base 
handles the translation between chemical names and 
chemical formulae. 

All questions on the exam were posed in the same way: 
query the output slot of the question, then generate the 
explanation text for the output slot of the question. 

When the explanation is requested for the output of 
MC9, the entry text is printed, then any explanation text 
associated with the three dependent facts is generated, 
then the exit text is printed. The system is able to classify 
the MC9 reaction automatically as a metathesis reaction, 
since the raw-materials can be proven to be ionic 
compounds. The first dependent facts then trigger the 

QUESTION: A solution of nickel nitrate and sodium hydroxide are mixed together. Which of the following statements is 
true?  
a. A precipitate will not form 
b. A precipitate of sodium nitrate will be produced 
c. Nickel hydroxide and sodium nitrate will be produced 
d. Nickel hydroxide will precipitate 
e. Hydrogen gas is produced from the sodium hydroxide 
 
ANSWER (system generated): 
• d. Nickel hydroxide will precipitate. 
 
• A solution of nickel nitrate and sodium hydroxide are mixed together. Which of the given statements is true? 

• By definition, a reaction involving ionic reactants is a metathesis reaction. 
• Therefore, this reaction is a metathesis reaction.  
• In a metathesis reaction, the cation of each reactant is combined with the anion of the other reactant. 
• The products of a metathesis reaction of Ni(NO3)2 and NaOH are thus Ni(OH)2 and NaNO3. 
• By definition, the result of a reaction is a precipitate if it is insoluble in water. 

• Ni(OH)2 contains Ni2+ and OH-. 
• According to Table 4.1 of Brown, Lemay and Bursten (2003), an Ionic Compound containing Ni2+ and OH- is 

insoluble in water. 
• Therefore, Ni(OH)2 is insoluble in water. 

• Therefore, Ni(OH)2 is a precipitate. 
• The following statement is true: d. Nickel hydroxide will precipitate. 

Figure 9: The output of multiple-choice question 9 from the Halo Pilot exam 

MC9 
  context: 
    a Reaction R such that: 
      raw-material(R) = nickel nitrate, sodium hydroxide 
      result(R) = ?RR 
 
  output: 
    if ?RR does not include a Precipitate 
       then "a. A precipitate will not form" 
    if ?RR includes sodium nitrate and sodium nitrate is a Precipitate 
       then "b. A precipitate of sodium nitrate will be produced" 
    ... 
 
Explanation Frame [MC9 output] 
  Entry Text: "A solution of nickel nitrate and sodium hydroxide are mixed together.  
               Which of the given statements is true?" 
  Exit Text:  "The following statement is true:" output(MC9) 
  Dependent Facts: definition(R), result(R), definition(result(R)) 

Figure 8: An informal rendering of multiple-choice question 9 



explanation of [Metathesis Reaction definition] 
and [Metathesis Reaction result] as defined in 
Figure 7. The third dependent fact from [MC9 output] 
will only trigger the [Precipitate definition] 
explanation for reaction results that get automatically 
classified as Precipitate. Finally, the explanation template 
for the dependent fact for [Precipitate definition] 
is also triggered, resulting in a nested explanation of the 
solubility of the Precipitate result of the reaction. The full 
output for question MC9 appears in Figure 9. 

 

Evaluation 

Methodology 
To assess the system (and two other systems submitted by 
other teams), Vulcan set an exam consisting of a wide 
variety of new, unseen, AP-like questions. The systems’ 
answers and explanations for the exam questions were 
judged by independent domain experts. The evaluation 
methodology proceeded as follows. First, after 4 months of 
development effort, we delivered our system (software and 
knowledge base) to Vulcan, where it was sequestered 
behind Vulcan’s firewall. We could not make any changes 
to the knowledge base or the inference engine after this 
time. At this sequestration point Vulcan released the Halo 
Pilot Project Exam and we had 2 weeks to encode the 
questions as KM expressions. We submitted the question 
encodings to Vulcan, whose experts vetted them with a 
panel of KR&R experts for fidelity to the original English 
statements of the questions. Finally, Vulcan posed the 
encoded questions to the sequestered system. 

The Halo Pilot Exam consisted of 50 multiple-choice 
questions (MC1-MC50), 25 detailed-answer questions 
(DA1-DA25), and 25 free-form questions (FF1-FF25). 
Many of the detailed-answer questions and free-form 
questions had multiple parts, each of which counted for as 
many marks as a single multiple-choice question. In terms 

of contribution to the final grade, there were 80 detailed-
answer questions (excluding DA4e as out of scope) and 38 
free-form questions. The “normalized” total number of 
questions was therefore 168. Three graders, working 
independently, graded the answers, and assigned each one 
a score of 0, 0.5, or 1 for correctness and a score of 0, 0.5, 
or 1 for the English explanation of the answer. 

Results 
In Figure 10, we show the point totals assigned by each 
grader for each section of the exam. Overall, our system 
scored 49% on answer correctness and 36% on 
explanation. The system required just over 5 hours of CPU 
time (on a 1.4 GHz Windows PC with 2 GB RAM) for the 
final exam. After the evaluation we were able to reduce 
processing time to 38 minutes, primarily through 
debugging. 

The grades were quite consistent among graders. 
Correctness of multiple-choice questions was objective. 
The detailed-answer questions were more difficult than the 
multiple-choice questions, often requiring reasoning 
beyond simple calculation. Grading of detailed-answer 
correctness was somewhat more subjective. The free-form 
questions were more difficult still. These results reflect the 
design of the evaluation: Vulcan wanted to push the 
systems beyond their capabilities, and the free-form 
questions were meant to do just that. Explanation scores 
follow correctness scores for the most part, but may be 
somewhat artificially low, as graders rarely awarded 
points to good explanations when the answer was 
incorrect. 

This achievement compares favorably with student 
performance on the AP chemistry test. This comparison is 
only approximate because there are several differences 
between the Halo Pilot Exam and the AP test: The Pilot 
Exam covered only a portion of the chemistry syllabus, 
corresponding to about 70 pages of a standard textbook; 
the questions on the Pilot Exam were similar to questions 
on an AP test, but not identical to them (due to copyright 
restrictions, Vulcan could not use AP questions); and there 

 
 Grader1 Grader2 Grader3 Average 
 C E C E C E C E 

MC/50 35 
(70%) 

23.5 
(47%) 

35 
(70%) 

26 
(52%) 

35 
(70%) 

27 
(54%) 

35 
(70%) 

25.5 
(51%) 

DA/80 37 
(46%) 

24.5 
(31%) 

33 
(41%) 

26 
(33%) 

30 
(38%) 

31 
(39%) 

33.3 
(42%) 

27.2 
(34%) 

FF/38 14.5 
(38%) 

9 
(24%) 

13 
(34%) 

6 
(16%) 

12 
(32%) 

10 
(26%) 

13.2 
(35%) 

8.3 
(22%) 

TOTAL/168 86.5 
(51%) 

57 
(34%) 

81 
(48%) 

58 
(35%) 

77 
(46%) 

68 
(40%) 

81.5 
(49%) 

61 
(36%) 

 

Figure 10: Summary of test performance (C = correctness score; E = explanation score) 



was no negative scoring. Given these caveats, a score of 
49% earned by our system corresponds to an AP score of 3 
on their 1-5 point scale. This is high enough to earn 
course credit at many top universities, such as the 
University of Illinois at Urbana-Champaign and the 
University of California at San Diego.  

Two other systems built for the Halo Pilot used quite 
different technology yet performed almost as well, which 
reflects well on the state of KR&R. The system built by 
Ontoprise, was based on the OntoBroker system (Angele 
1993, Decker et al. 1999) and F-Logic (Kifer, Lausen and 
Wu 1995), a Prolog-like language. The system built by 
Cycorp was based on Open Cyc and its elaborate inference 
engine. The Ontoprise system scored 44% on answer 
correctness and 32% on explanation, and the Cycorp 
system scored 37% on correctness and 24% on 
explanation. 

The three systems – including software and knowledge 
base downloads, documentation, the complete exam, the 
graders’ scores and comments, and a comprehensive 
analysis of the systems’ failures – are available on the 
Project’s Web site: http://www.projecthalo.com. 

Evaluation of System Failures 
In addition to evaluating overall performance, we 
examined the cases for which our system scored less than 
perfect in order to understand the factors that contributed 
to the failure. In general, the system performed well on 
questions involving mathematic computation for 
properties of specific instances, such as chemical 
substances. The system was less successful with more 
abstract questions, such as finding patterns in the activity 
series, or predicting the properties of typical members of a 
class of substances.  

We found several recurring causes of system failure. 
The first was errors in domain modeling, which were 
caused by errors introduced by knowledge engineers and 
gaps in the knowledge base. It is hard to pin down the 
major cause of gaps but there were several factors that 
made knowledge engineering slow. First, the domain 
experts’ knowledge was being encoded by knowledge 
engineers who sometimes misunderstood the knowledge, 
rather than by the experts directly. For example, the 
knowledge engineers unwittingly asserted that only 
cations can be Lewis acids, a statement that chemists 
know is clearly false. Second, much of the knowledge to 
be encoded was mathematical or procedural. Our 
declarative representation language is not particularly 
well-suited to this kind of knowledge. Finally, testing and 
debugging were slow due to the lack of good debugging 
tools and efficient testing procedures. 

 Another major cause of failures was inappropriate 
modeling assumptions. This type of mistake might be 
made by domain experts, but more frequently was made by 
knowledge engineers. For example, while building the 
knowledge base we assumed that questions that required 
computing an ionic equation must pertain to chemicals 

that are in solution. This assumption was violated by a 
question that asked about a chemical heated to 300ºC. 

These two types of failure – modeling errors and 
inappropriate modeling assumptions – have a common 
cause. Because knowledge engineers are largely ignorant 
of the domain, their work is slow and error prone. Domain 
experts are the ideal encoders, but they require more 
effective tools than are currently available. Developing 
such tools is the focus of the next phase of Project Halo, 
building on the results of DARPA’s Rapid Knowledge 
Formation project (Clark et al. 2001, Thoméré et al. 
2002). 

Another major cause of failures was the system’s 
inability to reason about differences in the knowledge 
base. For example, one question asked for the difference 
between the subscript 3 and the coefficient 3 in 3HNO3. 
Subscripts and coefficients are different concepts in the 
knowledge base, but we did not explicitly encode 
knowledge of such modeling decisions. In some cases 
writing quantified query expressions over relations could 
have allowed us to answer these types of questions, but 
such expressions would possibly have been in violation of 
the rule requiring that question encodings be faithful to 
the original English. 

 With respect to explanation generation, the system’s 
most common failure was producing an inappropriate 
level of detail. In some cases, the explanation was too 
shallow (e.g., when the system recalled the value of an 
equilibrium constant, stored as a ground fact, rather than 
explaining how it might be derived). More often the 
graders found the explanations to be too verbose. For 
example, if an explanation contained passages repeated 
multiple times with only small variations, the graders 
expected a general statement that covered them all. To 
overcome these problems, our system would need the 
ability to reason about its own explanations, which is a 
type of meta-reasoning that we are exploring in the next 
phase of Project Halo. 

A complete discussion of the failure analysis of all three 
Halo Pilot teams appears in (Friedland et al. 2004). 

Related Work 
There are a few other systems that have been developed in 
the past to answer exam-style science questions, although 
with a significantly narrower scope and evaluation. Isaac 
(Novak 1977) and Mecho (Bundy et al. 1979), both 
developed several decades ago, demonstrated that a system 
could be built to answer certain types of high school level 
physics questions correctly, including interpreting the 
original English expression of those questions as stated in 
the exams. Novak later extended his work to include 
diagrams as an additional modality for stating questions 
(Novak and Bulko 1990). More recently, Forbus and 
Whalley’s CyclePad system (Forbus and Whalley 1994) 
provides an “articulate virtual laboratory” for students to 
perform thermodynamic experiments and receive 
comprehensible explanations for the behavior they see. 



More generally, despite the community-wide trend 
towards information retrieval style question-answering, 
there have been some systems developed to support the 
kind of knowledge-based question-answering behavior 
described here, including dealing with questions 
unanticipated at the time of system construction. These 
include Cyc (Lenat and Guha 1990), the Botany 
Knowledge Base system (Porter et al. 1988, Clark, 
Thompson and Porter 1999), the two systems developed 
for DARPA’s High Performance Knowledge Base (HPKB) 
project (Cohen et al. 1998), and the two systems for 
DARPA’s Rapid Knowledge Formation (RKF) project 
(Schrag et al. 2002). The work presented here 
demonstrates a new level of capability for this style of 
system, along with a new level of rigor in the evaluation. 
In addition, the two other systems developed for this Halo 
Pilot Project also performed well, as described earlier in 
the Results section of this paper. An integrated description 
and comparison of the three systems (outside the scope of 
this paper) is provided in (Friedland et al. 2004). 

Our work on explanation builds on the now well-known 
lesson from expert systems that simply reciting the proof 
tree is ineffective. Other recent work on generating 
effective explanations include work on Xplain (Swartout 
1983), Expect (Blythe et al. 2001), and InferenceWeb 
(McGuinness and Pinheiro da Silva 2003). We plan to 
leverage these ideas further in subsequent phases of the 
project. 

Summary and Conclusions 
We have described a large-scale knowledge engineering 
effort, designed to help assess the state of the art in 
knowledge-based question-answering. The scope of the 
effort was to encode the knowledge from 70 pages of a 
college-level chemistry textbook into a declarative 
knowledge base, and to answer questions comparable to 
questions on an Advanced Placement exam. Our solution 
integrated several modern KR&R technologies, in 
particular semantically well-defined frame systems, 
automatic classification methods, reusable ontologies, a 
methodology for knowledge base construction, and a novel 
extension of methods for explanation generation. The 
resulting system exhibited impressive performance by 
scoring about 50% on overall correctness – which is 
comparable to a passing grade on the AP exam – and 
about 35% on the explanation quality. Although many 
challenges remain to achieve the long-term objective of a 
“Digital Aristotle” – in particular acquiring domain 
knowledge more economically, reasoning with meta-
knowledge, and making explanations more natural – these 
results are encouraging. 

The significant conclusion from this work is that 
knowledge systems can be built to perform competently in 
scientific domains, and they can be built quickly, because 
KR&R research has developed the important building 
blocks that are required.  

The results also confirm that the quality of the 
knowledge base is affected by the knowledge engineer’s 
lack of expertise in the domain being modeled. Our 
current focus is on developing appropriate tools to allow 
domain experts to encode knowledge directly themselves. 

The Halo Pilot Project evaluation presented significant 
new challenges for knowledge representation due to the 
large variability of question types that occur – so much so 
that it was not clear at the outset that a high-performing 
system could be constructed. The positive result is thus an 
achievement and an informative data point about the state 
of the art in KR&R, and reflects significant progress by 
the field. 
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