
A Personalized Time Management Assistant: Research Directions
Pauline M. Berry*, Melinda T. Gervasio*, Tomás E. Uribe*,

Martha E. Pollack‡ and Michael E. Moffitt‡

*Artificial Intelligence Center
SRI International

333 Ravenswood Avenue
Menlo Park, California 94025

{berry,gervasio,uribe}@ai.sri.com

‡Computer Science and Engineering
University of Michigan

3401 Beal Ave.,
Ann Arbor, Michigan 48109

{pollackm,mmoffitt}@eecs.umich.edu

Abstract
This paper presents ongoing work to build the Personalized
Time Manager (PTIME) system, a persistent assistant that
builds on our previous work on a personalized calendar
agent (PCalM) (Berry et al. 2004). PCalM was an early test
of the hypothesis that in order to persist and be useful, an
intelligent agent must learn and adapt to the user’s changing
needs. PTIME extends this idea to include more general
time management, soft constraint satisfaction, richer
learning, persistence, and steps towards adjustable
autonomy.

Introduction
Despite a proliferation of calendar tools to organize,
display, and track commitments, most people still spend a
considerable amount of time personally organizing
meetings and managing the constant changes and
adjustments that must be made to their schedules. Desktop
tools have dramatically improved the administration of our
calendars but have limited scheduling capabilities.
Automated meeting scheduling assistants have shown
promise, but their use tends to be fleeting, as they do not
evolve over time. In addition, people use a variety of other
tools, such as to-do lists, to keep track of workload and
deadlines not supported in the typical calendar tools. Our
goal is to provide the technology necessary to manage an
individual’s temporal commitments in a consistent,
integrated framework over an extended period of time.

The PTIME project is part of an ambitious automated
assistant called CALO. In this context, the primary
functional goal of PTIME is to provide time-management
support that is personalized to the needs of individual
users, and adaptive to their changing circumstances. To
achieve this goal, we are designing PTIME so that
1. PTIME will unobtrusively learn user preferences

through a combination of passive learning, active
learning, and advice-taking;

2. As a result of (1), over time the user will become more
confident of PTIME’s ability, and will thus let it make
more decisions autonomously; and

3. As autonomy increases, PTIME will learn when to
involve the user in its decisions.

The human time management problem is characterized
by its intensely personal nature. Many people—especially
busy workers—are fiercely protective of their time and
reluctant to relinquish control over its management.
Moreover, people have different needs and priorities
regarding the reminders they receive, and different
preferences and practices regarding how they schedule
their time, how they negotiate with others about meetings
and appointments, and the amount of information they are
willing to share during such negotiation. PTIME is being
developed to tune itself to these differences.

CALO exists in an open, unbounded environment where
issues of privacy, authority, cross-organizational
scheduling, and availability of participants abound. In
(Franzin et al. 2002), complete privacy is assumed and the
availability and preferences of other users are learned
across time. Systems such as RCAL (Payne et al. 2002),
DCOP (Pragnesh et al. 2003), and (Pragnesh and Veloso
2004] assume more cooperative environments, and use
distributed constraint-solving to schedule meetings.

These systems only schedule feasible options given
fixed, hard constraints of the request. In contrast, PTIME
considers the process of finding the best solution as a
dialogue between user and agent, and treats the underlying
scheduling problem as a soft CSP. PTIME also addresses
the problems of individual preference and scheduling
events within the context of the user's workload and
deadlines.

Figure 1 is a screenshot of the current PTIME interface,
and illustrates the collaborative nature of the dialogue
between PTIME and the user.

Architecture
The PTIME architecture, illustrated in Figure 2, includes a
number of components that make it personalized and
adaptive. Key features of the architecture include:
• A Process Framework (PTIME-Controller), which

captures possible interactions with users and other
agents, in the form of structured decision points

Figure 1: A screenshot from PTIME.

• Preference Learning (PLIANT), which lets the
system evolve over time by learning process
preferences, scheduling preferences, and, eventually,
new processes from the user.

• Advisability, which enables direct instruction by the
user at various levels of abstraction. Exploiting the
explicit decision points in the process framework lets
the user make choices and give advice. Choices may
involve selecting an alternative scheduling process,
e.g. negotiate a new time for the meeting vs. relax an
existing constraint to accept the current time; or they
may involve expressing simple temporal preferences,
e.g. don’t schedule meetings just before lunch.

• Constraint Reasoning (PTIME-CR), which permits
reasoning within a unified plan representation. The
representation used by PTIME unifies temporal and
non-temporal constraints, as well as soft and hard
constraints, within a framework of preferences that
allows the constraint reasoner to consider workload
issues and task deadlines when scheduling typical
calendar events such as meetings. The constraint
reasoner uses a hybrid solver that manages the
application of temporal CSP algorithms, e.g., to handle
Simple Temporal Problems (STPs) (Dechter et al.
1991) and Disjunctive Temporal Problems (DTPs)
(Stergiou and Koubarakis 1998, Tsamardinos and

Pollack 2003), to address the complex constraint space
and preference handling and to enable partial
constraint satisfaction. It also provides the ability to
explore alternative conflict resolution options via
relaxation, negotiation, and explanation techniques.

• Personalized Reminder Generation (PTIME-RG),
which reasons intelligently about if, when, and how to
alert the user of upcoming events or possible conflicts
amongst events. This work builds on the Autominder
system (Pollack et al. 2003) and the PLIANT
algorithms to create reminders that are context-
sensitive and personalized.

• Adjustable Autonomy, which modulates control over
decision points as the user’s preferences and normal
practices are learned, and trust between the user and
the system is established. The goal is to decrease the
system’s reliance on user interaction over time.

 Persistence and Learning
Central to persistence are the application of learning
technology and a framework for advisability. Through
continual active learning and advice taking, PTIME
constructs a dynamic preference profile containing two
types of guidance:

��

PTIME_Controller
SPARK(Control Module)

PTIME_CR
ECliPSe(Constraint Reasoner)

PLIANT
Java(Preference Learner +

Active Learner)

PTIME_Monitor
SPARK(Execution Monitor)

PTIME_RG
Autominder

External Calo Environment
UserInterfaces/IRIS/TaskManager/QueryManager

Multicalo
Java (intercalo comms)

User Plan
(IRIS DB)

Preference Profile
(Filestore)

PTIME_UI
Java

Figure 2: PTIME functional architecture

Preferences: over schedules (when to reserve time and
with whom), relaxations (which constraints, or constraint
sets, are more readily relaxed) and reminders (when, how
and about which events the user should be alerted).
Process selection and application: over existing process
descriptions (e.g., negotiate or relax) and learned
processes.

Both types of information can be actively asserted using
a policy specification language, building on work on
advisability and adjustable autonomy (Myers and Morley
2003). They can also be passively learned by monitoring
the user’s decisions.

PTIME uses a suite of tools to learn various kinds of
preferences. A Support Vector Machine (SVM) module,
supplemented with active learning strategies, learns user
preferences about schedules in the form of an evaluation
function over temporal schedule features (e.g., day of
week, start time, fragmentation) (Gervasio et al. 2005).
We are adding features that capture whether or not
constraints are satisfied by a candidate schedule; this will
let PTIME learn preferences over relaxations in the case of
over-constrained schedules as well. We are also exploring
procedural learning, where the performance task is to
determine what to do under a particular situation rather
than to evaluate the goodness of a candidate schedule.
Along similar lines, we are using procedural learning to
handle situations that arise after an event is scheduled: for
example, if the host cannot make it or if the scheduled
venue suddenly becomes unavailable. Finally, PTIME uses

reinforcement learning schemes to learn both reminder
strategies that are tailored to individual users and strategies
for determining the amount of autonomy to take in
different situations. By observing the effects of different
reminder strategies on a user, PTIME can adjust its
reminder strategy to account for personal traits as well as
different schedule situations. A similar process occurs with
the learning of adjustable autonomy decisions.

In all cases, PTIME learns online (or from the execution
traces of the user’s actual interactions with PTIME), so it
can continually adjust to changing user preferences and
situations. Concept shift—the phenomenon of users
exhibiting drastic changes in preferences—is a known
issue in the calendar scheduling domain. We plan to
address this problem more directly by designing a learning
approach that is sensitive to sharp changes as well as a
period of stabilization of user preferences over time.

Research Directions
PTIME has demonstrated its initial calendar management
software within the CALO project, and is currently
undergoing a test phase, conducted by an external agency,
to assess its capability to learn user preferences and
therefore retain a high level of usefulness to the user.
PTIME development has four principal research goals for
2005, and all relate to its ability to adapt to the user’s
needs. In this section we describe our plans for research
into hybrid constraint satisfaction and partial constraint

satisfaction with preferences, our goal to design a
framework and processes for negotiation between the
agents and with the user, and our ongoing work to learn
adjustable autonomy policies for schedule conflict
situations.

Soft CSP design
The Temporal Constraint Network (TCSP) (Dechter et al.
1991) has been widely used to solve scheduling problems.
Here variables represent time points, such as the start and
end of events, and constraints define the range of durations
and times over which these events may be scheduled. A
solution is an assignment of values to variables such that
all constraints are satisfied. When there is just one interval
per constraint the problem is called a simple temporal
problem (STP). The application of preferences STPs and
the learning of those preference functions are explored by
(Rossi et al. 2001). However, as indicated, a critical aspect
of PTIME is our consideration of temporally disjunctive
constraints. This is unique among many calendar tools and
a key feature of PTIME: its ability to reason about the
relationship between events on the calendar and events in
the user’s todo list.

A task on a user's todo list might be to write a project
status report by a specified date. This type of task is not
specifically scheduled onto a calendar, but it does imply
the need for one or more spells of uninterrupted time
before the due date, which should constrain the time
available for scheduled meetings. This is further
complicated by disjunctive relationships between events.
For example, the user may wish to schedule some time to
exercise, and stipulate at least half and hour between the
end of exercising and the beginning of any meeting, for
cooling off.

To handle these “floating” events and dependencies, the
binary restrictions of STPs must be removed, resulting in a
DTP. Experiments adding preferences to DTPs (Peintner
and Pollack 2004) form the basis for our work on soft
constraints.

However, the PTIME domain also includes non-
temporal finite-domain constraints that are not efficiently
handled by the DTP. For example, the user may stipulate
the need for a meeting to include a set of participants
defined as at least two engineers and one account
manager, and a location that depends on the final number
of participants. To further complicate matters (for the
system, but not for the user), we consider the constraints to
be soft, with preference functions over their relaxation.
Thus, we need to combine the DTPP and STPP
representations and algorithms into one constraint engine.

To solve the soft CSPs for mixed domains, we propose
to combine existing solvers for the temporal and
nontemporal subproblems in a hybrid formulation.
Constraint solving in PTIME is implemented in ECLiPSe
(Cheadle et al. 2003), a system well suited to hybrid
solving. We will extend some initial experiments to
explore the use of DTPPs for each case, partitioning the
variables between temporal and nontemporal ones. We will

also consider local search techniques to produce
qualitatively different solutions to present to the user.

CSP Control
The constraint problem in PTIME is a combination of three
factors: the user's existing schedule, the meeting request,
and the interactive collaboration between PTIME and the
user. The user may interact with PTIME to explore
possible relaxed solutions to the problem, leading to a
sequence of related soft Constraint Optimization Problems
(COPs) to solve. For example, the user may initially
specify a strong preference against meetings on Monday
mornings. Later, she may weaken this preference but
increase the importance of the specified meeting room.

We will model this situation by mapping the user's
preferences into both the shape and height of the semiring
preference functions on the relevant constraints. The shape
models how much and in what way the constraint may be
relaxed, and the height models the importance of the
constraint. This builds on the work by (Peintner and
Pollack 2004) and (Bistarelli, Montanari, and Rossi 2001).

Negotiation: Process Design for Conflict
Resolution
The work on extending the constraint representation and
relaxation framework of our CSP is to enable more
informative dialogue between the human user and the
agent. The motivation behind PTIME is to facilitate a
collaborative assistant for time management. Taking note
of research in collaboration (Grosz and Kraus 1999) and
collaborative interfaces (Babaian, Grosz, and Shieber
2002] we will view conflict resolution as a joint task to be
undertaken between the human and his agent, or between
agents. Currently, the interaction is explicitly captured in
the highly reactive process descriptions offered by
SPARK-L (Morley 2004) and applied within a framework
of advice. We would like to abstract and possibly learn the
applicability conditions within the context of the dialogue.

Figure 3 presents a typical dialogue that might take place
between a user and PTIME. To enable this type of
dialogue, the processes capture the key decision points.
Future research will construct a collaborative framework
within which these processes will operate. Figure 4
illustrates an example process in SPARK-L.

At each decision point there is the possibility to
automate the decision, ask the user for advice or decision,
postpone the decision, or take another action. For example,
when [do: (select_solution $resultset $result)] is the goal, a set of
different actions might be intended, including asking the
user to select an option or automatically selecting the
highest valued option. The choice of action depends on the
user’s preference (learned or told), the physical context
(such as the user’s current activity), and the cognitive
context. Learning how and when to apply each activity is a
highly personalized and evolving problem. Thus, the final
research direction discussed in this paper is adjustable
autonomy.

User Helen: “Please schedule a group
meeting early next week”
PTIME Agent: “Your specific request
conflicts with your current workload and
meeting constraints”
PTIME Agent: “May I suggest some possible
alternatives”
1. Meet Monday at 10am without “Bob”
2. Meet Tuesday at 4pm overlapping the

seminar
3. Meet Monday at 10am warning your

report deadline may be in jeopardy
4. Meet Tuesday at 11 and reschedule

your meeting with the boss
User Helen: I don’t mind overlapping some
meetings – show me more possibilities like
2.
PTIME Agent: “Ok How about”
1. Meet Monday at 11:30 running into

lunch by 15 minutes
2. Meet Tuesday at 9:30 but Bob may have

to leave early
User Helen: “Ok go ahead with 2”

Figure 3. Example user-agent dialogue

{defprocedure “schedule”
 cue: [do: (schedule $event_type $constraints $attributes)]
 preconditions (Event_Type “meeting”)
 body: [context (and (User $self)
 (Participants $constraints $pset))
 seq:
 [do: (retrieve_availability $pset $constraints)]
 [do: (solve_schedule $constraints $resultset)]
 [do: (select_solution $resultset $result)]
 [select: (= $result [])
 [do: (resolve_conflct $constraints $result)]
 [do: (confirm_meeting $result $attributes)]]
 }

Figure 4. Example SPARK-L process

Learning for Adjustable Autonomy
As noted earlier, a central goal for PTIME is to become
increasingly autonomous as its user gains trust in its ability
to manage his or her time. However, it is unlikely that a
user will ever want to let PTIME make all decisions
autonomously, and thus one of our goals is to design a
system that is adjustably autonomous. For example, when
PTIME receives a request to schedule a meeting, it must
decide to do one of the following:

1. Reject the request outright.
2. Accept the request and schedule the meeting, ignoring

(for the time being) any conflicts this may introduce
into the schedule.

3. Accept the request and adjust the schedule to remove
any resulting conflicts.

4. Immediately interrupt the user, regardless of his or her
current activity, and ask what to do.

5. Defer the decision until the user is available to confer
with.

This decision will depend on a number of features of the
current situation, for example, how important the meeting
is, how many conflicts it introduces into the schedule, what
the user is currently doing, and so on.

Rather than try to develop handcrafted rules for
determining which autonomy decision to make, we are
attempting to use reinforcement learning (RL). Our
approach is similar to the one taken in (Rudary, Singh, and
Pollack 2004], in which we used RL to compute reminder
policies, which map from features of the environment to
decisions about whether and when to issue reminders. A
key difference is that the reward signal for the autonomy
case is less clear. We are currently investigating using a
function of the user’s subsequent actions (e.g., undoing a
scheduling decision) and the quality of the resulting
schedule. We are also planning to integrate the traditional
unsupervised learning of RL with some advisability
techniques, so that the user can focus the policy search by
providing advice, e.g., “I wished you’d have asked me
about that meeting before scheduling it.” We are using
direct policy search, because it defines a compact policy
space that is generally interpretable by humans, and we are
exploring a number of different policy gradient approaches
from the RL literature.

Conclusions and Future Work
The concept of a persistent useful life motivates the design
of PTIME. It has an extended notion of collaboration,
between agents and more specifically with the individual
user. The collaborative scheduling process is separated
from the constraint reasoning algorithms to enable
interaction with the user and other PTIME agents. This
interaction forms the framework for learning and
adjustable autonomy. The time management processes are
represented as context-sensitive, hierarchical procedures.
These provide hooks into the user’s decision process at
multiple levels of abstraction. These hooks can be used to
passively learn the user’s preferences or to facilitate the
specification of advice from the user. The resulting agent
will let the user retain control of decisions when necessary
and relinquish control to the assistant at other times.
Meanwhile, the agent will be sensitive to the user’s wishes
and preferences.

Future studies of the interactions between agents will be
conducted in collaboration with USC-ISI, building on work
by (Tambe and Zhang 2000). Meanwhile, the interaction

between the agent and the human user will be studied in
collaboration with the University of Michigan, based on
previous work by (Pollack et al. 2003).

Acknowledgments. This material is based upon work
supported by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. NBCHD030010.
Any opinions, findings and conclusions or
recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
DARPA or the Department of Interior-National Business
Center (DOI-NBC).

References
Berry, P.M., Gervasio, M., Uribe, T., Myers, K., and Nitz, K.
(2004). A personalized calendar assistant, In proceedings of the
AAAI Spring Symposium Series, Stanford University.
Babaian, T., Grosz, B. and Shieber, S.M. (2002). A writer's
collaborative aid. In proceedings of the Intelligent User Interfaces
Conference, San Francisco, CA. January 13-16. ACM Press, pp.
7-14
Bistarelli, S., Montanari, U., and Rossi. F. (2001). Solving and
learning soft temporal constraints: Experimental scenario and
examples, In proceedings of the CP'01 Workshop on Modelling
and Solving Problems with Soft Constraints.
Cheadle, A.M., Harvey, W., Sadler, A.J., Schimpf, J., Shen, K.
and Wallace, M.G. (2003). ECLiPSe: An Introduction, Technical
Report IC-Parc-03-1, IC--Parc, Imperial College London.
Dechter, R., Meiri, I., and Pearl. J. (1991). Temporal constraint
networks. Artificial Intelligence, 49(1– 3):61–95.
Franzin, M. S., Freuder, E. C., Rossi, F., and Wallace, R. (2002).
Multi-agent meeting scheduling with preferences: Efficiency,
privacy loss and solution quality. In proceedings of the AAAI
2002 Workshop on Preference in AI and CP.
Grosz, B. and Kraus, S. (1999). The evolution of SharedPlans. In
Foundations and Theories of Rational Agencies, A. Rao and M.
Wooldridge, eds. pp. 227-262.
Morley, D. (2004). Introduction to SPARK. Technical Report,
Artificial Intelligence Center, SRI International, Menlo Park, CA.
Myers, K. L. and Morley, D. N. (2003). Policy-based Agent
Directability. In Agent Autonomy, Kluwer Academic Publishers.
Payne, T. R., Singh, R., and Sycara, K. (2002). Rcal: A case study
on semantic web agents, In proceedings of the First International
Conference on Autonomous Agents and Multi-agent Systems.
Peintner B. and Pollack, M.E. (2004). Low-cost addition of
preferences to DTPs and TCSPs, In AAAI-2004, pages 723-728.
Pollack, M.E., Brown, L., Colbry, D., McCarthy, C.E., Orosz, C.,
Peintner, B., Ramakrishnan, S., and Tsamardinos, I. (2003).
Autominder: An intelligent cognitive orthotic system for people
with memory impairment, Robotics and Autonomous Systems,
44:273-282, 2003.
Pragnesh J.M., Shen W., Tambe M., and Yokoo, M. (2003). An
asynchronous complete method for distributed constraint
optimization, In proceedings of the Autonomous Agents and
Multi-Agent Systems, (AAMAS).

Pragnesh, J.M., and Veloso, M. (2004). Multiagent Meeting
Scheduling with Rescheduling, In proceedings of the Fifth
workshop on Distributed Constraint Reasoning (DCR 2004).
M. Rudary, M., Singh, S., and Pollack, M.E. (2003). Adaptive
Cognitive Orthotics: Combining Reinforcement Learning and
Constraint-Based Temporal Reasoning, In proceedings of the 21st
International Conference on Machine Learning, July.
Stergiou, K., and Koubarakis, M. (1998). Backtracking
algorithms for disjunctions of temporal constraints, In
proceedings of the fifteenth national/tenth conference on Artificial
intelligence/Innovative applications of artificial intelligence,
p.248-253, Madison, Wisconsin, United States.
Tambe, M., and Zhang, W. (2000). Towards flexible teamwork in
persistent teams:extended report, Journal of Autonomous Agents
and Multi-agent Systems, Vol. 3 159-183.
Tsamardinos, I., and Pollack, M.E. (2003). “Efficient Solution
Techniques for Disjunctive Temporal Reasoning Problems,”
Artificial Intelligence, 151(1-2):43-90.

