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ABSTRACT

This report includes the results of a series of experiments to
compare the efficiency of training methods using (1,0) and (+1,-1)
representatives for patterns. It also presents a theoretical explana-
tion which deals with a single TLV rather than with a network of TLV's

as used in the experiments. The effects noted, however, can be expected
to pertain to the network also.
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AN EXPERIMENTAL COMPARISON
OF THREE LEARNING MACHINE TRAINING RULES
by
Nils J. Nilsson
and

Richard C. Singleton

A, BACKGROUND

In the design of learning machine systems such as MINOS I1,* it is
necessary to specify whether the binary inputs to the learning machine

shall be represented by plus ones and minus ones (+1, -1) or by ones and

zeros (1,0). The standard error-correction training rule affects the
input-output behavior of the learning machine in a significantly different
way, depending on whether the rule is applied to a (+1, —1) input machine
or to a (1,0) input machine., This difference is due to the fact that

for a (1,0) machine, only active weights (weights connected to a one
input) are adapted, whereas for a (+1, -1) machine, all of the weights
are adapted. A limited amount of past experience has indicated that the
(+#1, -1) machines converge faster than do (1,0) machines. It was decided
to conduct a series of computer-simulation experiments to determine
whether or not the training rate of (+1, -1) machines was appreciably
faster. In this report we shall describe these experiments and present

a partial theoretical explanation of the results.

* MINOS II is the name of a large-scale, self-contained learning machine
system built at the Stanford Research Institute under sponsorship of
the U.S. Army Electronics Research and Development Laboratory
(Contract DA 36-039 SC-78343). The experimental results contained in
this report were made available to USAERDL in Quarterly Progress Report
No. 11 because of their obvious importance to.the design of MINOS II.



B. DESCRIPTION OF THE EXPERIMENTS

To test the performance of the two methods, a one-bit output majority-
rule learning machine was simulated on the IBM 7090 computer. This
simulated learning machine was a scaled-down version of one of the six
parallel units of MINOS II. A schematic diagram of the simulated machine
is shown in Fig. 1. Twenty binary inputs are operated on by five thres-
hold logic units (TLUs), which produce a one-bit output according to

majority-rule logic. The five threshold logic units are connected to
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FIG. 1 SYSTEM ORGANIZATION FOR COMPARING
(1, 0) AND (+1, =1) LEARNING MACHINES

the 20 inputs by an everything-to-everything scheme employing 100 ad-
‘justable weights. Each TLU also has an adjustable threshold simulated
by adjustable weights connected to a 21st input, which always has the

value (+ 1). The total number of adjustable weights is therefore equal



to 105. The initial values of all weights and thresholds, before training,
were in all cases equal to zero. [These initial conditions represent
equivalent starting positions for both (1, 0) input machines and (+ 1, - 1)

input machines. ]

Learning curves were obtained for random sets of randomly categorized
patterns, first represented by the (1, 0) scheme and then by the (+ 1, - 1)
scheme. Six different random pattern sets of 90 patterns each were used.
These sets were divided into three groups. In Group I, (Pattern Sets 1
and 2), each pattern had exactly five ones; in Group II (Pattern Sets 3
and 4), each pattern had exactly ten ones; in Group III (Pattern Sets 5
and 6), each pattern had exactly fifteen ones. Each group had two sets
of different random patterns, and two learning curves were obtained for
each set. One learning curve is the result of training a machine whose

input patterns were presented as ones and zeros; the other curve is the

result of training a machine on the same patterns presented as ones and
minus ones. In addition, a modified training rule was used for the
patterns in Group III. This modified rule attempted to train a (1, 0)
input machine in such a way that its learning performance approximated
more closely that of a (+ 1, - 1) input machine operating under the
ordinary training rule. Therefore, for Pattern Sets 5 and 6, a total

of three learning curves were obtained.
A total of six pattern sets were used for the following reasons:

(1) Three groups were chosen to see if the difference in
training rates between (1, 0) and (+ 1, - 1) machines

depended at all on the number of ones in the pattern.

(2) Two different sets were included in each group to give
an indication of the differences in learning curves for

different pattern sets with the same number of ones.

A total of 90 patterns were used in accordance with a (local) rule-
of-thumb that the number of random patterns that a machine can learn in
a number of iterations appropriate for a practical application is roughly
equal to the number of adjustable weights per output bit. The simulated

machine had 105 adjustable weights.



C. TRAINING RULES
The three training rules tested all had the following characteristics:

When the leérning machine output is in error, a determination is
made of how many TLUs must have their responses reversed so that the
majority will vote correctly. Let the minimum number of such reversals
necessary be equal to k. Of those TLUs voting incorrectly, one selects
the k whose analog sums are closest to threshold and prepares to re-

verse their responses.

Suppose the response of the ith TLU is to be reversed: Then, its
weights must be adapted. The three training rules differ in the way in

which this reversal is accomplished:

(1) (1, 0) Training Rule [for (1, 0) input machines]--An

increment is added to each active weight (a weight
connected to a one input). The size and direction of
each increment are the same for each active weight and
are determined by the total change needed in the analog

sum to effect a reversal of the TLU binary output.

(2) (+ 1, - 1) Training Rule [for (+ 1, - 1) input machines]--

An increment is added to all weights. Those weights
connected to plus one inputs are altered in a direction
opposite to that of weights connected.to minus one
inputs. The size. of the increments is the same for

all weights and the size and direction is determined

by the total change needed in the analog sum to effect

a reversal of the TLU binary output.

(3) Modified (1, 0) Training Rule [for (1, 0) input

machines]--An increment is added to all weights.

Those weights connected to plus one inputs are

altered in a direction opposite to that of weights
connected to zero inputs. The size of the increment
is the same for all weights and the size and direction
is determined by the total change needed in the analog
_sum to effect the reversal of the TLU binary output.
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The (1, 0) and (+ 1, - 1) training rules were applied to all six
pattern sets, whereas the modified (1, 0) training rule was applied only

to the Pattern Sets 5 and 6.
D. RESULTS OF EXPERIMENTS

The learning curves for each of the six sets of patterns are illus-
trated in Figs. 2 through 7. Each learning curve depicts the number of
errors made (out of 90 patterns) during a test procedure conducted after
each iteration through the pattern set. The following conclusions seem
warranted as a result of comparing the (1, 0) rule curves with the '

(+ 1, - 1) rule curves:

(1) In all cases, the (+ 1, - 1) rule converges to zero
errors faster and more directly than does the (1, 0)

training rule.

(2) The disparity between convergence times for the (1, 0)
and (+ 1, - 1) training rules increases with the per-
centage of ones in the patterns, being least noticeable
for the case of 25% ones and increasing to a large

factor in the case of 75% ones.

(3) The convergence time for the (+ 1, - 1) training rule
is little affected by the number of ones in the

patterns.

It can be shown theoretically that the modified (1, 0) rule would
exhibit a learning curve almost identical with that of the (+ 1, - 1)
rule when the percentage of ones in each pattern is equal to 50%. For
this reason the modified (1, 0) rule was not tried on Pattern Sets 4
and 5,

Examination of Figs. 6 and 7 indicate that the modified (1, 0)
training rule results in a learning curve whose convergence time is inter-
mediate between those of the (1, 0) and (+ 1, - 1) rules. For this
reason, the modified (1, 0) rule was not tested on Pattern Sets 1 and 2,

where the (1, 0) and (+ 1, - 1) rules produced very similar curves.
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E. A PARTIAL THEORETICAL EXPLANATION*

In attempting a theoretical explanation of the apparently faster
convergence rate for patterns in the (+1, -1) representation, as opposed
to the (1,0) representation, we shall consider only the training of
single TLU's. When observed in the past, this difference in convergence
rate was attributed

(1) to the fact that in the (+1, -1) representation the

pattern vectors, and thus the correction vectors,
were of equal length, and

(2) to the tendency for pattern vectors to be more nearly
orthogonal to each other when in the (+1, -1) repre-
sentation.
In the experiments in this report, the pattern vectors in each trial were
of equal length, since the number of ones was held constant. Thus we

consider the second factor, the expected angle between pattern vectors.

If two E-dimensional pattern vectors, each having W ones, are selected

at random without replacement, the probability of agreement in k ones is

wy, ,n - W
: (k) (w - k)
Pk} = ——————— for k=0,1, ...w-1,
S () -1
w
In the experimental trials, n = 20 and w = 5, 10, and 15, Since (:v‘) > 1,
we will simplify our calculations by substituting the corresponding

probability for sampling with replacement:

eI
pr{k} = kK w= 2 for k=0,1, ... w.
()

* A similar theoretical explanation has been advanced independently by
C. Kesler and G. Nagy in the following document: Collected Technical
Papers, Vol. 2, F. Rosenblatt (Ed), Cognitive Systems Research Program,
Cornell University, Ithaca, N, Y,, p. 11, 30 July 1963,




The ch factorial moments for this distribution are:

k! d k!
E[ —~—] = Z ~— Pr{k}
(k JS. Kk=j ik 35

[(w — j)!] ~ for j = 1, 2, ... w,

Thus, the mean is
w2

wo= Ek) = —

and the variance is
0> = E[k - u]?2 = E[k(k - 1)] + p (1 - u)

w2(n - w)2
n“(n - 1

The standard derivation of 5 is thus

w(n - w)/n /(rl—-l—) .

sdk

We assume that the E-dimensional pattern vectors are augmented by an
additional one aé an (E_i_l)St component to allow for a floating threshold
level. In investigating the expected value of the cosine of the angle
between two randomly selected pattern vectors, we treat the following fwo

cases of interest:

(1, 0) Representation: Two pattern vectors agreeing in k ones will have

an angle
cos © = (k +1)/w.
Using the assumed probability distribution, the expected value will be
E = [cos 8] = (w? +n)/n(w + 1).

When viewed as a continuous function of w/n, E[cos 6] has a single minimum

at w/n = [/(n+ 1) - 1]/n.

(+1, -1) Representation: The angle between two pattern vectors agreeing

in k ones is

cos 8 = [1-4(w-k)/(n+1)].

10



The expected value of this angle is

(1 -9,

E[COS 9] = [1 - 1_1_+_1 n

The function E[cos 8] is symmetric about w/n = 1/2, and has a minimum

value of 1/(n + 1) at w/n = 1/2,

Example: For n = 20, as in the experimental trials, the foliowing table

of the expected value of cos 6 versus W is obtained:

E{cos 6]

w (o, 1) (+1, -1)
2 0.400 0.657
5 0.375 0.286
8 0.467 0.086
10 0.545 0.048
12 0.631 0.086
15 0.765 0.286
18 0.905 0.657.

Elcos 6] has a minimum of 0.36 at = 4 in the (1, 0) case, and a

w
minimum of 0.048 at w = 10 in the (+1, -1) case.

In general, a correction made for one pattern in a set tends to
uncorrect for some others in the set; corrections are independent of each
other only if the pattern vectors in the set are mutually orthogonal.
Except for very small ratios of w/n, the (+1, -1) representation leads
to the expectation of more nearly orthogonal pattern vectors than the
(1, 0) representation, and thus, we might expect, to more rapid convergence

for a single TLU.

Another factor that should be taken into account is expected varia-
tion in angle as well as the mean angle. TFor the (1, 0) representation, _
the standard deviation of cos © is 4/(n + 1) times sdy, and for the (+1, -1)
representation, 1/w times sdk. Just how to interpret this is hard to

say, but increased standard deviation most likely leads to slower convergence .

11



The observed varlations in learning time as a function of w for the
(1, 0) and (+1, -1) representations during the experimental trials using
a majority logic configuration of five TLU's was very much as what one
might anticipate for a single TLU, based on the expected angles between
pattern vectors. While it cannot be claimed that our theoretical analysis
explains the experimental results, it does appear that the expected angle
between pattern vectors is related to convergence of multiple TLU systems

as well as single TLU's.

Discussion of Training Rules

We consider a set of (n + 1)-dimensional pattern vectors {ai} in
(1, 0) representation, where the (n + 1)-st component is always one, and
a corresponding set {61} of categoriéation multipliers, where Bi =1 if
the ith pattern is in the first class and -1 if the lth pattern is in
the second class. Suppose the (1, 0) training rule is: if (Siai,wj) <o,
then wj+1 = w‘j + Biai, where wj is the jth trial weight vector and (s,t)
denotes the inner product of the vectors s and t. The pattern vectors
cen alternatively be expressed in (+1, -1) form by the transformation

'

a; = 2ai - 1. If the same training procedure is followed, the rule is:

' 1 - 1 ! .
if (Siai,wj) < 0, then w3+1 wj + Siai. In either representation, the
rule leads to a solution weight vector when one exists, and the number
of corrections is finite and bounded. But, as we have seen, the con-

vergence rate may be widely different in the two representations.

The modified (1, 0) training rule used in the experimental trials was
" ¥ .
essentially of the form: if (Siai,wj) < 0, then w‘j 1= w + 61a1. This
rule tests with the (1, 0) pattern vectors, but corrects w1th (+#1, -1)
pattern vectors. Although this rule worked well in the trials, it may
not converge in all cases in which a solution weight vector exists. At

least, no convergence proof is available for the rule as yet.

When using the (+1, ~-1) training rule, it is possible to test using
the (1, 0) pattern vectors if the threshold weight is appropriately
‘modified during training. What is needed is a sequence W; of weight
vectors such that

(8, a, w!') =

12



i.e., such that

W= 2w3 - (1, wi)T,

J J

where 7 is a vector with n zeros and with a one in the iﬂ_i“l)St position.

The necessary correction rule is: 1if (Siai,wg) < 0, thea

w = wg + Si[2ai - (1, ai)T]. For a pattern with k ones

(1, ai) =2k - n + 1. This training rule is equivalent to the (+1, -1)
training rule given earlier, except that the test is made using the (1, 0)

pattern vectors.

In general, if the training rule is based on the transfcrmed pattern

vectors a; = aai - B1, where o > B > 0, then the (1, 0) pattern can be

used for testing if the training rule is: if (Siai,wg) < 0, then

1

7" " "
wj_’.1 =W + 61 [aai B(1, ai)T]. By suitable choice of ¢ and p for a
given collection of pattern vectors, it may be possible to get more rapid

convergence than with either the (1, 0) or (+1, -1) representations.

13



F, CONCLUSIONS

We have presented the results of a series of experiments to compare
the efficiency of training methods using (1, 0) and (+1, -1) representa-
tions for pattterns. For patterns with a large number of ones, the (+1, -1)

representation leads to substantially shorter training times.

A partial theoretical explanation was attempted. While this expla-
nation deals with a single TLU rather than with a network of TLUs, as
used in the experiments, the effect noted can reasonably be expected to
pertain to the network also. As a consequence of the theoretical expla-
nation, it is predicted that the (1, 0) representation would lead to

somewhat faster training when the patterns contain a small number of ones.
Future research might well be directed toward the following topics:
(1) A theoretical comparison of the two representations

applicable to networks of TLUs.

(2) Investigation of the effects on training time of a
dispersion in the number of ones in the patterns.

(3) Derivation, for any given set of patterns, of the
optimum values of o and B for a (+x, -B) representation.
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