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ABSTRACT

This report includes the results of a series of experiments to
compare the efficiency of training methods using (1,0) and (+1,
representatives for pattern. It also presents a theoretica explana-
tion which deals with a single TLV rather than with a network of TLV'
as used in the experiments. The effects noted, however, can be expectedto pertin to the net work a180.
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AN EXPERIMENTAL COMPARI SON
OF THREE LEARNING MACHINE TRAINING RULES

Ni Is J. Ni lsson
and

Richard C. Singleton

BACKGROUND

In the design of learning machine systems such as MINOS II, * it 
necessary to specify whether the binary inputs to the learning machine

shall be represented by plus ones and minus ones (+1 , -1) or by ones and
zeros (1 0). The standard error-correction training rule affects the
input-output behavior of the learning machine in a significantly different
way, depending on whether the rule is applied to a (+1 , -1) input machine

or to a (1 0) input machine. This difference is due to the fact that
for a (1 0) machine , only active weights (weights connected to a one

input) are adapted , whereas for a (+1 , -1) machine , all of the weights

are adapted. A limi ted amount of past experience has indicated that the
( +1 , -1) machines converge fas ter than do (1 0) machines. I t was decided
to conduct a series of computer-simulation experiments to determine

whether or not the training rate of (+1 , -1) machines was appreciably

faster. In this report we shall describe these experiments and present
a partial theoretical explanation of the results.

* MINOS II is the name of a large-scale , self-contained learning machine
system built at the Stanford Research Institute under sponsorship of
the U. S. Army Electronics Research and Development Laboratory
(Contract DA 36-039 SC-78343). The experimental resul ts contained in
this report were made available to USAERDL in Quarterly Progress Report
No. 11 because of their obvious importance to . the design of MINOS I I.



DESCRIPTION OF THE EXPERIMETS

To test the perf ormance of the two methods , a one- bi t out put maj ori ty-
rule learning machine was simulated on the IBM 7090 computer. This
simulated learning machine was a scaled-down version of one of the six

parallel units of MINOS II. A schematic diagram of the simulated machine

is shown in Fig. 1. Twenty binary inputs are operated on by five thres-
hold logic units (TLUs), which produce a one-bit output according to
majori ty-rule logic. The five threshold logic units are connected to

VARIABLE WTS.
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FIG. 1 SYSTEM ORGANIZATION FOR COMPARING
(1, 0) AND (+1 , -1) LEARNING MACHINES
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the 20 inputs by an everything-to-everything scheme employing 100 ad-

justable weights. Each TLU also has an adjustable threshold simulated
by adjustable weights connected to a 21st input , which always has the

value (+ 1). The total number of adjustable weights is therefore equal



to 105. The initial values of all weights and thresholds , before training,
were in all cases equal to zero. (These initial condi tions represent
equivalent starting positions for both (1 , 0) input machines and (+ 1 , - 1)

input machines. 

Learning curves were obtained for random sets of randomly categorized

patterns , first represented by the (1 , 0) scheme and then by the (+ 1 , - 1)
scheme. Six different random pattern sets of 90 patterns each were used.
These sets were divided into three groups. In Group I (Pattern Set s 1

and 2), each pattern had exact ly five in Group II (Pattern Sets 3

and 4), each pattern had exactly ten in Group III (Pattern Set s 5

and 6), each pattern had exact ly fifteen ones. Each group had two set s
of different random patterns , and two learning curves were obtained for

each set. One learning curve is the result of training a machine whose

input patterns were presented" as and ; the other curve is the

resul t of training a machine on the same patterns presented as ones and

minus ones. In addition, a modified training rule was used for the

patterns in Group III. This modified rule attempted to train a (1 , 0)

input machine in such a way that its learning performance approximated

more closely that of a (+ 1

, - 

1) input machine operating under the

ordinary training rule. Therefore , for Pattern Sets 5 and 6 , a total

of three learning curves were obtained.

A total of six pattern sets were used for the following reasons:

(1) Three groups were. chosen to see if the difference in
training rates between (1 , 0) and (+ 1

, - 

1) machines

depended at all on the number of ones in the pattern.

(2) Two different sets were included in each group to giv
an indication of the differences in learning curves for

different pattern sets with the same number of ones.

A total of 90 patterns were used in accordance wi th a (local) rule-
of-thumb that the number of random patterns that a machine can learn in

a number of iterations appropriate for a practical application is roughly

equal to the number of adjustable weights per output bi t. The simulated
machine had 105 adjustable weights.



TRAINING RULES

The three training rules tested all had the following characteristics:
When the learning machine output is in error , a determination is

made of how many TLUs must have their responses reversed so that the

majori ty will vote correctly. Let the minimum number of such reversals

necessary be equal to k. Of those TLUs voting incorrectly, one selects
the k whose analog sums are closest to threshold and prepares to re-
verse their responses.

Suppose the response of the ith TLU is to be reversed: Then , its
weights must be adapted. The three training rules differ in the way in
which this reversal is accomplished:

(1) , O) Training Rule (for (l , O) input machines)
increment is added to each active weight (a weight
connected to a one input). The size and direction of
each increment are the same for each active weight and

are determined by the total change needed in the analog

sum to effect a reversal of the TLU binary output.

(2) (+ l , - l) Training Rule (for (+ l , - l) input machines)
An increment is added to all weights. Those weights
connected to plus one inputs are altered in a direction

opposi te to that of weights connected to minus one

inputs. The size. of the increments is the same for
all weights and the size and direction is determined

by the total change needed in the analog sum to effect

a reversal of the TLU binary output.

(3) Modified (1 , O) Training Rule (for (1 , O) input

machines) --An increment is added to all weights.
Those weights connected to plus one inputs are

altered in a direction opposite to that of weights

connected to inputs. The size of the increment
is the same for all weights and the size and direction

is determined by the total change needed in the analog

. sum to effect the reversal of the TLU binary output.



The (1 , 0) and (+ 1

, - 

1) training rules were applied to all six

pattern sets , whereas the modified (1 , 0) training rule was applied only

to the Pattern Sets 5 and 

RESULTS OF EXPERIMETS

The learning curves for each of the six sets of patterns are illus-

trated in Figs. 2 through 7. Each learning curve depicts the number of
errors made (out of 90 patterns) during a test procedure conducted after

each iteration through the pattern set. The following conclusions seem
warranted as a result of comparing the (1 , 0) rule curves with the

(+ 1

, - 

1) rule curves:

(1) In all cases , the (+ 1

, - 

1) rule converges to zero

errors faster and more directly than does the (1 , 0)

t raining rule.

(2) The disparity between convergence times for the (1 , 0)

and (+ 1

, - 

1) training rules increases with the per-

centage of ones in the patterns , being least noticeable
for the case of 25% and increasing to a large

factor in the case of 75% ones.

(3) The convergence time for the (+ 1

, - 

1) training rule

is little affected by the number of ones in the

patterns.

It can be shown theoretically that the modified (1 , 0) rule would

exhibi t a learning curve almost ident ical with that of the (+ 1 , - 1)
rule when the percentage of ones in each pattern is equal to 50%. For
this reason the modified (1 , 0) rule was not tried on Pattern Sets 4

and 5.

Examination of Figs. 6 and 7 indicate that the modified (1 , 0)

training rule results in a learning curve whose convergence time is inter-

mediate between those of the (1 , 0) and (+ 1 , - 1) rules. For this

reason , the modified (1 , 0) rule was not tested on Pattern Sets 1 and 2

where the (1 , 0) and (+ 1

, - 

1) rules produced very simi lar curves.



(+1, -1) TRAINING RULE

------ (1. 0) TRAINING RULE

FIG. 2 LEARNING CURVES FOR PATTERN SET 
(Each pattern containing exactly five ones
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(+1,-1) TRAINING RULE

------ (1. 0) TRAINING RULE
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FIG. LEARNING CURVES FOR PATTERN SET 2
(Each pattern containing exactly five 21)
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-- (+1,-1) TRAINING RULE

- - 

---- (1,0) TRAINING RULE

FIG. LEARNING CURVES FOR PATTERN SET 3
(Each pattern containing exactly ten ones
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FIG. LEARNING CURVES FOR PATTERN SET 5
(Each pattern containing exactly fifteen ones
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A PARTIAL THEORETICAL EXPLAATION*

In attempting a theoretical explanation of the apparently faster

convergence rate for patterns in the (+1, -1) representation , as opposed

to the (1 0) representation, we shall consider only the training 

single TLU I S. When observed in the past , this difference in convergence

rate was attributed

(1) to the fact that in the (+1 , -1) representati n the
pattern vectors , and thus the correction vectors
were of equal length, and

(2 ) to the tendency for pattern vectors to be more nearly
orthogonal to each other when in the (+1, -1) repre-
sentation.

In the experiments in this report , the pattern vectors in each trial were

of equal length, since the number of ones was held constant. Thus we

consider the second factor , the expected angle between pattern vectors.

If two -dimensional pattern vectors , each having ! , are selected

at random wi thout replacement , the probabili ty of. agreement in k ones is

pI' kl

) (

n - W
w - k

) - 1

for k = 0 , 1, ... w - 

In the experimental trials, = 20 and ! = 5 , 10 , and 15. Since (:) ?? 1
we will simplify our calculations by substi tuting the corresponding
probabili ty for sampling wi th replacement:

Pr\kJ

( =) (:' :

for , 1, ... w.

* A similar theoretical explanation has been advanced independently by
C. Kesler and G. Nagy in the fOllowing document: Collected Technical
Papers Vol. 2 - F. Rosenblatt (Ed), Cognitive Systems Research Program,
Cornell University, Ithaca, N. Y ., p. 11 , 30 July 1963.



The Jth factorial moments for this distribution are:

(k _ J): (k - j)
Pr \ k)

k=j

w: 2 (n - j):
(w - j): for j .00 W

Thus , the mean is

E( k)

and the vari ance is

E(k - E (k( k - 1)) + (1 - 

(n - W)2

The standard derivation of k is thus

w( n - w) 
In - 1)

We assume that the n-dimensional pattern vectors are augmented by an

addi tional one as an n + 1 )st component to allow for a floating threshold

level. In investigating the expected value of the cosine of the angle
between two randomly selected pattern vectors, we treat the following two

cases of in teres t:

, 0) Representation: Two pattern vectors agreeing in k ones will have

an angle

cos e (k + 1)/w.

Using the assumed probabili ty distribution , the expected value will be

(cos e) 2 + n) n( w + 1) 

- .

When viewed as a continuous function of win , E(cos e) has a single minimum

at win n + 1) - 1)/n.

(+1 , -1) Representation The angle between two pattern vectors agreeing

in k ones is

cos e (1 - 4(w - k)/(n + 1))



The expected value of this angle is

E(cos eJ

)).

n + 1 
The function E(cos eJ is symetric about win 1/2 and has a minimum

value of 1/(n + 1) at win 1/2.

Example For n = 20 , as in the experimental trials, the fOllowing table

of the expected value of cos e versus w is obtained:

E (cos e J

, 1) (+1 , -1)

0 . 400 657

375 0 . 286

0 . 467 0 . 086

545 0 . 048

631 0 . 086

0 . 765 286

905 657.

E(cos eJ has a minimum of 0. 36 at w 4 in the (1 , 0) case , and a

minimum of 0. 048 at ! = 10 in the (+1 , -1) case.

In general , a c rrection made for one pattern in a set tends to

uncorrect for some others in the set; corrections are independent of each

other only if the pattern vectors in the set are mutually orthogonal.

Except for very small ratios of win the (+1 , -1) representation leads

to the expectation of more nearly orthogonal pattern vectors than the

, 0) representation , and thus, we might expect , to more rapid convergence

for a single TLU.

Another factor that should be taken into account is expected varia-

tion in angle as well as the mean angle. For the (1 , 0) representation

the standard deviation of cos e is 4/(n + 1) times sd , and for the (+1 , -1)

representation, 1/w times s Just how to interpret this is hard to

say, but increased standard deviation most likely leads to slower convergence.



The observed variations in learning time as a function of w for the

, 0) and (+1 , -1) representations during the experimental trials using

a majority logic configuration of five TLU' s was very much as what one

might anticipate for a single TLU, based on the expected angles between

pattern vectors. While it cannot be claimed that our theoretical analysis
explains the experimental results , it does appear that the expected angle

between pattern vectors is related to convergence of multiple TLU systems

as well as single TLU' s .

Discussion of Training Rules

We consider a set of (n + 1)-dimensional pattern vectors ta.

(1, 0) representation , where the (n + 1)- st component is always , and

a corresponding set tOi 1 of categorization multipliers , where O
i = 1 if

the i th pattern is in the first class and -1 if the i th pattern is in
the second class. Suppose the (1 , 0) training rule is: if (0. . , w .J -
then W

j+1 = W
j + o

i' where W
j is the j th trial weight vector and (s

denotes the inner product of the vectors s and t. The pattern vectors

can al ternati vely be expressed in (+1, -1) form by the transformation
= 2ai - 1. If the same training procedure is followed , the rule is:

if (o , then w = w + o. a:. In either representation , theJ - J+ 
rule leads to a solution weight vector when one exists, and the number

of corrections is fini te and bounded. But , as we have seen , the con-

vergence rate may be widely different in the two representations.

The modified (1 , 0) training rule used

essentially of the form: if (Oi ai' wj) 

rule tests wi th the (1 , 0) pattern vectors,

in the experimental trials was

then W = w + o. a This
but corrects wi th (+1 , -1)

pattern vectors. Al though this rule worked well in the trials, it may
not converge in all cases in which a solution weight vector exists. At

least , no convergence proof is available for the rule as yet.

When using the (+1 , -1) training rule , it is possible to test using

the (1 , 0) pattern vectors if the threshold weight is appropriately

modified during training. What is needed is a sequence w of weight

vec tors such that

( Oi a w j ) ( Oi ai , wj ),



e., such that

= 2w j - (1 , w j ) T

where T is a vector with n zeros and with a one in the )st position.

The necessary correction rule is: if (Oi a i ' 
, then

j+1 
j + O

i 2ai - 1 , a
i T

For a pattern wi th ones

(1, a ) = 2k - n + 1. This training rule is equivalent to the (+1 , -1)

training rule given earlier, except that the test is made using the (1 , 0)

pattern vectors.

In general , if the training rule is based on the transformed pattern

vectors a
i = aai - 

, where a ? ? 0 , then the (1, 0 pattern can be
used for tes ting if the training rule is: if (Oi ai , wj) , then

j+1 = W
j + Oi aai - 

1, a By suitable choice of a and for a

gi ven collection of pattern vectors , it may be possible to get more rapid

convergence than wi th ei ther the (1 , 0) or (+1 , -1) representations.

, .



CONCLUS IONS

We have presented the results of a series of experiments to compare

the efficiency of training methods using (1, 0) and (+1 , -1) representa-

tions for pattterns. For patterns wi th a large number of , the (+1 , -1)

representation leads to substantially shorter training times.

A partial theoretical explanation was attempted. While this expla-

nation deals wi th a single TLU rather than with a network of TLUs, as

used in the experiments , the effect noted can reasonably be expected to

pertain to the network also. As a consequence of the theoretical expla-
nation , it is predicted that the (1, 0) representation would lead to

somewhat faster training when the patterns contain a small number of ones.

Future research might well be directed toward the following topics:

( 1)

(2 )

A theoretical comparison of the two representations
applicable to networks of TLUs.

Investigation of the effects on training time of a

dispersion in the number of in the patterns.

(3 ) Derivation, for any given set of patterns, of the
optimum values of a and for a (+a, ) representation.


