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ABSTRACT

In real-world domains (a2 mobile robot is used as a motivating example), things do not al-
ways proceed as planned. Therefore it is important to develop better execution-monitoring tech-
niques and replanning capabilities. This paper describes the execution-monitoring and replanning
capabilities of the SIPE planning system. (SIPE assumes that new information to the execution
monitor is in the form of predicates, thus avoiding the difficult problem of how to generate these
predicates from information provided by sensors.) The execution-monitoring module takes ad-
vantage of the rich structure of SIPE plans (including a description of the plan rationale), and is
intimately connected with the planner, which can be called as a subroutine. The major advantages
of embedding the replanner within the planning system itself are: 1) The replanning module can
take advantage of the efficient frame reasoning mechanisms in SIPE to quickly discover problems
and potential fixes, 2) The deductive capabi!iti_es of SIPE are used to provide a reasonable solution
to the truth maintenance problem, and 3) The planner can be called as a subroutine to solve
problems after the replanning module has inserted new goals in the plan. Another important
contribution is the development of a general set of replanning actions that will form the basis for
a language capable of specifying error-recovery operators, and a general replanning capability that

has been implemented using these actions.



1. Introduction

A principal goal of our research in planning and plan execution is the development of a
domain-independent, heuristic system that can plan an activity and then monitor the execution of
that plan. Over the last two years we have designed and implemented such a system, SIPE (System
for Interactive Planning and Execution Monitoring).! The basic approach to planning is to work
within the hierarchical-planning paradigm, representing plans in procedural networks - as has been
done in NOAH [2] and other systems. Several extensions of previous planning systems have been
implemented, including the development of a perspicuous formalism for deseribing operators and
objects, the use of constraints for the partial description of objects, the creation of mechanisms that
permit concurrent exploration of alternative plans, the incorporation of heuristics for reasoning
about resources, and the creation of mechanisms that make it possible to perform deductions.

Given a description of the world, and a set of operators that it can apply, SIPE can generate
a plan to achieve a goal in the given world. However, in real-world domains, things do not always
proceed as planned. Therel'oi'e, it is desirable to develop better execution-monitoring techniques
and betler capabilities to replan when things do not go as expected. In complex domains it becomes
increasingly important to use as much as possible of the old plan, rather than to start all over when
things go wrong.

This paper describes the execution-monitoring and replanning abilities that have recently been
incorporated into the SIPE system. The particular advantages than ecan be obtained by the use
of the rich structure in our plan representation are shown, as well as more general problems. The
environment of a mobile robov has been used as a motivating domain in the development of some of
the abilities here, though implementation has been in s general, domain-independent manner. This
document does not describe resources, constraints, plan generation, and other features of SIPE,
nor does it attempt to justify the basic assumptions behind the system. The interested reader is
referred to [5] for this.

The problem we are addressing is the following: given a plan, a world description, and

some appropriate description of an unexpected situation that occurs during execution of the plan,

IThe research reported here is supported by Air Force Office of Scientific Research Contract F40820-79-C-
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transform the plan, retaining as much of the old plan as is reasonable, into a plan that will still
accomplish the original goal from the current situation. This process can be divided into four
steps ~ 1) discovering or inputting the information about the current situation, 2) determining the
problems this causes in the plan, if any, (similarly, determining shortcuts that could be taken in
the plan after unexpected but helpful events), 3) creating “fixes” that change the old plan, possibly
by deleting part of it and inserting some newly created subplan, and 4) determining whether any
changes made by the above fixes will conflict with remaining parts of the old plan. Steps 2 and 4,
and possibly 3, involve solving a truth maintenance problem since it will be necessary to determine
which aspects of a situation are necessary for later parts of the plan. In SIPE, step 4 becomes part
of step 3 as only fixes that are guaranteed to work are produced. In addition, serendipitous effects

are used to shorten the original plan in certain cases.

The major contributions of the execution-monitoring and replanning module in SIPE result
from taking advantage of the system’s rich plan representation and from imbedding it within the
planning system itself, rather than implementing it as an independent module. This provides a
number of advantages, of which the most important follow: 1) the replanning module can take
advantage of the efficient frame reasoning mechanisms in SIPE to quickly discover problems and
potential fixes, 2) the deductive capabilities of SIPE are used to provide a reasonable solution to the
truth maintenance problem, and 3) the planner can be called as a subroutine to solve problems after
the replanning module has inserted new goals in the plan. Another important eontribution is the
development of a general set of replanning actions that will form the basis for a language capable
of specifying error-recovery operators (see Sections 5 and 6). A general replanning capability has

been implemented using these actions.

SIPE assumes that information provided about unexpected events is correct and, to a certain
extent, complete. This assumptior avoids many of the hardest problems involved in getting a
planner such as SIPE to control 3 mobile robot. The difficult problem of how to generate correct
predicates {rom information provided by the sensors is not addressed. We expect the translation of
the information from the robot's sensors (e.g., the pixels from the camera or the range information

from the ultrasound) into the higher-level predicates used by the planner to be crucial to the
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application of a SIPE-like planner to a mobile robot. We hope to address this problem in the near

future.

In a mobile robot domain, it may often be important to spend considerable eflort in checking
for other things that might have gone wrong in addition to the unexpected occurrence already
noticed. There is a large tradeofl here as interpreting visual input of unexpected scenes may be
expensive. The research described here also does not address this problem as it assumes that the
minimum is wrong in accordance with the information that has been given (after taking deductive
operators into account). The problem of uncertain or unreliable sensors or information is largely
unaddressed, except that some predicates and variables may be specified as unknown. What
is discussed here is what to do with new information in the form of predicates (assuming you
have somehow discovered such predicates). Replanning appropriately with such information is a

necessary part of the overall solution.

Section 2 of this paper dgscribes how plans are represented in SIPE. To describe unexpected
situations, a user (currently.a buman, but eventually this may be a program controlling and
interpreting the robot’s sensors) can enter arbitrary predicales at any point in the execution or
can specify certain tbings as unknown. Section 3 describes the details of this process. Once
the description of the unexpected situation has been accumulated, the execution monitor calls a
problem recognizer, described in Section 4, which returns a list of all the problems it detects in
the plan.

In general, recovering from an arbitrary error is a very hard problem. Often very little of the
existing plan can be reused. One can always fall back on solving the original problem in the new
situation, ignoring the plan that was being executed. The replanning part of SIPE, however, tries
to change the old plan, keeping as much of it as possible. Since the general prohlem is so difficult,
one would not expect very impressive parformance from a replanner that did not have domain-
specific information for dealing with errors. For this reason, we havelimplemcnted a number of
general replanning actions (i.e., actions that modify a plan in ways that are useful for handling
unexpected situations) in SIPE that can be referenced in a language for providing domain-specific

error-recovery instructions. In many domains, the types of errors that are commonly encountered
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Control and Data Flow in SIPE Modules
can be predicted (e.g., the robot arm dropping something it was holding, or missing something it
was trying to grasp). The user can then specify error-recovery operators for these errors, using
SIPE’S replapning actions, to take appropriate action after expected errors.

In addition, SIPE provides a geperal replanning ahility that can be applied in the general
case and when there are no specific instructions. It is given the list of problems found by the
problem recognizer, and tries certain replanning actions in various cases, but will not always find
a solution. The replanning actions are described in Section 5 and the general replanner in Section
8. The general replanner changes the plan so that it will look like an unsolved problem to the
standard planner in SIPE (e.g., by inserting new goals). After the replanner has dealt with all the
problems that were found, then the planner is called on the plan {which now includes unsolved
goals) and if it produces a new plan, this new plan should correctly solve all the problems that
were found. Section 7 shows examples of the general replanner in operation.

Figure 1 shows the various modules in the SIPE execution-monitoring system. The solid
arrows show which modules call which others. The broken arrows show the fow of data and
information through the system as it replans for an unexpected situation. These arrows are labeled

with a description of the data being passed.



2. Plans in SIPE

Plans in SIPE are represented as procedural networks [2] with temporal information encoded
in the predecessor and successor links between nodes. The plan rationale is of primary importance
to the execution monitor and is encoded in the network by MAINSTEP links between nodes, and
by the use of PRECONDITION nodes {described below). MAINSTEP links describe how long each
condition that has been achieved must be maintained. A context must also be given to completely
specify a plan, as the network contains choice points from which alternative plans branch. The
types of nodes that occur in plans are described below to the extent necessary for understanding
the execution-monitoring capabilities.

SPLIT and JOIN nodes provide for parallel actions. SPLITs have multiple successors and
JOINs have multiple predecessors so that partially ordered plans can be produced. JOIN nodes
have a Parallel-Postcondition slot, which specifies the predicates that must all be true in the
situation represented by the JOIN node. If a JOIN node originally has N predecessors, then there
will be N conjunctions of predicates that must all be true at the JOIN node. {Some branches may
bave been linearized so there may be fewer than N predecessors after planning.) It is easier to
record this at the JOIN node (than by having previous nodes point to the JOIN as their purpose),
since a failed parallel-postcondition can more easily be retried during execution monitoring if there
is easy access to all parallel-postconditions. The Parallel-Postcondition slot is filled only when the
JOIN is first introduced into the plan - it is not updated as more detailed levels of the bierarchy
are expanded. As long as the highest level predicates are as desired, it is assumed that the lower
level predicates are irrelevant.

COND, ENDCOND, and CONDPATTERN nodes implement conditional plans. COND and
ENDCOND are similar to SPLIT and JOIN, but each successor or the COND begins with a
CONDPATTERN node that determines which successor will be executed.

CHOICE nodes denote branching points in the search space. They have multiple successors,
but the context selects one of these as being in the current plan. Constraints on variables may be
posted relative to this choicepoint. Thus, if the part of a plan after a CHOICE node is removed,

the corresponding choicepoint in the context should also be removed from the context so that
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constraints that are no longer valid will be ignored.

GOAL nodes do not occur in final plans as they represent open problems that have not been
solved yet. A GOAL node specifies a predicate that is a goal to achieve but which is not true in
the situation represented by its location in the procedural network. Replanning actions will insert
GOAL nodes in the plan. Each GOAL node has a MAINSTEP slot, which denotes a point later
in the plan that depends on the GOAL. (This describes the rationale for having the GOAL in the
plan.) Each goal must be maintained as true until the node which is its MAINSTEP is executed.
A MAINSTEP slot can have the atom PURPOSE as its value, denoting that the given predicate
is the main purpose of the plan, and not preparation for some later action.

PHANTOM nodes are similar to GOAL nodes except that they are already true in the situation
represented by their location in the procedural network. They are part of the plan because thbeir

truth must be monitored as the plan is being executed. They also contain MAINSTEP slots.

PROCESS nodes represent actions to be performed during execution of the plan, and also
have MAINSTEP slots as do PHANTOM and GOAL nodes. In a final plan, all PROCESS nodes
will denote primitive actions. (There are also CHOICEPROCESS nodes, which are like PROCESS

nodes except that they have a list of actions, one of which must be performed.)

PRECONDITION nodes provide a list of predicates that must be true in the situation rep-
resented by their location in the procedural network. Operators may specify preconditions that
must obtain in the world state before the operator can be applied. The concept of precondition
here differs from its counterpart in some planners, since the system will make no effort to make
the precondition true. A false precondition simply means that the operator is not appropriate.
Conditions that the planner should make true (and therefore backward chain on) can be expressed
as goal or process nodes. This effectively encodes metaknowledge about how to achieve goals as
SIPE will use any means to solve a goal node, only the operators listed to solve a process node,
and no operators will be tried to solve a PRECONDITION pode. Thus, a precondition becoming
false does not mean that it should be made into a goal; rather it means that the whole part of the
plan produced by the operator producing this precondition is invalid. Such nodes help encode the

rationale of a plan since they effectively mean that the part of the plan associated with them (see
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SIPE Plan Viewed from Diflerent Perspectives

below) was produced on the assumption that the predicates in the precondition are true.

In addition to the “horizontal” MAINSTEP, predecessor, and successor links within one level
of a plan, there are “vertical” links between diflerent levels of the hierarchy. Each node that is
expanded by the application of an operator has descendant links to each node so produced. The
descendant nodes in turn have ancestor hinks back to the original node one level higher in the
hierarchy. Starting with a node that was expanded by an operator application, a wedge of the
plan is determined by following all its descendant links (in the current context) repeatedly (i.e.,

including descendants of descendants, ete.) to the lowest level. (This definition of wedges is the
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same as that used by Sacerdoti in [2].) Figure 2 depicts this graphically, with the large boxes in
part (b) representing wedges. The node originally expanded by an operator application is called
the top of the wedge. A wedge with its top at a high level in the hierarchy will generally contain
many lower level wedges within it, and the only nodes that can be the tops of wedges are GOAL,
PROCESS, and CHOICEPROCESS nodes.

Since PRECONDITION nodes are created only when an operator is applied, the part of a
plan associated with a PRECONDITION node can be found by traversing up the ancestor links to
the point where the precondition first became part of the plan (once inserted, PRECONDITION
nodes are copied down from level to level). The node that was expanded by an operator to create
this precondition is one level bigher than where the first PRECONDITION node appears and is
the top of the wedge associated with each of the PRECONDITION nodes that are copied from

this first one.

3. The Input of Unexpected Situations

During execution of a plan in SIPE, some person or computer system monitoring the execution
can specify what actions have been performed and what changes have occurred in the domain being
modeled. SIPE permanently changes its original world model to show the effects of actions that
bave already been performed. At any point during execution, the system will accept two types of
information about the domain: 1) an arbitrary predicate whose arguments are ground instances
that is now true, false or unknown, and 2) a local variable name that is now unknown. SIPE first
checks whether the truth values for the new predicates are different from its expectations, and, if
they are, it applies its deductive operators to theﬁ: to deduce more changed predicates.

It is important to note that the inputting of predicates does not solve the “pixels to predicates”
problem, which is the crucial problem in using a planner such as SIPE to control the actions of a
robot. This problem involves translating the input of the robot's sensors (e.g., the pixels from the
camera or the range information from the ultrasound) into the higher level predicates used by the
planoer. The research described here involves what to do with the predicates once they have been

determined but does not address the question of how to determine them automatically. We hope
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to address this latter problem in the pear future.

3.1 Unknowns

Unknowns are a new addition to SIPE as it previously assumed complete knowledge of the
world. Having unknown quantities constitutes a fundamental modification since even the method of
determining whether a predicate is true must be changed. If the truth values of critical predicates
are unknown, the planner will quickly fail since none of the operators will be applicable. (Neither a
negated or an unnegated predicate in a precondition will match an unknown predicate.) Operators
can require predicates to be unknown as part of their precondition, in case there are appropriate
actions to take when things are uncertain. Conditional plans have also been implemented as part
of the execution-monitoring package in SIPE, so an operator might produce a plan with an action
to perceive the unknown value, followed by a conditional plan that specifies the correct course of
action for each possible outcome of the perception action. The deductive capabilities have also

been enhanced so that operators can deduce that something is unknown.

The ability to specify variables as unknown is simply a tool provided by the system that will
hopefully be useful in some domains, and particularly in a mobile robot domain. The idea behind
this tool is that the location of an object may become unknown during execution. Rather than
make predicates unknown, which may cause the application of operators to fail, we simply say
that the variable representing the location is instantiated to the atom UNKNOWN rather than to
its original location. All predicates with have this variable as an argument may then still match as
if they were irue, Thus the system can continue planning as if the Iocation were known. The only
restriction is that no action can be executed that uses an unknown variable as an argument. When
such an action is to be executed (e.g., go to LOCATIONI1) then the actual instantiation of the
variable must be determined before executing the action {possibly through a perception action).
Note that it would be incorrect to continue planning if the truth values of important predicates
depended on the instantiation of the location variable. It is the responsibility of the user not to
use this tool (i.e., the unknown variable) if predicates depend on the variable’s value. This tool

may or may nol prove useful in practice.
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3.2 Interpreting the input

SIPE assumes that the minimum is wrong in accordance with the information that has been
given (after taking deductive operators into account). Alternatively, we could decide on some basis
{which would have to be provided as part of the domain-specific description) how much effort to
spend with perception actions to see if more than the minimum has gone wrong. For example, if
we are told that (ON A B} is not true when we expected it to be, we might want to look if B is
where we thought it was. As it is, SJPE will just deduce that B is clear (if no other block is on
B) and will not try to execute actions to make further checks about the world. Doing the latter
could be very expensive for a mobile robot without good domain-specific knowledge about what
was worth checking.

The user need not report all predicates that have changed aince many of these may be deduced
by SIPE’s deductive operators. The system's deductive power has been increased recently (see next
section) so many effects can be deduced from certain critical predicates. There is a problem in
deciding how the unexpected effects interact with the effects of the action that was currently being
executed (e.g., did they happen before, during, or after the expected effects?). Our solution to this
problem is to assume the action took place as expected and to simply insert a “Mother Nature”
action after it that is assumed to bring about the unexpected effects (and things deduced from
them). The system assumes that any effects of the action being executed that did not actually take
place are either provided or can be deduced from the information that is provided. This solution
interfaces cleanly and elegantly with the rest of the planner and avoids having to model how the

unexpected effects might interact with the expected effects.

4. Finding Problems in a Plan
Having just inserted a MOTHER-NATURE pode (MN node) ip a plan being executed, SIPE
must now determine how the effects of this node affect the remainder of the plan. This involves
solving the truth maintenance problem, since it is necessary to know on which facts the remainder
of the plan depended. This is discussed later in this section. Because of the rich information

content in the plan representation {including the plan rationale), there are only six problems that
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must be checked. These are discussed below. All problems in the remainder of the plan are found,
and this list is later given to the general replanner, which attempts to change the plan to solve
these problems.

1 — Purpoae not achieved. If the MN node negates any of the main effects of the action just
executed, then there is a problem. The main eflects must be reachieved.

2 — Previous phantoms not maintained. SIPE keeps a list of phantom nodes that occur before
the current execution point, and whose MAINSTEP slot specifies a point in the plan that has not
been executed yet. These are phantoms that must be maintained. If the MN node negates any of
these, then there is a problem. The phantoms that are no longer true must be reachieved.

3 - Process node using unknown variable as argument. I a variable has been declared as
unknown, then the first action using it as ap argument must be preceded by a perception action
for determining the value of the variable (see Section 3).

4 - Future phantoms no longer true. A phantom node after the current execution point may
no longer be true. It must be changed to a GOAL node so that the planper will try to achieve it.

5 — Future precondition no longer true. A PRECONDITION node after the current execution
point may no longer be true. In this case, we do not want to reachieve it, but rather pop up the
hierarchy and perform some alternative action to achieve the goal at that level of the hierarchy.

6 - Parallel-posteondition not true. All the parallel-postconditions may no longer be true at
a JOIN node. (This could be handled by maintaining phantoms, but is more convenient to handle
separately.) In this case, we must insert a set of parallel goals after the JOIN, one for each untrue
parallel-postcondition. The parallel-postconditions of the new JOIN will be the same as those on
the old JOIN.

Note that only the last three problems below require truth maintenance since only they must
know the truth value of predicates in situations after the current execution point. In addition
to the above problems, possible serendipitous effects are also noticed and included in the list of
problems. If the main effect of some action later in the plan is true before the action is executed,
then that is noted as a possible place to shorten the plan (this is discussed in more detail in the

pext section).
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Because of the way plans are encoded in SIPE, these are the only things that need be checked
for determining if a MN node affects the remainder of a plan. It should be noted that this depends
upon the fact that processes (actions) are assumed to work whenever their precondition is true
and when all phantoms whose MAINSTEF slot points to the process are true. (All such necessary
conditions should be encoded as either preconditions or goals in any case.) There is currently no
check for loops in case the same error happens repeatedly with the same fix proposed each time.

Various simple checks could easily be added if this were a problem.

4.1 Solution to the Truth Maintenance Problem

SIPE’s solution to the truth maintenance problem is based on the efficiency of its deductive
capability. Since it is assumed that processes work as expected whenever their precondition is true
and all phantoms whose MAINSTEP slot points to the process are true, only the deduced eflects
need to be checked for their dependence on unexpected effects. (The execution monitor will solve
problems having to do with preconditions and phantoms that are not true).

SIPE’s deductive capability was designed to find a good balance between expressiveness and
efliciency. While providing the power of many useful deductions, it nevertheless keeps deduction
under control by severely restricting the deductions that can be made, and by having triggers to
contro! the application of deductive operators. All deductions that can be made are performed at
the time a node is inserted into the plan. Since deduction is not expensive, the truth maintenance
problem is solved simply by redoing the deductions at each node in the plan after a MN node.
- Even this can be avoided in simple cases, because SIPE carries a list of changed predicates as it
goes through the plan, and, if they all become true later in the plan (without apy deduced effects
changing in the interirﬁ), then the execution monitor need not look at the remainder of the plan

(either for redoing deductions or for finding problems).

5. Replanning Actions
The six replanping actions described below, REINSTANTIATE, INSERT, INSERT-CONDI-

TIONAL, RETRY, REDO, and POP-REDO, have all been implemented in SIPE. These actions
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provide sufficient power to alter plans in a way that often retains much of the original plan. These
are domain-independent actions, and the intention is to use them as a basis for domain-specific
error-recovery operators in SIPE. They are also used in the general replanner. Both of these uses
are described in more detail in the next section. In all actions below, the context argument merely

specifies the context of the current plan,

The last three actions mentioned below all change the plan so that it will contain unsolved
problems. The intention is that the plan will then later be given to the normal planning module
of SIPE (possibly after a number of these replanning actions have changed the plan). The planner
will then attempt to find a solution which solves all the problems that have been corrected in the
plan. The planner automatically checks whether things it splices into the middle of the plan cause
problems later in the plan so any solution found will be correct. (It does this when copying nodes

down to the next lower level during planning.)

REINSTANTIATE (predicate node contezt)

The action attempts to instantiate a variable differently in order to make the given predicate
true in the situation specified by the given node. This appears to be a commonly useful replanning
action as it might correspond to using a different resource if something has gone wrong with the
one originally employed in the plan, or deciding to return to the screw hopper for another screw

rather than trying to find the one that has just been dropped.

This is done by looping through the arguments of the given predicate and, for each one,
checkicg if there is another instantiation for it that will make the predicate true. This is cheap
and efficient in SIPE since it merely involves removing the INSTAN constraint on the variable
from the current context (and also from all variables constrained to be the same as this one),
and then calling the normal matcher to determine if the predicate is now true (which will return
possible instantiations). If new instantiations are found, the REINSTANTIATE action checks the
remainder of the plan 1o see if any parts of it might be affected by the new instantiation. This is
done by a routine similar to the problem detector described in Section 4 (in fact, the two share

much of their code). REINSTANTIATE currently accepts new instantiations only if they cause
14



no new problems (see discussion below on tradeoffs). If all new instantiations are rejected, the old
INSTAN constraint is simply replaced.

There are many tradeoffs in writing a replanning action such as this. There are also tradeoffs
in deciding when to apply REINSTANTIATE as it exists, but these are discussed later in the paper.
The implementation described above opts for reinstantiation only when it is likely to be the correct
solution. For example, new instantiations could be accepted even though they cause problems if
these problems are less severe than the problems entailed by keeping the old instantiation. Since
SIPE has no way of comparing the difficulty of two sets of problems, REINSTANTIATE does not
do this. '

One could also expend more effort in finding new instantiations. As implemented, this
replanning action will find reinstantiations when only one variable is changed. Some problems
could be solved by reinstantiating a whole set of variables, but this would be more expensive and
perhaps involve a search problem to decide whick variables to include in the set. The decision to
try only one variable was made because it appeared powerful enough to be useful. If the ability to

reinstantiate sets of variables appeared useful, it would certainly be tractable to implement.

INSERT (nodel node?2)

This action inserts the subplan beginning with nodel (which has been constructed) into the
current plan after node2. All links between the new subplan and the old plan are correctly inserted.

This is used as a subroutine by many of the actions below.

INSERT-CONDITIONAL (variable node contezt)

This action is not very interesting, but complements the unknown wvariable feature, which
may be uscful. It simply inserts a conditional around the given node that tests whether the given

variable is known. If it is, the given node is executed next; otherwise a failure node is executed.

RETRY {node}

This replanning action is very simple. The given node is assumed to be a phantom node and

it is changed to a goal node so that the planner will see it as unsolved.
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REDO (pred node contezt)

This action creates a GOAL node whose goal is the given predicate. It then e¢alls INSERT
to put this new node after the given node in the plan. The planner will see the pew node as an

unsolved goal.

POP-REDO (node predicates contezt)

This is the most complicated of the replanning actions; it is used to remove a hierarchical
wedge from the plan and, in some cases, replace it with a node at the lowest level. This is used
both when a PRECONDITION node is no longer true and another action must be applied at a
bigher level, and when there may be a serendipitous unexpected effect. POP-REDO could also be
used to find higher-level goals from which to replan when there are widespread problems causing

the replanning to fail (this is not currently implemented).

In the case of redoing a precondition failure, it is easy to determine the wedge to be removed
since PRECONDITION nodes are copied down from level] to level. The top of the wedge to be
removed is the node that was expanded to initially place the given PRECONDITION node {or one
of' its ancestors that is a PRECONDITION node) in the plan. Actually only the bottom of the
wedge is spliced out of the plan, as planning will continue only from the lowest level. The subplan
that is removed at the lowest level is replaced by a copy of the GOAL or CHOICEPROCESS node
that was at the top of the wedge. (The INSERT replanning action is used for this.) This is seen
as an unsolved goal by the planner, which automatically ¢hecks whether expansions of this node

cause problems later in the plan.

There is one further complication involved. Various constraints may have been posted on the
planning variables because of decisions made in the wedge of the plan that has been effectively
removed. Because of SIPE's use of alternative contexts, this is easily solved. A context is a hist of
choicepoints, and constraints are posted relative to the choicepoint that forced them to be posted.
Thercfore, our problem is solved by removing from the current context all the choicepoints that
occurred in the wedge of tbe plan that was eflectively removed. This new context is given as the

context argument to future planning actions, and no further action need be taken. This results in
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Figure 3
Hierarchical Wedges with 2 Common Last Action

ignoring exactly those constraints that should be ignored.

The case of serendipitous effects possibly shortening the plan is similar, except that, after the
wedge is removed, no node is inserted. However, in this case it is nontrivial to decide which wedge
to remove. There may be various wedges that are candidates, and, as with REINSTANTIATE,
these candidates may cause problems later in the plan when they are removed. SIPE currently
handles this case in the same way in handles the REINSTANTIATE case. Namely, it removes a
wedge. checks if this causes any problems, and replaces the wedge if there are any problems. Thus
serendipitous effects are taken advantage of only if doing so does not change the rest of the plan.

This is a tradeofl like the one discussed previously.

SIPE also generates only one candidate wedge, and gives up taking advantage of the seren-
dipitous effect if this one does not work. This candidate is generated by following ancestor links
from the given node as long as some main effect of the candidate node is made true by one of the
predicates in the list of given predicates. Th-e candidate node found in this manner determines
the candidate wedge. The wedge is rejected immediately unless all its main effects are true in the

given list of predicates.

Figure 3 helps show the idea behind this selection process. Frequently, the last action at one
Jeve] of a wedge will achieve the main effect of every level above that. The above selection process
requires that all goals generated at a higher level than the candidate wedge be achieved before the

wedge becomes a candidate, while goals generated at a lower level than the top of the candidate
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wedge need not have been serendipitously achieved. Thus, for wedge 2 to be selected in Figure 3
, the serendipitous effects must include the main effects of the top of wedges 1 and 2, but need say
nothing about the main eflects of wedge 3. (It is assumed that, as long as the highest-level goal
is achieved, we do not care about the Iower-level goals that were necessary to bring this about.)
The main effects of wedge 1 must be true, because they will be copied down to be effects of the

top node of wedge 2 in the case when this is the node that achieves these effects.

8. Guiding the Replanning
The replanning actions of the previous section form the basis for a general replanning capability
that has been implemented and for a language capable of specifying domain-specific error-recovery
instructions that has been designed but not implemented. This section describes the automatic

replanner and briefly outlines the error-recovery operators.

8.1 The General Replanner

The general replanner takes a list of problems from the problem recognizer described in Section
4 as well as possible serendipitous effects, and calls one or more of the replanning actions in Section
5 in an attempt to solve the problem. It first checks that a listed problem is still a problem since
the REINSTANTIATE action may solve many problems at once.

If the problem is a purpose not being achieved, the system tries a REDO, which inserts
the unachieved purpose as a GOAL node after the Mother-Nature node. If the problem is a
previous phantom not being maintained, SIPE first tries REINSTANTIATE and, if that fails, it
calls RETRY. The idea is that, if there is another object around with all the desired properties, then
it would be easier to use that object than to reachieve the desired state with the original object. If a
PROCESS node bhas an unknown variable as an argument, then INSERT-CONDITIONAL is called.
If a future phantom is no longer true, then RETRY is called. As with maintaining phantoms,
REINSTANTIATE may be more appropriate, but, in both cases, this depends entirely on the
domain so the selection here is arbitrary. For preconditions that are not true, the general replanner

first calls REINSTANTIATE and, if that fails, it calls POP-REDO. If parallel-postconditions are
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not true, the general replanner constructs the appropriate parallel goals to reachieve them and
calls INSERT to place them after the original JOIN node.

Obpe cannot expect very impressive performance from a replanner that does not have domain-
specific information for dealing with errors. For example, whether or not REINSTANTIATE is
likely to succeed will be dependent on the domain. The automatic replanner makes reasonable
guesses at what might be a good choice in the domains on which SIPE has been tested. Since it
simply chooses a replanning action for each type of problem that is found, it is very simple and

could easily be rewritten for different domains.

6.2 Error Recovery Language

We also plan to extend the operator description language so that instructions for handling
foreseeable errors can be included in operators. The error recovery operators will be in the same
syntax as all other SIPE operators, with some new additions made to this language as described
below. The plots of these operators will include references to the replanning actioms in Section
5. SIPE's ability to specify conditional plans in operators can be used to try a second replanning
action only if the first fails.

The error-recovery operators will match their argument list to the arguments of the node being
exccuted so original problem variables can be bound. There are two ways to invoke these operators,
one for general operators that solve problems that have been recognized, and one for more specific
operators that act directly on unexpected predicates. The latter ability seems attractive since it
can avoid a lot of effort when there is good domain-dependent error-recovery information available.
If one of these [atter operators matches an unexpected predicate, it may be possible to simply apply
the operator and assume that it will solve any problems caused by the unexpected predicate, thus
shortcircuiting the normal problem detection mechanism.

The general operators will be applied after 8 MN node is added and problems have been found.
Preconditions of these operators will be matched in the situation specified by the MN node. The
general replanner will apply any general error-recovery operator that matches a given problem (the

matching process is described below) instead of using its default replanning action.
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Nodes in plots of regular operators will be able to specify an ERROR slot that gives names of
error-recovery operators. The specific error-recovery instructions will be applied immediately after
the input of an unexpected predicate (this will assume the predicate is problematical), but only
when they are specified in the ERROR slot of the action being executed and match the predicate
that was input (see below).

Like deductive operators, error-recovery operators will have a TRIGGER slot [5] to determine
when they should be applied. The trigger will be a predicate (for specific operators) or a combina-
tion of keywords and predicates, where the keywords refer to the six types of problems. Specific
operators are applied when their trigger matches the predicate that is input in the situation rep-
resented by the node being executed. General operators will have triggers that match when their
keyword matches the problem being tried and any predicate in the trigger matches the appropriate

predicates given in the problem.

7. Examples

This section presents two examples of SIPE actually monitoring the execution of a simple
plan, and replanning when things do not go as expected. SIPE has been tested on larger and more
complex problems tban those presented here. These examples are simple to facilitate comprehen-
sion and to save space. Everything typed by the user is in boldface - nearly everything below is
generated automatically by the system.

This first problem was constructed to show the successful use of the REINSTANTIATE
replanning action. The problem is to get A on C in parallel with getting any blue block on any
red block. In the initial world Bl and B2 are the only blue blocks (they are both on the table)
and R] and R2 are the only red blocks (R1 is on Bl and R2 is on the table and clear). Since A
and C are both clear initially, the planner quickly finds a two-action plan of putting A on C in
parallel with putting B2 on R2. While exectuing the moving of A to C, the SIPE is told that D
has suddenly appeared on top of R2. It notices the problem in the parallel branch of the plan and
the general replanner tries REINSTANTIATE, which succeeds. The original plan is retained in its

entirety and B2 is placed on R1 instead of R2, thus achieving the original goal.
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PROBLEM: PROES
PARALLEL
BRANCH 1:
GOALS: {ON A C);
BRANCH 2:
GOALS: (ON BLUEBLOCK1 REDBLOCK1);
END PARALLEL
END PROBLEM

Plan being executed:

PLANHEAD: P0171

PLANHEAD: World model: (ON A B)(ON B TABLE)(ON C TABLE)}{ON D TABLE)(ON E TABLE)
{ON R1 B1)(ON Bl TABLE)}ON B2 TABLE)(ON R2 TABLE)(CLEAR R1){(CLEAR R2}{CLEAR B2?)
(CLEAR TABLE}{CLEAR A)}CLEAR D} CLEAR E)}CLEAR C)

SPLIT: C0170
Paralle]l branch:
SPLIT: C018¢
Parallel branch:
PHANTOM: P0194
Goals: (CLEAR C);
Mainstep: P0197;

Parallel branch:

PHANTOM: P0191

Goals: (CLEAR A);

Mainstep: P0197;
JOIN: C0190

PROCESS: P0197

Action: PUTON.PRIM;

Effects: {ON A C);

Deduce: (CLEAR B}, -(ON A B}, -(ON A OBJECT3} OBJECT3 UNIVERSAL, -(CLEAR C});
Mainstep: PURPOSE;

Parallel branch:

SPLIT: C0160
Parallel branch:
PHANTOM: P0165
Goals: (CLEAR R2);
Mainstep: PO168;

Parallel branch:

PHANTOM: P0162

Goals: (CLEAR B2);

Mainstep: P0168;
JOIN: C0161

PROCESS: P0168
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Action: PUTON.PRIM;
Effects: (ON B2 R2});
Deduce: -(ON B2 TABLE), -(ON B2 OBJECT3) OBJECT3 UNIVERSAL, -{CLEAR R2);
Mainstep: PURPOSE;
JOIN: C0172

F0197 P0O168

PICK ONE OF THE ABOVE NODES TO EXECUTE NEXT (! FOR HELP): P0187
Executing action P0197

Unexpected effect (? for help): (ON D R2)

Unexpected effect (? for help): NIL

Adding deduced predicate: -(ON D TABLE)
Adding deduced predicate: -(ON D OBJECT3) OBJECT3 UNIVERSAL
Adding deduced predicate; -(CLEAR R2)

Problem:

The following predicale negates predicate following it: -{CLEAR R2)
(CLEAR R2)

Causing purpose of following node not to be achieved.

EXECUTED: P0165

Effects: (CLEAR R2);

Mainstep: P0168;

Trying to reinstantiate to make this predicate true: (CLEAR R2)
matching condition: (CLEAR OBJECT1)

(collected 1 possibilities)

Adding INSTAN constraint: OBJECT1 BOUND TO R1

Success, new instantiation: OBJECT1 BOUND TO R1

New plan produced for continuing execution:
PLANHEAD: P0171
SPLIT: C0170
Parallel branch:
EXECUTED: P0197
Action: PUTON.PRIM;
Effects: (ON A C); .
Deduce: (CLEAR B}, -(ON A B), -(ON A OBJECT3) OBJECT3 UNIVERSAL, -(CLEAR C);

EXECUTED: P0350

Action: MOTHER.NATURE;

Effects: (ON D R2);

Deduce: ~(ON D TABLE), -(ON D OBJECT3) OBJECT3 UNIVERSAL;

Parallel branch:

FROCESS: P0168

Action; PUTON.PRIM;

Effects: (ON B2 R1);

Deduce: -(ON B2 TABLE), -(ON B2 OBJECT3) OBJECT3 UNIVERSAL, -(CLEAR R1);
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JOIN: C0172

Executing action P0168
Unexpected effect (? for help): NIL
Goal achieved.

The second problem, shown below, is the same as the first except that the red block is
constrained not to be R1, which will cause REINSTANTIATE to fail. The original plan is the
same and the unexpected situation is the same. This time SIPE tries REINSTANTIATE and it
fails, so it calls RETRY, which causes the (CLEAR R2) phantom to be made into a goal. The
planner solves this to produce a plan that puts D back on the table before B1 is placed on R2. The
original plan is not shown below and the other plans are abbreviated by removing MAINSTEPS,

deductions, and some phantoms.

PROBLEM: PROBY
PARALLEL
BRANCH 1:
GOALS: (ON A C); BRANCH 2:
GOALS: (ON BLUEBLOCK1 REDBLOCK1); END PARALLEL

GOAL
ARGUMENTS: BLUEBLOCK?2, REDBLOCK?2 IS NOT RI;
GOALS: (ON BLUEBLOCK2 REDBLOCK?2);

END PROBLEM

P0254 P0224

PICK ONE OF THE ABOVE NODES TO EXECUTE NEXT (? FOR HELP): P0254
Executing action P0254

Unexpected effect (? for help): {ON D R2)

Unexpected effect (? for help): NIL

Adding deduced predicate: -(ON D TABLE)
Adding deduced predicate: -({ON D OBJECT3) OBJECT3 UNIVERSAL
Adding deduced predicate: -{CLEAR R2)

Problem:

The following predicate negates predicate following it: {CLEAR R2)
(CLEAR R2)

Causing purpose of following node not to be achieved.

EXECUTED: P0221

Effects: (CLEAR R2);

Trying to reinstantiate to make this predicate true:
(CLEAR R2)
matching condition: {CLEAR OBJECT1)
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Condition fails.
P0221 being reset to GOAL for replanning.

initial problem:

PLANHEAD: P0227

PLANHEAD: World model: (ON D R2){ON A C){CLEAR B)(ON B TABLE)(ON C TABLE)
(ON E TABLE){ON R1 B1}(ON B1 TABLE)(CN B2 TABLE)(ON R2 TABLE)(CLEAR R1)
(CLEAR B2)(CLEAR TABLE){(CLEAR A)(CLEAR D){CLEAR E)

SPLIT: C0228
Parallel branch:
SPLIT: C0248
Parallel branch:
EXECUTED: P0251 Geals: (CLEAR C);
Parallel branch:
EXECUTED: P0248 Goals: (CLEAR A);
JOIN: C0247
EXECUTED: P0254
Action: PUTON.PRIM;
Effects: (ON A C};
EXECUTED: P0366
Action: MOTHER.NATURE;
Effects: (ON D R2); '
Parallel branch:
SPLIT: C0216
Parallel branch:
GOAL: P0221 Goals: (CLEAR R2);

Paralle] branch:
EXECUTED: P0218 Effects: (CLEAR B2);
JOIN: C0217

PROCESS: P0224

Action; PUTON.PRIM;

Effects: (ON B2 R2);
JOIN: C0228

planner succeeds
Plan being executed:
SPLIT: C0448
Parallel branch:
SPLIT: C0483
Parallel branch:
EXECUTED: P0488 Goals: (CLEAR C);

Paralle] branch:
EXECUTED: P0482 Goals: (CLEAR A);
JOIN: C0485
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EXECUTED: P0488 Action: PUTON.PRIM;
Effects: {(ON A C);

EXECUTED: P0487 Action: MOTHER.NATURE;
Effects: {(ON D R2);

Parallel branch:
SPLIT: C0446
Parallel branch:
EXECUTED: P0489 Goals: (CLEAR B2);

Parallel branch:
SPLIT: C0435
Parallel branch:
PHANTOM: P0440 Goals: (CLEAR TABLE});

Parallel branch:
PHANTOM: P0437 Goals: {(CLEAR D);
JOIN: C0438

PROCESS: P0443 Action: PUTON.FRIM;
Eflects: (ON D TABLE);
Deduce: (CLEAR R2), -(ON D R2), -(ON D OBJECT3) OBJECT3 UNIVERSAL;

PHANTOM: P0450 Goals: (CLEAR R2);
JOIN: C0451

PROCESS: P0452 Action: PUTON.PRIM;
Effects: (ON B2 R2});
JOIN: C0453

PHANTOM: P0454 Goals: (ON B2 R2);

Executing action P0443
Unexpected effect (? for help): NIL
Executing action P0452
Unexpected effect (! for help): NIL
Goal achieved.

8. Comparison to other systemna
There is very little previous work in this area since most domain-independent planning systems
do not address the questions of execution monitoring and replanning {e.g.,, NONLIN [3] and
DEVISER [4]). Hayes [1] and Sacerdoti [2] have addressed this problem. The approaches used
in both these systems were considerably simpler and less powerful than SIPE. NOAH did not even

allow the input of arbitrary predicates, so the general replanning problem mpever arose. It did
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permit the user to specify that whole wedges had been executed at once, and did allow the node
just executed to be planned for again if it failed. This essentially provides one limited replanning
action that is useful only in very specific situations.

Hayes’s system does allow the input of some information about unexpected situations. It is
pot clear what types of information can be provided, but it appears less general than the arbitrary
predicates accepted by SIPE. The system’s only replanning action is to delete part of the plan.
This permits the planner to reachieve higher-level goals, but they must be the same higher-level
goals that were already present in the plan. The system deletes everything that depended on any
effect of a decision that is no longer valid. This will, in general, be wasteful since much of the
plan may be unnecessarily removed. If only one of many effects of an action has failed, subplans
depending on the effects that did not fail do not need to be deleted. SIPE would find problems
with such subplans.

SIPE provides a much more powerful replanning capability than either of these systems. It
allows input of arbitrary predicates, computes how these affect the rest of the plan (and only finds
problems that really are problematical), and uses a farge number of replanning actions (including

REINSTANTIATE) to fix problems in ways that allow much of the original plan to be maintained.

g. Summary and Limitations

Given correct information about unexpected events, SIPE is able to determine how this aflects
the plan being executed, and, in many cases, is able to retain most of the original plan by making
changes in it to avoid problems caused by these unexpected events. It also is capable of shortening
the original plan when serendipitous events occur. It cannot solve difficult problems involving
drastic changes to the expected state of the world, but it does handle many types of small errors
that may happen frequently in a mobile robot domain. The execution-monitoring package does
this without the necessity of planning originally to check for these errors.

The major contributions of this work center around taking advantage of the rich structure of
SIPE’s planner and its plans, and the development of a general set of replanning actions that are

uscd as the basis of an automatic replanner and can be used as the basis of a language for specifying
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domain-dependent error-recovery information. The replanner calls the standard planning system
so that it can take advantage of the efficient {rame-reasoning mechanisms in SIPE to quickly
discover problems and potential fixes, and use the deductive capabilities to provide a reasonable
solution to the truth maintenance problem. The fixes need involve only inserting new goals in
the plan, since calling the planner as a subroutine will solve these goals in a manner that assures
there will be no conflicts with the rest of the plan. SIPE's execution-monitoring capabilities make
extensive use of the explicit representation of plan rationale in plans. The problem detector makes
uses of the information encoded in MAINSTEP slots, phantoms, and preconditions to quickly find
all the problems with a plan. Furthermore, it does not remove parts of the original plan unless the
parts are actually problematical. SIPE’s deductive capability is instrumental in the solution of the
truth maintenance problem. The replanning actions make use of constraints, alternative contexts,

and wedges in SIPE whenever they consider removing part of the plan.

Another important contribution is the development of a general set of replanning actions that
will form the basis for a language capable of specilying error-recovery operators, and a general
replanning capability that has been implemented using these actions. These actions provide
sufficient power to alter plans in a way that often retains much of the original plap, (e.g.. the
REINSTANTIATE action). The general replanner attempts to solve all problems that are found.
It is unlikely to be very successful without being tuned for particular domains. The design of
the language for error-recovery operators allows for both operators that will bandle very specific
situations and operators that will give more general advice to the replanner.

The major limitations of this research result from the assumption of correct information
about unexpected events. This avoids the hard problems of generating predicates from information’
provided by the sensors, deciding how much effort to expend checking facts that may be suspeet,
and modeling uncertain or unreliable sensors. These problems are all crucial to providiog execution-

monitoring capabilities to a mobile robot and must yet be addressed.
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