July 1275

DEDUCTIVE RETRIEVAL MECHANISMS FOR STATE DESCRIPTION MODELS

by
Richard E. Fikes

Artificial Intelligence Center
Technical Note 106

SRI Project 3805

The work reported herein was sponsored by the Advanced
Research Projects Agency of the Department of Defense
under Contract DAHCO4~72-C-008 with the U.S. Army
Research Office.

TABLE OF CONTENTS

ABSTRACT
I INTRODUCTION
II EXPFRESSIONS AND STATES

III QUERYING STATE DESCRIPTION MODELS

Truth Values

Generators Instead of Backtracking

The Query Functions

Storage and Retrieval of Action Functions

OO we

Iv SAVING DERIVED RESULTS

. Overview

Saving and Maintaining Derived Instances
. Saving and Maintaining Complete Sets

In Summary

Uowr

v STATE TRANSACTIONS

A, Updating Functions
B. Model Updating Using Deduce and Refute Actions

Vi THE RELATIONS AND, OR, AND NOT
VII SUMMARY
ACENOWLEDGEMENTS

REFERENCES

O~

10
10
i2
13
15
16

16
18

20

21

22

23

ABSTRACT

This paper presents some programming facilities for modeling the
semantics of a task domain and for describing the situations that
occur in that domain as a task is being carried out. Each such des-
cription models a "state" of the task enviromment, and any given
state can be transformed into a new state by the occurrence of an
event that alters the environment, Such modeling systems are vital
in many AI systems, particularly those that do question-answering and
those that do automatic generation and execution monitoring of plans.
The modeling mechanisms described are basically extensions and modifi-
cations of facilities typically found in AI programming languages such
as PLANNER, CONNIVER, and QA4. In particular, we discuss our use of a
3 valued logic, generator functions to deduce answers to model queries,
the saving and maintaining of derived results, and new facilities for

modeling state changes produced by the occurrence of events.

I INTRODUCTION

This paper describes some modeling facilities that have been
developed as part of a large Computer Based Consultant system (CBC)
being designed and implemented at the SRI Artificial Intelligence
Center. The CBC is intended to serve the role of an expert consultant
to a human apprentice doing maintenance and repair operations on
electromechanical devices. The air compressor shown in Figure 1 is an
example of such a device that has been used during the early stages
of the project. A complete overview of the project is given by Hart
in Reference 1.

The models that we are concerned about in this paper could be
descriptions of any environment of interest at specific instances in
time., Each such description is said to model a "'state"” of the environ-
ment, and a state can be transformed into a new state by the occurrence
of an event that alters the environment, For the CBC, these models
describe the state of the workstation including the device, tools,
test equipment, etc., and the events are primarily maintenance and
repair operations performed by the apprentice.

Programming facilities for querying state description models and
for updating them to reflect the occurrence of an event are vital
in many AI systems, particularly those that do question answering and
those that do automatic generation and execution monitoring of plans.
Planners, for example, use these models to simulate potential operator
{event) sequences and investigate their consequences.

One of the goals for the CBC project is to have the system

synthesize plans for transforming a device from any arbitrary state

of assembly or disassembly into any other such state. This planning
capability is required for component removal or replacement operations
and, in general, whenever a collection of assembly and disassembly
operations are needed to help accomplish a task. We will refer to
this planning domain for examples throughout this paper.

The modeling mechanisms to be described here are basically
extensions and modifications of facilities typically found in recent
planning programs implemented in languages such as CONNIVER (Ref. 2),
PLANNER (Ref. 3), and QA4 (Ref. 4). The need for such additional
knowledge representation mechanisms is evident as AI projects continue
to move in the direction of considering more complex task domains.

The presentations here are meant to add an increment to our ability to

design and build such large systems.

I1 Expressions and States

Our modeling system is implemented as an extension of the QLISP
programming languapge (Ref. 5)% Each state description model can be
thought of as a set of QLISP expressions, with each expression having a truth

value associated with it. An expression typically is a statement of a

*¥QLISP is a direct descendant of the QA4 language and was
designed to maintain QA4 language features while eliminating the
inefficiencies introduced by the QA4 interpreter. It is a set of
functions loadable into the INTERLISP (Ref. 6) system, and QLISP
"statements' are basically calls on these LISP functions. Hence,
the user can freely intermix QLISP and LISP code, The control features
that were lost by eliminating the QA4 interpreter are currently being
restored by making use of new control facilities provided by the
INTERLISP system (Ref. 7).

relationship among entities in the task domain such as objects, concepts,
or other relationships. For example, the expression (CONNECTED PUMP
PIATFORM) is a statement that the pump is connected to the platform, and
the expression (FASTENER (CONNECTION PUMP PLATFORM) BOLT:1) is a
statement that BOLT:1l is a fastener of the pump-platform connection.

Although each QLISP expression has a LISP-style property list
associated with it, we use these property lists in our models only for
truth values and bookkeeping information. Therefore, instead of putting
GREEN as the value of the property COLOR on the property list of PUMP,
we would create the expression (COLOR PUMP GREEN) and put TRUE as the
value of the property TRUTHVALUE on its property list. This convention
creates homogenous models and allows a pattern matching program to
associateively retrieve any relationship in a model.

The QLISP context mechanism allows the system to build and
manipulate a collection of state descriptions without having to create
and maintain a complete copy of each state. A "context tree" is
maintained in which each node denotes a state, To represent the new
state that is produced by the occurrence of an event in some state Si,
the system creates a new node in the context tree as a direct descendent
of the Si node. All information in state Si that is not explicitly
changed in the new state is assumed to also hold in the new state. That
is, each state inherits model information from the new state that is its

parent in the context tree.

III Querying State Description Models

A. Truth Values

A state description model is a source of information about a
particular situation, and its primary use is as a data base for an-
swering queries about the situation. Our modeling system interacts
with its users (both pecple and programs) as if QLISP expressions
with truth values attached were the only representations being used,
even though the option exists for storipg information in other forms.
Hence, all queries from outside the modeling system concern the truth
value of expressions in some given state.

When answering a guery about a particular expression in some
given state, the system searches for a truth value. The search
begins with the expression's property list for the given state. If
the property TRUTHVALUE has no value on that property list, the
property list for the given state's parent (in the context tree) is
checked, The search continues in this manner until a value is found
or until all the states in the context are considered., If no value is
found, the search returns UNEKNOWN as its result.

Since any expression can be stored as the value of property
TRUTHVALUE, this retrieval mechanism allows use of an N-valued logic.
For example, one could have "fuzzy" truth values represented as
integers from -100 to +100. For our models, we currently are using
a 3~valued logic that allows the system to distinguish expressions
that are "known true', "known false", or "have unknown truth value'
in any given state., This is the simplist logic that meets a modeling

systems needs since state description models are inherently incomplete,

and it is important for the system to be aware of what it doesn't know
as well as what it does know,

B. Generators Instead 23 Backtracking

QLISP provides facilities for associatively retrieving expressions
from the data base that match any given pattern, where a pattern is
defined to be an expression that may contain unbound wvariables. The
QLISP statements for guerying the data base use this pattern matching
facility and are similar to the query statements found in PLANNER and
QA4. They are designed to find a single instance of a given pattern.

To cause the pattern matcher to continue its search and obtain another
such instance, the user's ﬁrogram must return to the query statement via
the language's backtracking mechanism (i.e., by "failing").

Using backtracking in this way to sequence through a class of
expressions that all match a given pattern has severe limitations in
that it ties the sequential production of each expression to the control
structure of the user's program. In particular, it requires that the
same portion of the user's program be executed for each expression
(namely, the statements immediately following the query statement).
Also, since all the backtrackable effects of that portion are being
"undone" after each failure, it makes cumbersome the saving of results
for each expression generated. Such a backtracking mechanism is best
suited to a ''generate-and-test'' situation where the user desires a single
expression that notonly passes the query statement's tests, but also
passes additional tests included in the user's program.

We have adopted the CONNIVER solution to these limitations in our
modeling system by providing functions that are generators of expressions
from the data base. For example, there is a generator version of the

5

QLISP 1S statement called GEN:1IS that finds instances of a given pattern
having truth value TRUE in a given state. Each time a generator
function such as GEN:IS is called, it produces as many expressions as is
convenient for it. These expressions are put on a ''possibilities list"

along with a "tag" that indicates how the generator can be restarted
when more expressions are requested, and this possibilities list is
returned by the generator as its value.

If the function TRY:NEXT is called with a possibilities 1list as an
argument, it will remove the first expression from the list and
return it as a value. If the possibilities list contains no expressions,
then TRY:NEXT attempts to produce new ones by using the tag to restart
the generator. 8ince each call to TRY:NEXT can be made from anywhere
in the user's program, generators of this form successfully separate
the production of a next data element from the processing that is done
on each element.

Consider, for example, a set of queries concerning which componehts
are connected to the pump in state Si. They can be initialized as
follows:

(SETQ PL (GEN:IS (CONNECTED PUMP ~C) Si))
Then whenever one of these components is needed, evaluation of
(TRY:NEXT PL) will return a true instance of the pattern (COKNECTED
PUMP +C) and will set the value of the QLISP variable C to be the
"found" component.
We have implemented programming facilities to suppert the writing

and use of generator functions using INTERLISP FUNARG's. A FUNARG is

a data object that conceptually represents a copy of a function and a

private data enviromment for that copy. This FUNARG implementation
allows the definition of a generator function to include a set of
variables (i.e., a data environment) whose values will be saved and
restored each time the generator is restarted. These 'own variables"
allow the generator function to save pointers indicating where it is
in its search for generatable items. The FUNARG is added to the

possibilities list as the "tag" that TRY:NEXT uses to restart the
generator. Included in the implementation are CONNIVER-style functions
such as NOTE, AU-REVOIR, ADIEU, and TRY:NEXT, which make the definition
and use of generators convenient and practical.

FUNARG's do not provide a complete co-routine (process) facility
because the control environment is not saved between calls, and
therefore each restart necessarily returns control to the beginning
of the function. Our experience with generators, however, has indicated
that making available a FIRST:CALL? predicate function that can be
called from inside a generator to distinguish initial calls from
restarts removes essentially all of the hindrance caused by not having

a saved control environment. Hence, this implementation of generators

is simple and effective and can be made available in most LISP systems.

C. The Query Functions

We can now describe our model querying mechanism. Query functions
are available called DEDUCE:ONE, DEDUCE:EACH, DEDUCE :ALL, REFUTE:ONE,
REFUTE:EACH, and REFUTE:ALL., Each of these functions takes a pattern
and a state as arguments. The DEDUCE functions find instances of the
pattern that are true in the given state, and the REFUTE functions

find instances of the pattern that are false in the given state.

7

The :ONE functions find only a single instance and are not restart-
able; the :EACH functions are generators and return possibilities
lists; and the :ALL functions return a list of all the findable
instances,

Known truth values are usually not all explicitly stored in a model.
Instead, the user typically provides derivati&n functions that compute
them when they are needed. These functions may embody formal theorem
proving strategies or simply be statements of implicational rules
derived from the semantics of the task domain. They serve to extend
each model in the sense that, from the calling program's point of view,
the derived instances of a pattern are indistinguishable from instances
actually found in the model.

Our query functions are similar to a PLANNER or QA4 GOAL statement
in that they first use the pattern matcher to find suitable instances
of the pattern in the data base and then, if more instances are needed,
they call user supplied functions to attempt derivations of the desired
instances, These functions are assumed to be generators that produce
derived instances of the pattern.

For example, a deduction function in the CBC system finds and
generates true instances of patterns of the form (POSITIONED ~X ~Y) by
using DEDUCE:EACH to find true instances of the pattern (ATTACHED $X 3Y),
since components that are ATTACHED are assumed to be POSITIONED. Also,
a refutation function finds and generates false instances of patterns
of the form (POSITIONED «X «Y) by using DEDUCE:EACH to find true instances
of the pattern (REMOVED $X 3Y), since components that are REMOVED are

assumed to be not POSITIONED.

Such derivation functions are the user's primary means of
expressing the semantic links among the relations occurring in the
state description models. Also, they can provide an interface to
information that is stored in representations other than QLISP
expressions. That is, it may be much more convenient and efficient
to store some information in arrays, trees, or on disk files; deduce.
and refute actions serve as the access functions to these alternate

data bases.

D. Storage and Retrieval of Action Functions

The first element of each non-atomic expression in the model
is assumed to be the name of a relation (or a QLISP variable that is
to be bhound to a relation). Therefore, the DEDUCE and REFUTE functions
can use relation names as an index to determine which derivation
functions should be called. Accordingly, we associate with each
relation two lists of derivation functions that can derive instances
of patterns that begin with the relation. One list contains the
"deduce actions” used by the three forms of DEDUCE and the other
contains the ''refute actions” used by the three forms of REFUTE.

This simple indexing technique is used as an altermative to
"pattern directed invocation" of the actions (which is available in
QLISP). Pattern direction invocation, where a pattern is associated
with each action function and a pattern matcher determines which
actions are applicable whenever a query is made, is a useful
techpique in many situations, but its power and importance should

be looked at realistically. In this situation the indexing scheme

seems preferable even though it has the disadvantages that an action's
local variables do not automatically get bound to elements of the
pattern and additional tests may be needed in an action to determine
if it is applicable to the pattern.

However, the indexing scheme has the following advantages:
(1) the use of the actions is made more efficient by significantly
reducing the need for patterm matching; (2) each list of deduce and
refute actions is typically quite short so that the user can easily
determine an appropriate ordering of each list and similarly can
determine where on the list a new action should be inserted; (3) and,
finally, we have found that associating semantic information directly
with each relation is a convenient way to conceptualize and localize
the semantic information in the system., With this organization, the
set of action functions associated with a relation specify essentially

2ll the semantic information that the system knows about that relation.

IV. Saving Derived Resulis
A. Overview

When a model query causes derivations to be attempted, we want
the results of those derivations to be stored and retained in
succeeding states as long as they remain valid. 1In this way the system
achieves the maximum benefit from derivations and minimizes unnecessary
rederivations. It is a simpble matter to store a result in the state
where a derivation is done, but more care must be taken if the result
is to be made available in other states. In this section we will
describe a set of mechanisms designed to provide maximum retention of
derived information with a minimum of bookkeeping overhead.

10

A model query is an attempt to find true (or false) instances
of a given pattern. Each time such an instance is determined, our
DEDUCE and REFUTE query functions save the derived result by assigning
a truth value to the instance (i.e. put it as the value of TRUTHVALUE
on the expression's property list) so that the value will not have to
be rederived if it is needed again. For example, if a deduce action
for ASSEMBLED determines that the pump is assembled by querying the
model about each of the pump's components, then the expression
(ASSEMBLED PUMP) will be assigned a truth value of TRUE.

If a gquery is one of the :ALL forms, or if it is an :EACH form
and the generation continues until all derivable instances of the pattern
are produced, or if the query pattern contains no unbound variables (and
therefore has only one possible instance), then the system also records
the fact that all instances oi the pattern have been derived. Then, if
the same query is repeated, the system will know that the action
functions cannot find any new instances and therefore prevent ill-fated
attempts at rederivation. For example, if during a query all the components
that are positioned with respect to the pump have been found as instances
of the pattern (POSITIONED PUMP “C), then when that information is
requested in a later query, derivation functions such as the one that
looks for components attached to the pump will not be recalled.

These ''set completeness indicators” are also frequently useful to
indicate the case where there are no derivable instances of a pattern.
For example, if all derivation attempts are unsuccessful at determining
whether the pump is assembled, then the set of derived instances is

empty and marked as complete.

11

B. Saving and Maintaining Derived Instances

Our algorithms for maintaining these saved derived results in
succeeding states depend on availability of the "support' for each deri-
vation. The "support' for a derived instance is defined to be those
expressions from the model that are used as axioms in constructing the
derivation. For example, if an action function queries the model for
the locations of two objects and concludes that one of the objects is
above the other, then the locations of the two objects form the support
set for the result. Actually, since any model query may return a
derived result, the support set for the "above" result would be the
wion of the support sets for the two location expressions.

The user supplied deduce and refute actions are responsible for
computing and storing support for each derived instance that they find.
In almost all cases this is an easy task. For example, if an action
embodies the implication "X implies Y", then the action can simply fetch
the support for X and attach it to Y. GET:SUPPORT and PUT:SUPPORT
functions are provided for performing these support set manipulations.

Functions are also provided for deduce and refute actions to call
when they have derived a truth value for an instance of the query
pattern and have determined the support for that derivation. These
functions add the expression to the current possibilities list (remember
that action functions are generators), set the truth value (i.e.
TRUTHVALUE) of the instance, put the support set on the instance's
property list, and put a pointer to the instance on the property list
of each member of the support set. Use of these functions to "note”
derived results implies that derived truth values can be found by the

-pattern matcher’s search through the data base at the beginning of a
12

model query, and each expression that supports a derivation will have on
its property list a pointer to the expressions that it supports.

A derived result remains valid in succeeding states as long as its
support remains valid. We therefore have the system do the required
maintenance on derived instances in new states by including with the
standard model updating functions (described below) the following
facility. Whenever an expression with a known truth value has its truth
value changed during a model update, the truth value of each of the
expressions that it supports is set to UNKNOWN in the new state. The
truth values of these ''supportees” may not in fact have changed in the
new state, but the derivations that made the truth values known are no
longer valid. Hence, if a model guery in the new state needs to know
one of the deleted truth values, a new derivation must be attempted.

For example, if (ATTACHED PUMP PLATFORM) is the support for (POSITIONED
PUMP PLATFORM) and a detach pump from platform action causes a new state

to be created, then the truth value of (POSITIONED PUMP PLATFORM) will be
set to "unkmown'; the pump mey still be in position on the pletform, but the

justification for the earlier conclusion about the pump's position is no longer
valid.
The mechanism we have described thus far is effective, easy to

use, and efficient for saving and maintaining derived truth values

of expressions that are instances of a query pattern. Each derived
instance is assigned a truth value, the support pointers are established,
and when a state transition invalidates the derivation the derived truth

value is deleted.

C. Savipg and Maintaining Complete Sets

Consider now the maintenance of the ''completeness' indicators
that are attached to patterns when g2ll derivable instances have been

i3

found. Specifying the support for such indicators poses some subtle
problems, because the completeness depends not only on the validity of
the derived instances but also on whether any other instances are
derivable, This latter consideration implies that if any change should
occur in a succeeding state that could possibly allow some action
function to derive a new instance, then the completeness indicator should
be removed from the pattern in the new state. For example, during the
determination of all the components that are positioned with respect to
the pump, some deduce action may have looked for components that are
attached to the pump. Therefore, any succeeding state produced by an
action that attaches a component to the pump should cause the removal of the
completeness indicator from the derived positionings. Each derived
instance will still be wvalid in the new state; only the completeness of
the set is in doubt.

We have approached this problem of the validity of completeness
indicators by keeping a record of all the model queries made during a
derivation. If any of these queries will produce different results in a
new state (i.e. a different set of derived instances), then the action
functions that made the original derivation may behave differently in
the new state and in particular may derive a different set of instances.
Therefore, to maintain the completeness indicators we record during a
model query (i.e. a call on one of the DEDUCE or REFUTE functions) all
the other model queries that occur.

Consider a query to find instances of a pattern PO during which
are executed queries Ql, Q2, ..., Qn to find instances of patterns
Pl, P2, ..., Pn. The system records for each query Qi whether it is a
deduction or a refutation and the pattern Pi associated with it. If all

14

derivable instances of PO are found, then PO is given a completeness
indicator, the set of derived instances is put on its property list,
the queries Ql, ..., Qn are put on 'state transition test lists", and
a pointer to pattern PO is put on the property list of each of the
patterns P1, ..., Pn.

Whenever an expression with a known truth value is having its
truth value changed during a state transition, a test is made to
determine if it matches the pattern of any gquery on the appropriate
state transition test list. 1f a match occurs, the completeness in-
dicators of the patterns pointed to by the matching pattern are removed
since this state transition may affect the completeness of those
derivations. This entire mechanism is built into the DEDUCE, REFUTE, and
model updating functions, so that the user who writes action functions

need not be aware of it.

D. In Summary

To summarize, our model querying mechanisms provide for the
automatic derivation of truth values for pesttern instances when they
are not explicitly stored in the model, for the saving of all such
derived results so that similar later guleries will not reinitiate the
derivation functions, and for the maintenance of such saved results.
4lso, an important side effect of these mechanisms is that each derived
instance has the support for its derivations computed and stored with
it. Such support information has many uses because it indicates pre-
cisely which statements in the state model a particular precondition,

subgoal, or action depends on (Ref. 8),.

15

V. 8State Transitions

A. Updating Functioans

The models of state changing operators that a system works with
must contain sufficient information about the effects of each operator
s0 that they can be simulated and a description produced of the
expected resulting state. As in most planning systems, we are assuming
that the application of an operator in some state SO is modeled by
producing a new state S1 that is conceptually an updated copy of SO
(i.e. S1 is a direct descendent of S0 in the QLISP context tree). The
effects of the operator are indicated by asserting, denying, and deleting
expressions in the new state SI1. A
In our modeling system we provide the following set of model updating

statements:

(SIM:ASSERT <expression> <state>),

(SIM:DENY <expression> <state™), and

(SIM:DELETE <pattern> <state>).
SIM:ASSERT (SIM:DENY) changes the truth value of the given expression
to TRUE (FALSE) in the given state. SIM:DELETE changes the truth value
of all expressions that match the given pattern to UNKNOWN in the given
state, These statements also call a set of user supplied functions
(like PLANNER antecedent theorems) that typically make additional changes
in the new model that are direct results of the assertion, denial, or
deletion being done. These user supplied functions play an important
role in simplifying operator models in that they allow the user to
express in one place side effects of particular assertions, denials, or
deletions that always occur no matter what operator does them. In this
way, these side effects do not have to be repeated in each operator that
causes them to occur.

16

As in the case of the DEDUCE and REFUTE functions (and for
similar reasons), we have elected to store the user supplied updating
functions on each relation's property list. Hence, a relation can
have a list of ASSERT:ACTIONS, DENY:ACTIONS, and DELETE:ACTIONS, These
lists indicate how a model updating operationm should proceed for an
expression having the given relation as its first element.

The standard model updating functions {(as found in QA4, PLANNER,
QLISP, CONNIVER, etc.) apply user supplied functions only after the
expression's truth value has been changed. Often it would be convenient
to have user supplied functions applied before the expression®s truth
value is changed as well as after. For example, if a relation like
LOCATION has certain uniqueness properties, then any assertion of an
expression containing that relation (such as (LOCATION BOLT:1 3 4 5))
can automatically be preceeded by a denial (such as (SIM:DENY (LOCATION
BOLT:1 —+~1L0OC))). By allowing the programmer to specify such an
automatic denial in an assert ''pre-action’, we remove the necessity for
specifying the denial each time such an assertion is done,

We provide for both ''pre-actions” and "post-actions' during model
updating by giving the programmer the option of specifying when the
truth value of the expression will be changed. This is done by including
an asterisk (*) in the action list. The asterisk indicates when in the
course of applying the actions that the expression's truth value is to
be changed. Hence, all actions preceeding the asterisk are 'pre-
actions” and all actions following the asterisk are "post-actions’.

When the updating functions encounter the asterisk in the action
list, they also perform the maintenance operations on derived results.
This means that if the expression had a known truth value and that

17—

value is being changed, then all the expression’'s supportees must be
deleted. Alsoc, the state transition test lists are checked to determine

if any set completeness indicators should be removed.

B. Model Updating Using Deduce and Refute Actions

The information in many deduce and refute actions can alsc be
used to determine the secondary effects of assertions and denials. We
would like for the system to make use of this information during model
updating so that the user does not have to duplicate it in updating
functions. For example, if the user has written a deduce action that
embodies the rule "X implies ¥", then we do not want him to also have
to write a deny action for Y that removes from the model any truth
values that could be used to derive X, The information necessary to
do these changes at the appropriate time is included in the original
deduce action.

Consider a consistency checking procedure that would make use of
deduce and refute actions and that could be applied as a standard part
of model updating. We can describe this procedure by indicating how
it would work for denials. The truth value of the expression being
denied would be set to UNKNOWN and an attempt would be made to deduce
the expression. Tf this attempt produces a successful derivation, then
the new state contains support for the truth of the expression even
though it is being denied., The inconsistency can be eliminated by
removing the support for the derivation. If the support set has exactly
one expression in it, then that expression can have its truth value
reversed. (This is the "X implies Y" case where denying Y is implying
that X should zlso be denied.) The reversed truth value would be stored

18

as a derived result with the original expression that is being denied
(Y) as its support. When the support set contains more than one
expression, we kpow that at least one of the expressions must have
its truth value reversed, but we do not know which one(s). Therefore,
the best we can do is set to UNKNOWN the truth values of all the support
expressions. After the support for the derivation has been removed,
a new derivation is attempted and the process is repeated until no new
derivation can be found,

If the system knows which relations are changeable by events and
which ones are true in all states, then it can decrease unnecessary
deletions by removing the unchangeable expressions from the support set

before considering deletions or a truth value reversal.

This updating procedure does not guarantee consistency in the
new state nor does 1t prevent later chanpges to the state from intro-
ducing new inconsistencies. However, it does automatically take care
of many model updating details and it removes all existing inconsistencies
in the state that are discoverable by the system's deductive machinery.
If the system cannot derive the facts from which an inconsistency
follows, then the inconsistency is irrelevant and can safely be ignored.

Obviously, there are situations in which this procedure initiates
computationally expensive derivations and causes many unnecessary
deletions. Hence, it must be selectively applied. We have put the
entire process under user control by allowing individual specification
of which deduce and refute actions are employed to determine truth
value deletions and reversals during model updating. This is done by
providing a function UPDATE:WITH that takes a deduce or refute action

' 19

and an expression as arguments, and is sued to specify an assert or
deny action.

Note that using an "X implies Y"' deduce action as a deny action
for Y is not the same as writing a deny action for Y that simply
denies X. The difference is that in the latter case X would be denied
each time Y is denied, and the deny actions associated with X would
then trigger off other assertions, denials, and deletions. Such a
process could clutter up the model with many irrelevant implications
of the denial of Y. However, in the former case where the deduce
action is used as the deny action for Y, no changes are made in the
model if X cannot be derived; and if X can be derived, only the
supporters of the derivation are changed. This means that only those
truth values that are actually inconsistent with the denial of Y are

changed; no irrelevant implications are stored.

VI. The Relations AND, OR, and NOT

AND, OR, and NOT are "built into" our modeling system in the
sense that deduce, refute, assert, deny, and delete actions have been
written for each of them. Whenever possible, conjunctions, dis-
junctions, and negations are decomposed into more primitive forms
by the action functions. For example, the assert action for AND also
asserts each of the conjuncts, and the deduce action for NOT strips
off the NOT from the query pattern and attempts to refute the remaining
pattern.

The refute actions for AND and OR translate the query into a

call on DEDUCE:EACH by using the rules:

20

((NOT X1) AND ... AND (NOT Xn)) implies (NOT (X1 OR ... OR Xn), and
((NOT X1) OR .., OR (NOT Xn)) implies (NOT (X1 AND ... AND Xn)

The deduce actions for AND and OR have an important role to play in
that they are the overlords of the derivations of each conjunct or
disjunct. They could each be expanded into full problem solving
executives that would make use of co-routine facilities to explore
alternative derivations in parallel and semantic information to
determine the order in which conjuncts or disjuncts are considered.
We have experimented with only unsophisticated versions of these
actions, but the important point to note is that the query mechanism
gives those actions control over the derivation so that the option

is there to expand them when needed.

VIii. Summary

We have described a set of programming facilities for building,
maintaining, and querying state description models. These facilities
are useful in systems such as plammers, question answerers, and
simulators. They allow the storage and retrieval of statements with
true, false, and unknown truth values, and provide a programming
environment that allows derivation rules embodying the semantics of
a task domain to be easily added as functions to the system. These
rules can also be used to assist in modeling the effects of an
operator that creates a new state. TFacilities are provided to save
the results of these derivation functions, and to delete the results
in new states where the derivations are no longer valid. Finaily,
the semantics of conjunctions, disjunctions, and negations are
provided as a part of the system.

21

ACKNOWLEDGEMENTS

Many people at the SRI Al Center Have contributed to the develop-
ment of this system. I wish to especially thank Marty Rattner, Earl
Sacerdoti, and Georgia Sutherland for their important help. The work
reported herein was sponscored by the Advanced Research Projects
Agency of the Department of Defense under Contract DAHC04-72-C-008

with the U.S. Army Research Office.

22

REFERENCES

Peter E. Hart, "Progress on a Computer Based Consultant,” to
appear in Proceedings of IJCAI IV. (Sept. 1975)

Drew V. McDermott and Gerald Jay Sussman, The CONNIVER Reference
Manual, AI Memo No. 259, MIT Project MAC (May 1972).

C. Hewitt, "Procedural Embedding of Knowledge in PLANNER,"
Proceedings of IJCAI II, London (September 1971).

Johns F. Rulifson, Jan A, Derksen, and Richard J, Waldinger,
"QA4: A Procedural Calculus for Intuitive Reasoning,"
Technical Note 73, SRI Project 8721 (November 1272),.

Rene Reboh and Earl Sacerdoti, "A Preliminary QLISP Manual,"”
Technical Note 81, SRI Project 8721 (August 1973).

Warren Teitelman, INTERLISP Reference Maznual, Xerox Palo
Alto Research Center (October 1974).

Daniel G. Bobrow and Ben Wegbreit, A Model for Control Structures

for Artificial Intelligence Programming Languages,' Proceedings
of IJCAI III, Stanford, California (August 1973).

Richard E. Fikes, Peter E. Hart and Nils J,. Nilsson,"Learning

and Executing Generalized Robot Plans,” Artificial Intelligence
Journal 3 (1972).

23

