nernationa

Ziplock Snakes
Scpwmﬁer i9, 1994.
- _Techﬁic51 Note No. 548

~ Prepared By: - W. Neuenschwander*, ETH
P. Fuat, SRI International
~ G. Székely*, ETH
- 0. Kubler* ETH

Approvedby: . C.Raymond Perrault, Director
, Artificial Intelligence Center
Computing and Engineering Sciences Division

* Communication Technology | ~+ Computer Scientist for the

Laboratory Artificial Intelligence Center
. Swiss Federal Institute of * Computing and Engineering

Technology ETH - 7 | Sciences Division
CH-8092 Zurich, Sw1tzer1and : S S

333 Ravenswood Avenue o Menlo Park, CA94025-3493 (415)326-6200 o FAX: (415) 326-5512 o Telex-334486

Ziplock Snakes

W. Neuenschwander*, P. FuaT, G. Székely*, and O. Kiibler*

* Communication Technology
Laboratory
Swiss Federal Institute of
Technology ETH
CH-8092 Zurich, Switzerland

t SRI International
Artificial Intelligence Center
333 Ravenswood Avenue
Menlo Park, CA 94025, USA

Abstract

We propose a snake-based approach that lets a user specify only the distant endpoints
of the curve he wishes to delineate without having to supply an almost complete polygonal
approximation. We greatly simplify the initialization process and achieve much better conver-
gence properties than those of traditional snakes by using the image information around these
endpoints to provide boundary conditions and by introducing an optimization schedule that
allows a snake to take image information into account first only near its extremities and then,
progressively, toward its center. In effect, the snakes are clamped onto the image contour in a
manner reminiscent of a ziplock being closed.

These snakes can be used to alleviate the often repetitive task practitioners face when
segmenting images by abolishing the need to sketch a feature of interest in its entirety, that
is, to perform a painstaking, almost complete, manual segmentation.

Keywords : Snakes, Deformable models, Interactive initialization, Boundary conditions.

1 Introduction

In recent years, snakes have emerged as a very powerful tool for semiautomated object delineation.
They have been originated by Terzopoulos, Kass, and Witkin [Terzopoulos et al., 1987, Kass et
al., 1988] and have since given rise to a large body of literature ([Fua and Leclerc, 1990, Leymarie
and Levine, 1993, Cohen et al., 1992, Staib and Duncan, 1992] among many others) that explores
theoretical and implementation issues as well as new applications.

In most of these papers, however, it is assumed that the initial position of the snake is relatively
close to the desired solution. While this is a reasonable assumption for applications such as motion
tracking [Terzopoulos and Szeliski, 1992, Bascle and Deriche, 1993), it is ineffective for delineating
complex objects from scratch.

Here, we describe a snake approach that allows a user to specify only the endpoints of the curve
he wishes to delineate instead of a complete polygonal approximation. Our efforts are aimed at
alleviating the often repetitive task practitioners face when segmenting images. In particular, we
aim at abolishing the need to outline the desired structure very precisely, that is, to perform a
painstaking, almost complete, manual segmentation. In our implementation, the user needs only to
supply a few discrete points through which the contour must pass; the system then propagates the
information along the contour starting from these points. As a result, considerably fewer control
points are needed than for conventional implementations to which we refer as traditional snakes.

Traditional snakes are polygonal curves to which is associated an objective function that com-
bines an “image term” that measures either edge strength or edge proximity, and a regularization
term that accounts for tension and curvature. The curve is deformed so as to optimize the score
and, as a result, to match the image edges. The optimization typically is global and takes edge
information into account along the whole curve simultaneously. When the snake’s initial position
is far away from the desired result, the snake often gets stuck in an undesirable local minimum
because it uses irrelevant edge information. The minimization problem is solved by treating the
snake as a physical system evolving under the influence of the potential that is the sum of the
objective function and a dissipation term that enforces convergence. This term tends to prevent
the snake from moving far away from its current position. As a result, to ensure convergence to the
desired answer, one must supply an initial position that is close to it.

By contrast, in our approach, the optimization progresses from the endpoints toward the center,
thereby effectively propagating edge information along the curve without the need for a dissipation
potential. The user-supplied endpoints and the automatically computed edge gradients in their
vicinities serve as anchors. They are first used to compute, without using the image potential, an
initial state that is approximately correct in each anchor’s vicinity. The image term is then “turned
on” progressively from the snake’s extremities toward its middle section. Still using the endpoints
as anchors, the snake’s position is iteratively recomputed until the image term is fully turned on.
As a result, the snake is progressively clamped onto an image contour so that it smoothly connects
the two endpoints and has the right orientation at these points. This behavior is analogous to the
closing of a ziplock, hence the name of our snakes.

The paper is organized as follows. We first review the properties of traditional snakes and
introduce our ziplock snakes. We then compare their respective behaviors, and present results on

both synthetic and real images to demonstrate the improved performance of ziplock snakes for
initializations that are far away from the desired result. Finally, we propose extensions to deal with
ribbon-like structures and to facilitate interactive segmentation by using key-point information for
initialization.

2 Traditional Snakes

The original snakes [Kass et al., 1988) are modeled as time-dependent 2-D curves defined paramet-
rically as

v(s,t) = (2(s,), y(5,)Jogoss » (1)

where s is proportional to the arc length, ¢ the current time, and = and y the curve’s image
coordinates. The snake deforms itself as time progresses so as to minimize an image potential
E[(‘f;), with

Ei®) = - [P((s,) ds ©

where P(7(s,t)) is a function of the image. One typical choice is to take P(9(s,t)) to be equal to
the magnitude of the image gradient, that is

P(i(s,)) = [VI(3(s,1))| (3)

where I is either the image itself or the image convolved by a Gaussian kernel. We have shown
[Fua and Leclerc, 1990] that, when P is defined in such a fashion, the points along a curve that
minimizes £y are maxima of the gradient in the direction normal to the curve wherever the curvature
of the curve is small and the variation in the gradient magnitude is slow. Therefore, such a curve
approximates edges well except at corners.

However, because the gradient magnitude can vary rapidly due to contrast changes and to noise,
it has proven effective to either clip the derived potential force [Leymarie and Levine, 1993] or to
replace the gradient magnitude by its logarithm [Fua and Leclerc, 1990]. Alternatively, one can
take P(9(s,t)) to be the Euclidean distance to the closest edge point in an edge map computed
using an operator such as the Canny edge detector [Canny, 1986, Cohen et al., 1992). The results
of all these approaches are very similar. Our implementation, as described in Section 3, uses the
. gradient magnitude of the Gaussian smoothed image.

Whatever the choice of P, Ey(?) is typically not a convex functional. To overcome this problem,
Terzopoulos et al. have proposed to introduce a regularization term Ep(7) that is convex and to
minimize a total energy term E(¥) that is the sum of Ef(¥) and ED (¥). Using the thin-plate model,
Ep(v) is taken to be

ds , (4)

a(“)l +A(s)

where a(s) and §(s) are arbitrary functions that regulate the curve’s tension and rigidity. For
generality’s sake, we show that our framework handles @ and 8 functions that are nonconstant.

Ep(9) = 2]&(3 82-.(3 t)’

2

Although the behavior of snakes can be made extremely flexible in this way, we assert that tension
and rigidity parameters should not be allowed to vary in an unconstrained manner. It is the mark
of good theory to use considerably fewer free parameters than there are degrees of freedom. In the
implementation described below «(s) and B(s) are taken to be constant and supplied by the user.
We have shown previously [Fua and Leclerc, 1990] that constant « and 8 can be chosen in a fairly
image-independent way.

Variational calculus [Courant and Hilbert, 1989] shows that if v minimizes E = Ep + E; and
is sufficiently regular, that is at least C'4(0,1), then it must be a solution of the Euler differential

Note that, in order for this equation to have a unique solution, one must specify boundary conditions
such as the values and derivatives of #(s,t) for s =0 and s = 1.

In practice, to implement the minimization E(%), the curve ¢ is discretized by sampling it at
regular intervals. We therefore take v to be a polygonal curve defined by a set of n +1 z and y
vertices

v = (mgsyf)DSiSn . (6)

Using finite differences, the snake energy E(v) becomes

E(¥) = Ei(v)+ Ep(?)
Ef(®) = -3 P(zi,u) (7)

Ep(#) = 1/2) oi((zi —2i,)" + (v — win1)?)
+ 1/22@'((21’: — Ty — 33.?+1)2 + (2v; — yio, — y:+1)2) .
Note that Ep(¥) is quadratic and can be rewritten as
Ep(?) = 1/2XT KX, +1/2Y,'KY,; (8)

where K is a (n + 1) x (n + 1) pentadiagonal matrix, and X and Y are the vectors of the z and y
vertex coordinates.
A curve that minimizes the energy F must be such that

oF
0 = %5 (9)
_ 9, 95
BT v -’

Since the deformation energy Ep in Equation 8 is quadratic and decouples the x and y coordinates
of the curve, Equation 9 can be rewritten as a system of two linear equations

KX=Fx , KY=F (10)

3

which are coupled by the “image forces,” Fx and Fy,

OE; 0E;
F, — _ - . 11
X ax ’ Fy ay (11

These image forces are the n + 1 vectors
(3P($o,yo) dP(21,41) 6P($myn))
e e R "

where v stands for either z or y. Note that Fx and Fy depend on the snake’s position, making
the system semilinear. Equivalently, the Euler differential equation can be rewritten as a set of two
coupled differential equations

(12)

5 (20250 4 5 (0 7522) = 5

The discretization of the system of Equation 13 using finite differences also leads to the system
of Equation 10 [Leymarie and Levine, 1993). The matrix K, however, is not invertible and these
equations cannot be solved directly. This stems from the fact that the Euler differential equation
(Equations 5 and 13) has a unique solution only when boundary conditions are supplied. Without
them, the system is underconstrained.

In Section 3, we will show how we can solve this system of equations by supplying the boundary
conditions. This will be one of the key differences between our approach and more traditional
snake implementations. Traditionally, the minimization of E(%) is achieved by first generalizing to
a dynamical physical model in which the snake is endowed with mass and assumed to move in a
viscous medium, and then solving the equation of the dynamics. This amounts to adding a kinetic
energy term to the regularization term Ep(v) and a Rayleigh dissipation functional to the energy
and leads to solving the following differential equation [Terzopoulos and Szeliski, 1992]:

OE | &(s,t) | di(s,t)
w0 (1)

where i represents the mass density of the snake and + is the viscosity of the medium. Both mass
and damping are assumed to be independent of position. As in the case of Equation 10, after time
discretization using backward and central differences, this can be rewritten as a set of two equations
in X and Y:

(K+(’T+I—‘)I) Xt=(7+2ﬂ) Xy — pXea + Fx
(K+(y+p)D) Y, =(v+2u) Yooy — pYia + Fy

where K, Fx, and Fy are defined in Equation 10. The matrix (K + (y + g) I) is positive definite
for £ + v > 0 and, because it is pentadiagonal, the solution of this set of equations can be com-
puted efficiently in O(n) time using LU decomposition and back-substitution. Note that the LU
decomposition need be recomputed only when the parameters « and 4 change.

(15)

4

(b)

Figure 1: Sensitivity of traditional snakes to nearby contours. (a) Different initializations: the snake
is initialized using a polygon with an increasing number of vertices. (b) The corresponding
results: the fact that the two objects are lying close to each other forces the user to outline
the desired contour segment precisely. If the snake touches the influence region of a nearby
object it will get stuck on the wrong contour.

(b)

Figure 2: Ill-conditioned behavior of the traditional snakes with respect to initialization. (a) Slightly
different initializations: the snake is initialized using a polygon with five vertices. While
the first, second, fourth, and fifth vertices are the same for ali six situations, the the third
vertex moves closer to the shape. (b) The corresponding results: when the third vertex is
close enough to the object’s border, the snake is able to detect the correct contour (6th
image pair). However, it is not intuitively obvious what the threshold is.

The traditional snakes are effective when the initial position of ¥ is close from the desired
solution. However, they are very sensitive to initial conditions. They can easily get caught in local
minima when the desired outline presents large concavities that force the snake to extend itself or

when there are other edges in the vicinity of the desired one that may “catch” the snake as shown
in Figure 1. Furthermore, from a user’s point of view, there is not always a simple intuitive way of
defining how close an initial state has to be in order to detect the correct object boundary. Figure 2
illustrates this problem.

This is to be expected since the Rayleigh dissipation functional constrains the result to be the
minimum of the objective function that is in some sense “closest” from the initial position. To a
certain extent, the kinetic energy can be expected to help the snake move across shallow minima in
the potential surface P(¥). While the tracking of contours in image sequences may benefit from such
a kinetic energy term [Terzopoulos and Szeliski, 1992], we have observed that as far as extracting
features from static images is concerned, the effect of this term is marginal.

In the next section, we introduce a different breed of snakes — the ziplock snakes — that
alleviate these problems by resorting directly to Equation 5 and solving it by supplying appropriate
boundary conditions.

3 Ziplock Snakes

To improve upon the snakes’ convergence properties, we have sought to introduce mechanisms that
better reflect the nature of the problem than the indiscriminate global optimization described above.
Also, we should take into account the type of input that a user can provide with reliability and
facility. In our implementation, we assume that the user specifies snake endpoints in the vicinity of
clearly visible edge segments, which implies a well-defined edge direction. As explained below, the
system actually optimizes the location of the user-supplied points to ensure that they are indeed
good edge points, and extracts the associated edge directions. It then becomes natural to use these
anchor elements as boundary conditions and to propagate the edge information along the curve
starting from them.

We use the anchor elements to derive an initial position for the snake independently of the
image under consideration. This initial state will, in general, be close to the desired answer in
the vicinity of the snake endpoints but nowhere else, We will therefore “turn on” Fx and Fy,
the image forces of Equation 12, in those areas and compute a new position for the snake using
the same boundary conditions as before. A longer part of the new solution will be closer to the
actual image edge than before; the image forces can then turned on on this longer part and the
snake’s position recomputed. By iterating this process, we eventually turn on the image forces
over the whole length of the snake, thereby achieving the propagation of the edge information from
the anchor points to the snake’s middle and the progressive ziplock-style clamping. Our approach
is closely related to perturbation theory [Bush, 1992]: we start with an unperturbed solution of
our minimization problem and progressively perturb it by considering more and more of the image
forces.

In the remainder of this section, we first discuss the use the boundary conditions to solve our
minimization problem. We then derive our initial unperturbed snake position from the endpoints
and finally we present the optimization schedule that defines the gradual “turning on” of the image
forces.

3.1 Solving the Minimization Problem with Boundary Conditions

As discussed in Section 2, minimizing the snake’s energy amounts to solving the Euler differential
Equation 5 (or Equation 13) which leads, after discretization, to the semilinear system of Equation
10. In the appendix we show that by fixing the curve’s endpoint (zq,yo) and (z.,y.) and giving
the curve’s tangent at those points, the above system of equations reduces to

K'X' = FY
K'Y' = Fj, (16)

where X" is the n—1 vector (z;.....,Tn-1), Y’ the n—1 vector (y;.....,¥n—1), and K" an (n—1) x(n—1)
pentadiagonal matrix that is now invertible. Of course, since Fy and Fy depend on the snake’s
current position, the system is still only semilinear and cannot, in general, be solved in closed form.
Instead, one must use an iteration scheme that can be concisely rewritten as

1yt ’
K'X! = Flywx yoyr,

K'Y = Filyx

t—17

Y’:Y"_l (17)

where t is the iteration index.

3.2 Inmitialization

To successfully optimize our snake, we must start from an initial position that is approximately
correct in the neighborhood of the endpoints. The easiest way to achieve this result is to solve the
homogeneous equations that correspond to the system of Equation 13. As discussed in Section 2,
we take o and 3 to be constant, and the homogeneous system becomes

dv(s div(s

B8, pdt(s

ds? ds*

where v stands for either z or y and 0 < s € 1. Below, we derive boundary conditions for this
equation and its analytical solution. By construction, this solution has the specified tangent at the
endpoints and is close to the right answer near these points. It can therefore serve as an initial

curve for the following minimization of the energy functional.

=0 (18)

3.2.1 Image-compatible Boundary Conditions

When interactively defining the snake’s endpoints, which we will subsequently refer to as the head
and tail, the user may miss the accurate edge position. It is safe to assume, however, that these
points are chosen close to dominant edge fragments. Hence we first perform a linear search to find
the true edge location in the near neighborhood of the selected startpoints and endpoints. The
snake tangent at its head and tail is then taken as the valley direction in the potential surface
corresponding to the selected contour fragments. It is computed by optimizing the orientation of a
short straight-line snake.

Figure 3: Defining the boundary conditions. The initial snake defines acute angles (light shaded)
with the straight line a between the two endpoints. (a) The two endpoints are selected
such that the acute angles are on the same side of a. The snake is initialized correctly. (b}
In this case the acute angles are lying on opposite sides of @. Our heuristic initialization
fails.

While the tangent direction at the endpoints can be computed, its orientation cannot be de-
termined, as illustrated by Figure 3. By default, the boundary conditions are chosen so that the
initial snake defines acute angles with the line joining the two endpoints. Since this heuristic may
fail, we provide the user with the possibility of flipping the orientation at both ends. This could
be automated by initializing the snake in the four possible ways (two possible orientations at each
end) and retaining the best final result.

3.2.2 Analytical Solution of the Homogeneous Euler Equation

The homogeneous Euler Equation 18 has analytical solutions of the form

v(s) = O + Cas + G VB 4 0t VE (19)

where Cy,...,C}y are integration constants that can be determined uniquely by the four boundary
conditions

v(0)=A, v(1)=B, V' (0)=a, v (1)=0b.
Let w = /a/B and ¢ = e. We can now write

v(s) = C1 + Cos + Coe™° + Coe™™, /() = Gy — Cowe™ + Cawe*™®

and the four constants C, ..., Cy must satisfy the system of linear equations:

10 1 1 C A
11 g q C, _| B
01 —w w Cs B a
0 1 —wg™! wg Cy b

Recall that Equation 18 and its solution in Equation 19 are defined for 0 < s < 1, and v stands
for both the z and y coordinates. Therefore, the user-supplied endpoints are mapped from the
image coordinate system into a normalized coordinate system. To get the boundary conditions for
the uncoupled system, we have to split the tangent angles at the head and the tail into = and y
components. Let 8 and 3, respectively, be the tail’s and head’s tangent angles. The parametric
snake definition of Equation 1 requires the following two equations to hold:

A y'() _ by
0 = = — = = -
tan(8) 20 "z tan(y) 7() ~ b
where @, b, are the two first order boundary conditions for the z component and a,, b, the conditions

for the y component. In practice, depending on the value of §, we take either a. or a, to be +1 and
use the above ratio to derive the other a. We compute b, and b, similarly.

Y Y4

-

hea \ tailf * W
1
(

head tail*

a) (b)

Figure 4: Different solutions of the homogeneous Euler Equation. (a) Solutions for various bound-
ary conditions and constant w. (b) Solutions for decreasing parameter w and constant
boundary conditions.

The solution of Equation 18 depends only on the ratio w = y/a/# and the boundary conditions.
Figure 4 shows the wide range of different curves that can be covered by varying these parameters.

9

3.3 Optimization Procedure

We start the optimization of the energy term by defining the initial snake as the solution of the
homogeneous differential system of Equation 18. At this stage the snake “feels” absolutely no
external potential forces. During the ongoing iterative optimization process the image potential is
turned on progressively for all the snake vertices, starting from the extremities. Assuming that the
user selects the endpoints near dominant edge fragments in the image, this initialization ensures
that the snake already lies close to its optimal position at both ends.

We define the force boundaries as the location of the vertices farthest away from the endpoints
that feel the image forces. These boundaries approach each other during the ongoing optimization
process by moving forward at every iteration step if the displacement between the last two iterations
is below a certain threshold.

Starting the optimization from both endpoints, we can proceed in two possible ways:

1. By moving the force boundaries we can fix all the snake elements between these boundaries
and both endpoints. We can then iteratively redefine new boundary values and plug them
into Equation 18. Therefore, we construct a “static solution” of Equation 5 out of piecewise
solutions of Equation 18. At the end of the optimization process we release all snake ele-
ments and take this solution as an initial contour for a traditional-snake global optimization.
Simple observation reveals the quality of the initialization: we regard it as good when the
global optimization produces no noticeable deviations to the initial state while the quality
is questionable whenever large changes occur, just as observed for the case of poor manual
intialization of traditional snakes. The user is then advised to supply new, less separated,
anchor points and to start the procedure again.

2. Alternatively, we can introduce, for each snake element between the force boundaries and
both endpoints, a viscosity factor that actually defines a blending function between the old
and the new snake positions. Note, however, that the middle part of the snake, for which the
potential field and the viscosity have not yet been switched on, is still computed by solving
the Euler equation of Equation 18. The last two snake elements on either side of the force
boundaries serve implicitly as boundary values for the differential equation.

The first method incrementally builds a solution by locally optimizing the boundary values and
only at the end performs global optimization across the whole snake. While this seems like an
obvious way to implement the clamping, it has the problem that there is no mechanism to recover
from mistakes. A solution that starts to go off track will keep on doing so and will stray further
and further from the desired answer. However, this problem can be alleviated by subjecting the
partially clamped ziplock snake to traditional snake optimization at regular intervals. By freeing
the snake vertices, one allows it to wiggle into the best local minimum in its immediate vicinity,
thereby correcting small deviations and preventing them from growing into large ones.

The second method achieves this by performing global optimization during the iteration and,
as a result, converges much better. We define a varying viscosity factor v(s,¢) such that v(s,0) =
0 ,s € [0,1]. The initial coordinate vector (X}, Yy)” is the solution of Equation 18. We then

10

iteratively solve the following system for t = 1,2,3,...

(K'+ 3 d) Xp = Xiy +FY)
¥t =y,
(K'+7 DY =nYl, +5] , _ Xi_i
Y = Yr’-l

The viscosity v(s, 1) is recomputed each time the force boundaries move so that the initial displace-
ment of each vertex is on the average of a given a-priori magnitude, typically 1 pixel. The damping
factor (s, 1) is then increased progressively until the snake stabilizes and the force boundaries can
be moved again.

4 Discussion

We use synthetic and real images of tutorial character to compare the traditional snakes with our
ziplock snakes and show that initialization of the former must typically be much closer to the desired
answer to achieve comparable results. To make the comparison fair, we use the same tension and
rigidity parameters, a and 3 as defined in Equation 4, for both kinds of snakes.

Figure 5 shows three sequences of snakes evolving on a synthetic image. The first row (a)
illustrates the behavior of our model. The ziplock snake can always be initialized with only two
points. While the traditional snake undergoes a global deformation, we observe that the ziplock
snake is only deformed locally. During the iteration, the force boundaries move along the contour
until they meet. Sequence (b) illustrates the deficient behavior of the traditional snake initialized
in exactly the same way. The third sequence (c) shows the traditional snake now initialized by a
polygon with five vertices. These additional points are needed for traditional snakes to succeed.

The ability of ziplock snakes to trace the cavity stems from the gradual taking into account of the
image forces from the ends. Conversely, the poor performance of the traditional snakes is a direct
consequence of the immediate onset of those forces along the whole contour. The initialization of
the traditional snake did not provide enough length; the penalty on expansion then prevented it
from adequately conforming to the contour. The ability of ziplock snakes to outline cavities and to
distinguish between nearby objects is further illustrated by Figure 6.

Figure 7 compares the performance of ziplock and traditional snakes, using an image of an
apple. Although the object looks quite simple, the segmentation problem is surprisingly treacherous.
Shadows and illumination effects produce edges having nothing to do with the apple’s outline.
Sequence (a) shows the initialization and optimization of a ziplock snake. The two endpoints are
selected on the apple’s outline and the snake eventually deforms to the correct shape, even though,
depending on the choice of @ and £, the initial guess may be very far from the final answer.
Sequence (b) illustrates the bad performance of the traditional snake model initialized using only
the same two endpoints: the snake gets stuck on the bright specular reflection on the apple’s skin.
In sequence (c), the initialization is closer to the desired answer but the snake is still attracted by
other salient features near the contour and fails to outline the apple. To achieve this result using a

11

traditional snake, one must supply the almost “correct” polygonal approximation of Sequence (d).
It is so close to the desired answer that only slight smoothing occurs during the evaluation, without
any real position adjustment. In this case, the traditional snake acts only as a regularization tool
smoothing out the first-order discontinuities of the initialization .

Figure 5: The effect of initialization for ziplock and traditional snakes. The rows show the evolution
for different snakes from the initial state in the first column. (a) Evolution of a ziplock
snake. The circles indicate the movement of the force boundaries during optimization.
{b) Traditional snake with same initialization. (c} Traditional snake initialized in three
additional points.

Figure 6: Evolution of a ziplock snake on the synthetic image of Figure 2. The circles denote the
farthest vertices away from the endpoints for which the image forces are turned on, that
is the force boundaries of Section 3.3. As discussed there, the optimization stops when
the two circles meet.

12

Figure 7: Compared behaviors of ziplock and traditional snakes on an image of an apple. The rows
show the initialization and three stages of the optimization process for (2) a ziplock snake,
(b) a traditional snake with the same initialization, (c) a traditional snake with three
vertices, (d) a traditional snake with seven vertices.

13

5 Results

The contour-following capability of our ziplock snakes makes them especially useful for segmenting
scenes where the separation of nearby features is necessary. Figure 8 illustrates, on the previously
used image of the apple, how easily the contour of the apple and its shadow can be separated. The
first row depicts the extraction of the apple’s contour. To outline the shadow as shown in the second
row, the initial points simply have to be moved into its vicinity.

(a)

(b)

Figure 8: Detection of different image features by ziplock snakes. (a) Detection of the apple’s outline.
Some liberty can be used in placing the upper right initial point since there is no danger
of ambiguity in the automatic adjustment to nearby image structures. More precision
is required for the lower left initial point in order to avoid confusing apple and shadow
boundaries. {b) Detection of the projected shadow; the lower left initial point is now closer
to the shadow boundary.

Figure 9 demonstrates that the contour-following property does not impair the gap-closing ca-
pability of ziplock snakes by showing the extraction of some low-contrast contours on an image of
a face.

Figure 10 shows that ziplock snakes can be used to delineate roads in an aerial image by using
very distant endpoints. Note, however, that our snakes can still become confused in the presence
of junctions. In the case of the curve drawn in the bottom left corner of Figure 10(b), there is a
secondary road that leaves from the main one and traps the snakes in an undesirable local minimum.
In practice, when such problems arise, our interface allows the user to add a new point in the middle
of the curve, thereby splitting it into two snakes. '

14

(a) (b)

Figure 9: Outlining facial features. (a) Three pairs of endpoints on a face image (Courtesy of
INRIA). (b) Final results.

Figure 10: Outlining roads in an aerial image. (a) Ziplock snake initializations. (b) Final results. All
the road edges are correctly outlined except the bottom left one. (c) The erroneous result
is corrected by adding one new control point.

Another mechanism for the user to interact with snakes and fix problems such as the one de-
scribed above is to allow him to use a mouse-controlled cursor to nudge the snake off the unintended
feature. Alternatively, we have extended our formulation of the snake equations to include a term
related to the length and direction of the vector from each snake vertex to the mouse-cursor. In

15

this way, we have simulated a magnetic force between the cursor and the snake, which allows the
user to push the curve in a desired direction.

To segment more complex shapes we need a simple way to sequentially define endpoints for
adjoining open snake fragments. We have implemented an interactive initialization tool in which
the contour-finding process starts as soon as the user has clicked on two initial points. Sequentially
adding salient points will then extend the initial segment under immediate visual control in a sort of
contour-following rubber line process. This mechanism can also be utilized to detect closed contours
since the boundary conditions can be shared between neighboring snakes to guarantee a smooth
transition between them. Figure 11 illustrates this process on the segmentation of a corpus callosum
in an MR image. Note, in particular, how the correct outline is found by the second segment in
spite of its crossing over a wrong contour during the initialization phase.

Figure 11: Segmentation process of a corpus callosum (MR image slice turned by 90°). The closed
contour is built up by three open snakes linking three points supplied sequentially by the
user and denoted by the circles.

6 Extensions

6.1 Ribbon Snakes

Following [Fua and Leclerc, 1990}, we have implemented a tool for interactive road delineation, called
ribbon snake. The model vector ¥ is augmented by a third component, the varying width w(s,t) of
the road. The expression for the deformation energy (4) still holds for #(s,t) = (z(s, 1), y(s, 1), w(s,t))7,
where the width is subject to the same “tension” and “rigidity” constraints as the two coordinate
components. The ribbon forms the center of the road, while the assigned width defines two curves
that are the actual deforming road boundaries. Note that the image information is taken into ac-
count along these two curves only. Figure 12 depicts the delineation of complete road boundaries
using the ribbon snake model. Each ribbon is initialized by the two corresponding endpoints and
the road direction, which is the average direction of the left and right road boundary.

16

(a) (b)

Figure 12: Delineating roads on an aerial image using ribbon snakes, (a) Several pairs of endpoints.
(b) Final detected road segments. Note that the actual ribbon, the centerline of the road,
is not shown in the image on the right.

6.2 Snake Initialization by Key-points

A general drawback of the snake model is the difficulty of adapting to boundaries with strong
orientation discontinuities. For this reason, Terzopoulos [Terzopoulos, 1987] proposed to introduce
tangent discontinuities on the snake by setting the parameter 3(s") to zero for specific s*. The
snake can be bent arbitrarily at such points because high curvature is not penalized anymore, Even
though this parameter manipulation is possible, the detection of correct breakpoints along the snake
is not trivial. The difficulties are compounded at contour junctions, which are notoriously hard to
detect.

In [Rosenthaler et al., 1992], we have described a method to extract strong 2-D intensity vari-
ations (such as corners, junctions, strong curvature, ...) from the image. These specific image
configurations have been subsumed under the concept of key-point. The detection algorithm com-
putes their positions as well as the number and directions of attached contour segments. The
connectivity between key-points can then be established and encoded in a graph-like data structure
as described in [Henricsson and Heitger, 1994).

We have implemented a supervised contour tracking scheme that combines this connectivity
graph with ziplock snakes so as to preserve corners and junctions. Connected pairs of key-points
serve as initializing anchor elements. An outline is generated by using the snakes to connect them
in succession. First-order continuity at the key-point is naturally controlled by the orientations of
the emanating contour segments encoded in the graph-like data structure.

Figure 13 illustrates how key-points and their correspondences can be used to extract object
boundaries in a semiautomated fashion. Figure 13(a) shows an image of a set of peppers with
key-points overlayed as black circles. In this experiment, the goal was to get the outline of the long,
light-gray capsicum. By selecting an arbitrary key-point (indicated by the arrow in Figure 13(a))
on the image, all possible direct connections with this point are shown and the user can select one
of them. When he does, a snake is automatically initialized and the optimization procedure starts.
As soon as the snake has reached a steady state, all key-points that are connected with one of the
snake’s endpoints are searched for. As long as there is a unique ongoing direction, the cycle of
initialization followed by optimization is carried out autonomously. Only at branching points does

17

(e)

Figure 13: Tracking algorithm with snakes based on key-point information. (2) Image with overlayed
key-points. (b) Optimized snake, supplying two alternative tracking directions. (c) (d) (e)
(f} and (g) Intermediate steps as tracking proceeds. (h) Final pepper’s outline consisting
of ziplock snakes linked by key-points (not displayed).

the algorithm stop. It then displays the alternative tracking directions indicated by the rays shown
in Figures 13(b), (¢), (d), and (g). The user then has to choose the path to follow by interactively
selecting one specific connection. Image 13(h) shows the final closed outline consisting of several
ziplock snakes linked together at key-points.

18

7 Conclusion

We have proposed a snake-based approach to semiautomated delineation that allows a user to
outline an open contour by specifying only very distant endpoints and allowing the computer to
propagate edge information from the extremities toward the center. Our approach presents two
main differences from more traditional snake implementations:

o It relies on the original time-independent snake formulation and derives boundary conditions
from the image to constrain the minimization.

» It uses a schedule that allows the snake to take image information into account first only near
its extremities and then, progressively, toward its center.

Combining these two ideas yields excellent convergence properties for the snakes and diminishes
very substantially the probability of their getting trapped into an undesirable local minimum, even
for initializations that are very far away from the desired answer. The only constraint on the user is
the fact that the endpoints he specifies must be close to well-defined edges so that their directions
can be estimated reliably. This is a fairly natural constraint that can be explained to a photoanalyst,
even if he has no knowledge whatsoever of image processing. In other words, we have proposed
a natural initialization procedure that is completely in line with both the practitioner’s task and
the mathematical problem so that the “expert user” [Kass et al., 1988] of the original snake papers
need not be that much of an expert anymore.

We have implemented a standalone version of our ziplock snakes that incorporates an interactive
initialization tool in which the contour-finding process starts as soon as the user has clicked on two
initial points. Sequentially adding salient points will then extend the initial segment under immedi-
ate visual control in a sort of contour-following rubber line process. In case of error, trace-back and
editing are supported. We have extended the formalism to deal with ribbon-like structures — for
example roads in aerial images — and we have experimented with semiautomatic initialization using
key-point information. Ziplock snakes have been ported into the RADIUS Common Development
Environment [Mundy et al., 1991] where they can be used to optimize or connect curves and ribbons
in a semiautomated fashion while taking advantage of RCDE’s extensive editing capabilities.

We will concentrate our future research on generalizing our approach to handle more general
constraints and problems of higher dimensionality. In particular, the deformable-surface models
described in [Fua and Leclerc, 1994a, Fua and Leclerc, 1994b] are optimized using a traditional
snake approach but are amenable to ziplock optimization, which should enhance their performance.

Acknowledgement

We thank Friedrich Heitger and Olof Henricsson of ETH-Zurich for their ideas and active support
in supplementing the ziplock snake initialization with key-point information. We also wish to thank
Tom Strat from SRI for his various suggestions and for christening the ziplock snakes.

19

Appendix:
Discretizing the Euler Equation with Boundary Conditions

We discretize the system of two fourth order differential equations of Equation 13, using boundary
conditions. We write the equations as

-1 (a0 22) + £ (s 8y - -2 (A1)

where v stands for either z or y. Let the discretized snake ¥ consist of n+1 vertices (z;, ¥:)oci<n- By
combining forward, backward and central differences, as proposed in [Leymarie and Levine, 1993],
we derive the following discretization:

-3t (a5 4 2 (0552

where

= CigVi—2 + bi—1vicy + aiv; + bivigy + v (AL2)

a=ih

a; = h7(Bicy + 4B + Bigy + B2y + hPauyy)
bi = h7Y(=26i — 2Bis1 — RPain1) (A.3)
& = b8y, (A4)

for 2 £:<n—2and h =1/n. This yields n — 3 equations in the n + 1 unknown (v, v1,...,a).
Fixing four snake vertices would reduce number of unknown to n — 3, making the system’s solution
unique. A better way to achieve this result, however, is to fix the head and the tail of the snake and
to define the derivatives at those points. Let v'(0) = 4 and v'(1) = 4. The two derivatives have to
be approximated by central differences as well. Introducing two new fictive v coordinates v_, and
Unt1, We write

VO v 2=y, ()Rl g (A.5)

The discretization of Equation A.2 now becomes valid for 1 € i < n —1, yielding a system of n — 1
equations that can be rewritten in matrix form as

e (a(s)d'z;is)) i (ﬁ()d"’v(s))

~= n+43 (‘U._l, UVoy e sv gy Un, 'Un+1)T (A.G)

s=1h

20

where K, 13 denotes the (n — 1) x (n + 3) matrix

{ c1 by a by ¢ \
co b a b C2
a b a; b3 Ca
Knps = . (A7)

Cn-5 bn—-i Gn-3 bn—3 Ch-3

Cn—yg bn—3 Gn-—2 bn—2 Ch-2

\ Ch-3 bn—2 Qn-1 bn—l cn—l/

Using Equation A.5, we substitute the fictive coordinates v_; (= vy — 27h) and vp41 (= Va1 +
28h) in Equation A.6. Furthermore, since the head vy and the tail v, are fixed, we can eliminate
the first two and the last two columns of the matrix in Equation A.7. This finally yields a system
of n — 1 linear equations in n — 1 unknowns

(aj+c1 b o) (v A f1 = bovg + 2¢1hy)
b a; b o v2 Ja — cpvg
a by a3 by c3 U3 fa
€ns bnq @n-z bn_3 €n-3 Un-3 fa-3
€n-g4 bn_g an—2 bn—2 Un—2 fa—2 — €n—avn
\ ¢n-3 baz Gno1+ €1)\ nor K Jn1 = bn_1tn — 2¢5-1h6
— ,
(A8)

where the f; = E(g;il are elements of the image force vector of Equation 12. K’ is the symmetric,
invertible and pentadiagonal matrix that appears in Equations 16 and 17. It is known as the
stiffness matriz.

References

[Bascle and Deriche, 1993] B. Bascle and N. Deriche. Stereo Matching, Reconstruction und Re-
finement of 3D Curves Using Deformable Contours. In International Conference on Computer
Vision, pages 421-430, Berlin, Germany, 1993.

[Bush, 1992] A. W. Bush. Perturbation Methods for Engineers and Scientists. CRC Press, 1992.
[Canny, 1986} J. Canny. A Computational Approach to Edge Detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 8(6):679-698, November 1986.

21

[Cohen et al., 1992] I. Cohen, L. D. Cohen, and N. Ayache. Using Deformable Surfaces to Segment
3-D Images and Infer Differential Structures. Computer Vision, Graphics, and I'mage Processing:
Image Understanding, 56(2):242-263, September 1992.

[Courant and Hilbert, 1989] R. Courant and D. Hilbert. Methods of Mathematical Physics, vol-
ume 1. Wiley: New York, 1989.

[Fua and Leclerc, 1990] P. Fua and Y.G. Leclerc. Model Driven Edge Detection. Machine Vision
and Applications, 3:45-56, 1990.

[Fua and Leclerc, 1994a] P. Fua and Y. G. Leclerc. Object-Centered Surface Reconstruction: Com-
bining Multi-Image Stereo and Shading. International Journal of Computer Vision, 1994. Ac-
cepted for publication, available as Tech Note 535, Artificial Intelligence Center, SRI Interna-
tional.

[Fua and Leclerc, 1994b] P. Fua and Y. G. Leclerc. Using 3-Dimensional Meshes To Combine
Image-Based and Geometry-Based Constraints. In European Conference on Computer Vision,
pages 281-291, Stockholm, Sweden, May 1994,

‘ [Henricsson and Heitger, 1994] O. Henricsson and F. Heitger. The Role of Key-Points in Finding
Contours. In European Conference on Computer Vision, pages 371-382, Stockholm, Sweden,
May 1994.

[Kass et al., 1988] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models.
International Journal of Computer Vision, 1(4):321-331, 1988.

eymarie and Levine, . Leymarie an .D. Levine. Tracking deformable objects in the

(L ie and Levine, 1993] F. L i d M.D. Levi Tracking defi ble obj in th
plane using an active contour model. IFEFE Transactions on Pattern Analysis and Machine
Intelligence, 15(6):617-634, June 1993.

[Mundy et al., 1991] J.L. Mundy, R. Welty, L. Quam, T. Strat, W. Bremmer, M. Horwedel,
D. Hackett, and A. Hoogs. The RADIUS Common Development Environment. In Proc. of AIPR,
Washington, DC, October 1991. (also in Proc. of DARPA Image Understanding Workshop, San
Diego, California, 1992.).

[Rosenthaler et al., 1992] L. Rosenthaler, F. Heitger, O. Kiibler, and R. von der Heydt. Detection
of general edges and keypoints. In O. Faugeras, editor, Furopean Conference on Computer Vision,
pages 78-86. Springer-Verlag, 1992.

[Staib and Duncan, 1992] L.H. Staib and J.S. Duncan. Boundary Finding with Parametrically De-
formable Models. IEEE Transactions on Patiern Analysis and Machine Intelligence, 14(11):1061-
1075, November 1992.

[Terzopoulos and Szeliski, 1992] D. Terzopoulos and R. Szeliski. Tracking with Kalman Snakes. In
A. Blake and A. Yuille, editors, Active Vision. The MIT Press, 1992.

22

[Terzopoulos et al., 1987] D. Terzopoulos, A. Witkin, and M. Kass. Symmetry-seeking Models and
3D Object Reconstruction. International Journal of Computer Vision, 1:211-221, 1987.

[Terzopoulos, 1987] D. Terzopoulos. On matching deformable models to images. Topical Meeting
on Machine Vision Tech. Digest Series, 12:160-167, 1987.

23

