'MANAGING NETWORK ACCESS TO A DISTRIBUTED DATABASE -
.Technical Note 144

June 1977

By: ban12113agaldwicz
P. Morris

Artificial Intelligence Center

ABSTRACT

- This paper describes a program, FAM--for File Access
‘Manager--, used to access to data distributed over a
-computer network. FAM is part of a system which allows a
" casual user to express queries in a restricted subset of
- English, about a database of fourteen files stored
" redundantly on several Datacomputers. FAM is responsible
-for the data distribution aspects of the whole system: it
establishes the network connections, decides which files in
redundant groups to use, opens and closes them as needed.
This paper presents some of the techniques which are used
and discusses the limitations of this particular approach.

ii

ACKNOWLEDGMENTS

. The work described ‘in this . paper benefited from

‘discussions ‘with various members - of the Artificial

Intelligence Center at SRI International. Special mention

" ‘shoulld be given to Koichi Furukawa . (now at ETL), Earl
. Sacerdoti, Jonathan Slocum, amd Michael Wilber. The research
. reported herein was supported by -the. Advanced Research

ProjectS Agency of the Department of Defense under contract
DAAG29-76-C-0012 with the U. S. Army Research Office.

iii

. Managing Network Access to a Distributed Database.
P, Morris* and D, Sagalowicz
Artificial Intelligence Center

_.SRI Internatiognal
-+ Menlo Park, California.

A. INTRODUCTION

"This.bépéf'diSCuSSéé'ﬁﬁe'of the édﬁponents ‘of LADDER
(Language Access to Distributed Data with Error Recovery)
[1], a database access system being developed at SRI. The
goal of this system is to provide to casual users easy
access to information stored on multiple computers, under
various database management systems. (The need for such a
system has already been amply covered in the pertinent

literature.) A simple overview of LADDER (see Figure 1) is

briefly explained below.

The first component INLAND (Interactive Natural
Language Access to Navy Data), provides the user with the
ability to ask questions about Navy informatiom contained in
databases similar to those wused by the Navy. Although
INLAND does comprehend Navy terminology and semantics, it is
not aware of the specific structure of this information. 1In

particular, it does not know how the database is subdivided

'* P. Morris is currently associated with the Compyter
‘Science Department, University of <California, Irvine,
‘California.

NATURAL DATABASE
LANGUAGE ACCESS
FRONT-END PLANNING
DC1
High
English Level
Query Query “Generic'”
) > > DBMS
Query y
. R FILE D
‘USER INLAND 1DA ACCESS .
) DC2
" MANAGER
Results
) el rerrererr—
Results Results
DCn
SA-4763-8
FIGURE 1

into files and .reﬁords, or .where those databases are
currently located. It therefore translates the query into a
formal, high-level 'query to the next component of the
-s&stem,-iDA, without:ény mention of the database structure.

The next component, IDA (Intelligent Data Access), [2],
'fis-'éiﬁéﬁ' a description of “the | détabése' structure in‘a
sstructufal“séhéma, which is used to ﬁrﬁhélate the query into
a query progfam to be issued to database management systems
(DBMSs). One query to IDA may typically generate several
queries to the DBMSs which will then access several files.
Moreover, in our case we assume that these files may be

distributed on a computer network, such as the ARPANET.

In our implementation, information about the precise
location of each file is not given to IDA. Instead, because
IDA is given the illusion that all files belong to one
éomputer, its resulting query program does not include the
actual name of any file on any computer. Rather, it wuses
generic file names, and the next component issues each query
to the appropriate computer, replacing the generic file

names by the actual file names used on those particular

computers.
The final component is FAM (File Access Manager), is
the central topic of this paper. FAM 1is in charge of

_connecting with various computers, finding the most recent
~versions of pertinent files, issuing the actual DBMSs
queries, and recovering from errors.

3

We now use only one actual DBMS, the Datacomputer
developed by CCA [3], but hope to extend the system sooun so

‘as to be able to access several DBMSs,

" ‘Because FAM has'beéﬁ“deVelbpéd to'be used'iﬁdépéndéhtly
~of the other components . of the system, we will assume in
this paper that & user may interface to FAM either ‘directly -

or via a different front end than that:ﬁrdvided in LADDER.

B. THE FILE ACCESS MANAGER

1. Overview

q_FgﬁT;_purpose is to provide reliable access to a
distributed database while insulating the user or calling
program from inessential details concerning that database.
FAM allows the user to specify files by means of generic
"names: each generic file name corresponds to a primary file

and perhaps also to secondary, backup copies of it. A local

. model of actual files and locations corresponding to these

references 1is maintained., Given a request, FAM decideé.how
best to meet it in terms of choosing actual files and a
single location in which to assemble them. It then proceeds
to make the necessary connections, logging into remote
locations, opening and closing files, and woving data as
.required. In the event of certain classes of mishaps TAM
will take appropriate recovery action. Finally, FAM passes
on the query, with such simple tramslations as are
.necessary, to the database and returns the answer to the

caller. :
A

FAM

TOP LEVEL
FAM R S FAM
GENERATCH 1 GENERATORn
FORK 1: FORK n:
ROC - RDC
DATA | DATA
COMPUTER 1 COMPUTER n
SA-4763-10
FIGURE 2

... The basic structure of FAM is' as shown in Figure 2.
It is a set of LISP functions that communicates with
- multiple datacomputers by using RDC, a low-level program

'deveIOped by . CCA that'_provideé'-thé ‘user ‘with the basic

" functious nécéééafy'to ‘access the datéddﬁputéf'_éver. the'

" ARPANET. -Several TENEX fbrks, one per datacomputer, are set

'up'bY'FAM; fﬁﬁﬁiﬁgiRDCE"each'sﬁch’RDC receives its commands
from FAM; located on an upper fork, via a LISP-RDC interface
and transmits them to the datacomputer to which it is

connected.

FAM maintains a local model of the files it can access
in a table stored inm a disk file. This table contains
information necessary for logging on and accessing files, as
well as the locations corresponding to generic files. 1In
addition, some files are identified as temporary, 1i.e.
subject to later deletion. 1In addition to this table and
the direct inputs, FAM's action 'is controlled by certain
global parameters, such as verbosity, which can be set by

the user or calling program,

An important aspect of FAM is its ability to recover
from certain types of errors. In a system involving
‘intermachine communication in a network, certain kinds of
errors inevitably occur as a result of violent termination
by one or more participants. FAM deals with two basic error
T types. A type 1 error involves the datacomputer crashing
.&dring a communication episode, or being down when the

- episode bégins. The crash':mgét be detectable at the

interface. . FAM responds by finding a _new,__hdpefuily more <

* . placid, location .for the file in question. Access to the

f'distributéd'détébasé*’s?stém" is / thus pfotectéd_ from _the-_--"f

 Vagéfié§:ﬁof.0pératiﬁg cdﬁpﬁtértéyétémS'by ?ednﬁdané'étériﬁg
. Bf'filés'on'difféféﬁf3mééﬁiheé.' BRI B -

' T?§852“efrétsxéfé'ﬁdfé éﬁﬁt1é._ THéY.ﬁ6écuf fwhén ?fhé_i:
':'ﬂafacbmputéf:'_is- ‘unable ' to ffiﬁtefpret';FAﬂqs :c&mméﬁd}
" Generally this means that the local model retained: by FAM
has become inaccurate. For example, a temporary’ file
created by FAM in a previous interaction may have been
deleted by another user, without a corresponding updating of
FAM's local model. Depending on the circumstances, FAM will
take action to continue the interaction and restore the
model. There is thus a tendency for inaccuracies to

disappear from the model over time.

2;;Capabilities : _ S
" This section Préseﬁts a user's view ~of FAM's

operations*, A typical user will employ the commands
- FAMINIT, FAMSEND, and FAMEND (a second level of commands 1is
described in the user's guide; generally they allow more

detailed control over FAM).

TP ——

* Unless otherwise noted, statements ~concerning £files and
generic files also hold for ports and generic ports. A port
©1s_an input/output path, as well as a logical view of a
file, .on .the datacomputer; many datacomputer commands do
not &1st1ngulsh'between files and ports,

ST

FAMINIT is executed once to initialize the system. It
may be given optional arguments specifying the model to be
used (if these are not given, a default is -assumed) and

'_.generic'filas to be immediately located and opened. “FAMSEND

 méy'thén'bé uSEd“repeatediy'tb.Query'fhé ;dafacomputéré' and
return respOﬁsés.-:Two arguments are pésSed'to FAMSENDf a:
1list of generic names (of files and ports) and an expression
in generic datalanguage representing the query. Generic
datalanguage is identical to ordinary datalanguage, except
that references to files are replaced by references to
generic files., The list of generie names includes all those

‘ocecurring in the generic datalanguage expression.

FAM will now search the table for the primary locations
of the generic names mentioned {(a location is a pair
consisting of a machine and a specific file/port available

_on that machine).

First FAM will choose a machine in which to assemble
the referenced files and ports. This is necessary because
the datalanguage expression must ultimately be handed to one
ﬁachine for action, Currently, this decision 1s made on the

" basis of the least number of files and ports to be copied.
) Aware of copies 1in temporary files that it has made on
previous occasions, FAM will first try to open these, In
general, FAM tries to avoid doing unnecessary work. If this
“fails (type 2 error), FAM will recopy the file. For each
location needed, FAM will attempg the following:

1. If the machine is not already ”connecfed FAM will
. make the network connection and log in under .a
) ~suitable account. T DT

::,Z;Zif the file or porﬁﬁis noﬁ'opéﬂ, :FAM'Qill"_o§En it
(files ‘are 6§éné&'fof':éédiﬁg;ﬁpbfﬁs for'wrifiﬁg)}. 3

3. 1f Stépé_l_éﬁd_z AréﬂsﬁécessfullFAﬁ iéfsaid';o'_have_
 accessed -fhe'_locéﬁioﬁ;_'FﬁfJaﬁY ééﬁefic::naﬁé,'“if-”
 accessing of the primary location fails, the secon-
‘dary locations are attempted in turn, with FAM doing
the bookkeeping necessary to keep track of conmected
. machines and opened files. Datacomputers allow a
maximum number (six, currently) of opened files and
ports; FAM will close least-recently used ones as

necessary to open new ones,

FAM now transfers such files/ports as it needs, moving
them first to the local computer--the .one on which FAM
resides=—and then - on ~to the new machine, As of this
;writing, the datacomputer does not allow the transfer of
files direétly from one datacomputer to another. FAM gives
" the copies names that reflect their origins and notes them
“in the model. If all goes well, the references to generic
names in the generie datalanguage are now replaced by
specific names in the selected machine, and the revised
- datalanguage is sent to that machine for action. The reply

is read and passed back to the calling program.

 When the user ﬁants'“to 'éﬁdﬁsfhe 'se3si0ﬁ; FAMEND _is
'_Cailed--'causing' the deletlon of all temporary files (i. e.,
" all files copied from one machlne to another _aé descrlbed =
;above) ;'1nc1ud1ng those created dur1ng prev1ous sessxons

" that’ have not yet Eeen deleted—wfor example ‘in- case ‘of |

computer crash ln the ‘middle of a session. One avallable v

_:erature allows coples to be’ created as’ permanent flles which’
 are not deleted ~at TFAMEND. - After the deletions all the
COnﬁéCtioné'Eo'détacbmputers'are cleanly closed. .FAM cleans
‘up the local model and then terminates.

To summarize, FAM gives a user the semblance of dealing

"with a single reliable datacomputer that is conmected and

whose files and ports are always open.

3. ImplemEntation Information .

_The flle access manager comunicates with . datacomputers'

Qia- set of .INTERLISP “functions that communicates with a
slightly dodified versien of the RDC package [4]. For each
datacomputer accessed, the subsystem RDC is started up én a
‘separate . fork, which is then syachronised with a
pseudotelétYpe (PTY). A PTY is a local buffer that is
‘treated by the fork as though it were a terminal, That is,
_ commands placed in the buffer are executed by the fork, and

‘output from the fork that would normally go to the terminal

- is placed ln the buffer allowing FAM to operate several RDC

forks as though it were a human user w1th several termlnals'--

(and gobs) S
10

To-assistvin:ﬁhe bookkeeping-aésociated with each fdrk,
_FAM -maintains- separate control and data enviromments for
“‘each’ datacomputer imﬁlémented by - . the Spaghetti—Stack-
capablllty of ‘INTERLISP [5} A new génératbr is initialized
 whenever -a datacomputer is. accessed for the first tlme. -The"
: generator_'handle';is-'stored as the value of an'atom’ némlng
.'the datacomputer Much of .the 1nformat10n pertalnlng to the"
datacomputer is held in the form of variable b1nd1ngs w1th1n
the generator. The control state of the generator 1is also
utilized to represent certain conditions. For example,
-~ because of restrictions on the number of PTYs available, it
is sometimes necessary to desynchronize a fork so that its
PTY can be used elsewhere. When this happens the generator
is suspended in a state such that when it is revived it will
acquire a PTY from the available pool.
' In order to economize on stack space, when FAMINIT 1is
_ekééutéd a suitable control _envifonment is created and a
stack pointer set to it. This is intended to be close to
the top level of INTERLiSP, i.e. the stack is shallow at
this moment. When the generators for each datacomputer are
sﬁbéeqﬁently created they are "hung'" from this point on the
stack, i.e., the expressions creating them are evaluated in
the control and - access environment saved by the stack
pointer. Individual generators cam then communicate with
éach other through common variable bindings. The top level
.i_of FAM is able to communicate by evaluating SETQs in these
‘4dccess . environments, as ~weil as ' by .passing arguments

 dire6tly. - 11' -

Each géneratbr'kééps a local model of the datacomputer
situation: it has a list of the open files and ports, the
“directories td'WHich'ﬁhey bélong;’ﬁhé1diréctbfy'to which the

ﬁSéf is logged in on thé”ﬁéftiéulat'dafacbmpﬁtef;-éﬁd s0 on.

5Backtfackiﬂg; .needed"to'”de31 .ﬁith ‘such ‘errors as .

"f.datééOﬁbUﬁér'jéraShéé; :is';aédoﬁpiiéhé653Vié”ltheLS§égHétﬁi -
Stacki 'a stack pointer is set toé the appropriate’ position

for return in the event of failure: Note that during FAMEND
all outstanding stack pointers created by FAM are rtestored

and the stack is returned to its preFAM state.

_ 4. FAM Control Structure

"_EEE_E;E“IEGEE'EGEZEion of this structure is FAMSEND,
which is passed a list of files and ports to be used, and a
generic datalanguage query. The locations of each file and
‘each port are then determined from the model, . Subsequently,
a: cenfra1 machine . for asseﬁbling files and ports is
‘selected. ~ Then, each -~ location is handled in - turn;
_subsequent evé1uation takes ﬁlace'in the access environment
of each machine as set up by FAMINIT. For each location FAM
decides whether it needs to .do any copying and sends
_appropriéte commands to the datacomputers. Files are opened
. as needed, Fiﬁélly;'FAM substitutes a specific name for the
corresponding . generic name in the datalanguage. = All
commands to each datacomputer pass through a generétor. The
‘first time each datacomputer is referenced, FAM establishes
a copy of the genérator'ﬁith-apprbpriate-arguments'and hangs

R T

it from‘the'torréct position'bn the stack. Thereafter, FAM

merely revives the generator and passes on - commands. - Each .-

'generator evokes the functlons to: set up the forks, control
'; he_ datacomputer, eact jto' errors,-:and perform ' 1ocal

.bookkeeplng

5. Special Problems . . o SR o
i ATERiomiics - steinel “Fron fue’ desrenility-of
_méiﬁtéining correctness in the local model. A single disk
file was used to store the model, with open ascess to all
users, In one instance however, simultaneous asynchronous
‘use allowed one FAM use to overwrite the alterations another
had just made. To avoid this, when one user of FAM wishes
to alter the table it (1) opens the file for both reading
Isnd writing in a mode that temporarily locks out other
'users, (2) reads the file, (3)’chshgés the core image,',(&)
rewrites the’. file, and flnally (5) closes the file so it
' becomes'avéilsbléfto other;FAM.users. VI another user tries
' t6 access the File while it is locked, .this query will hang

until the table ‘becomes available.

_ De1éting'fi1é soﬁiés.afﬁer'a_datacbﬁPUtér nad crashed
‘also ‘ctreated a difficulty. It was decided to note these
- not-yet-made deletions in the table and take care of them in

" subsequent sessions. ' Note thdt it is impossible to ensure
- absolute truth in the model. To see’ this, one need only
'con31der' ‘the poss1b111ty of a crash of the local machlne at

the' crltlcal moment between Tgklng a change - in. the

datacomputer and updating the model. We éttemptéd as far as
" .possible to allow for this and to automatically make later

'correctlons..- The - problems looms even larger .when . one

": contends with reconcxllng multlple models at dlfferent sites

"1 us1ng the FAM system.

. .:: A-minor'*ifritatidﬁ arose in comnection with - error -
o méssageé':ffbm',thé.dat366ﬁpﬁter; Aiéﬁough thé'datécbmputer'
supplied sufficient information in:Engliéh'fof the user to
distinguish among kinds of errors, the error code available
to the program was uniform for a wide range of errors. Not
wishing to parse the English messages, we were fortunately
'able to guess the nature of many of the errors by their

contexts,

Aspects of the Spaghetti Stack forced certain
‘inelegancies on the FAM system, Communication is awkward
between the generators and FAM's top level. We suggest that
 generators should be able to freely access variables bound

at the top level.

‘Another problem with generators is their 1loss when a
conﬁrol*D is executed within the generator, i.e., when the
.user wishes to force INTERLISP to go back to its top level.
“This was prevented by redefining the Spaghetti GENERATE

function.

5. Suggested Improvements _ o
-_SE;_;I;;I;—ZEE;S;;QEnt would allow the system ‘to choose
'ro operate in fast or: rellable modes Currently, with: each :
:.new query the system flrst trles to open prlmary 1ocat10ns
_even lf -secondary ones are already connected, because_the’:
,1nformat10n 1n the prlmary locatlons_f"-'ﬁresdmed"t 7be
better. Slnce attemptlng access to another datacomputer can’
‘be slow, some users might prefer to have comnected’ secondary
locations ‘always used for certain files. A relatEd'ccestidn
involves distinguishing between rapidly changing and static
‘files, and using this information to determine the

acceptability of szecondary locations,

Considerable room for improvement exists in selecting
the best machine for assembly of files and ports residing on
multiple machines. One scheme involves modeling the
"weight" of each file, i.e., the approximate time of

transfer, and using it to compute a minimum time assembly,

;Témpbrary:files and ports could also be dated.wﬁehfthey'
are created or reused and then protected against deletion by
‘other users until a certain period has elapsed. This would
prevent the current possibility of a user's temporary files
‘being deleted by another evocation of FAM during a job.
.. This 1is actually very unlikely: the files would have to be
closed at the time, In any case, FAM would recreate them as

needed.

15

. We indicated earlier that certain datacomputer faii@res
cannot be detected at - the FAM-RDC interface. = These
.generally involve fa11ure of the partlcular JOb but not the -
 overa1l system When RDC tlmes out, it is not p0331b1e to
: dlstlngulsh these condltlons “from those of a slow, heaV11yl
1loaded : datacomputer.rﬁf When' sufflc1ent .fac111t1es for
'checklng on -the datacomputer,_faré prOV1ded FAM can " be

’;extended to recover in these situations.

.Tﬁé'greatest'défiéiEﬁcy.in'FAM is 0f coursé that it ' is
a file ACCESS manager: it does not provide for the creation
or update of the database. It should also be understood
that we have addressed here only a small portion of the

problems arising with a true distributed database facility.

C. CONCLUSION

We have described a File accéés'manéger that gives its
users the capability of accessing files distributed over a
computer network. Using a local model, FAM is able to
decide which computers to use to execute the user query. It
also recovers in many cases of error that may occur during

‘the _response to a query. Although FAM falls far short of
the goals of a real distributed database management system,
Jit ~has been an extremely ugeful and attractlve part of the
“LADDER system ' -

:iéf'

.. 1. .

REFERENCES

E. Sacerdoti, "Language-AcceSS-td Distributed Data with

Error Recovery," Fifth . International Joint Conference

" on Artificial:Intélligencé;;Caﬁbfidge,'Masé;;'Aug.'l977.

fx,D.”SégaloWiczb’1 ﬁIbA£ " an - Intelligent Data'f:Adcésé

Program," '(prdpbsed: £of:;préséﬁtéEiOn: ét‘_thé-”Thifd

" International Conferemée on Very Large Data Bases,

Tokyo, Japan, Oct. 1977,

J. Farrell, "The Datacomputer-—a Network Data Utility,"
Proc. of the Berkeley Workshop on Distributed Data
Management and Computer Networks, pp.352-364, Berkeley,
Ca. (May 1976)

J. Farrell, "RDC: a Program to Run the Datacomputer,"

Technical Memo, Computer Corporation of America,

Cambridge, Mass. (June 1974).

D. G. Bobrow and B. Wegbreit, - "A -Model and Stack
implementation of Multiple Enviromments," pp.591-603,
Comm. of the ACM, Vol. 16, No, 10 {(Oct. 1973).

