SOME EXAMPLES OF AI

“ECHANISMS FOR GOAL SEEKING PLANNING AND REASONING
by
‘Nils J. Nilsson

Artlflclal Intelllgence Center
Stanford Research Instltute

“Technical Note 130

Inv1ted Paper

XXI Internatlonal Congress of Psychology

--Symp051um Nb._lﬁ

"Natural and Art1f1c1a1 Intelligence
s

Z:Parls, France July 19 f

IJ,.:

B%wawmwAw-Mm%PkaﬂhmmMms o S
(415) 326 6200 . Cab!e STANRES Menlo Park TWX 910 373 1246 _

_ SOME EXAMPLES OF AI o
MECHANISMS FOR GOAL SEEKING, PLANNING, AND REASONING

by

Nils J. Niiéson'

ABSTRACT

Psychological models of intelligent behavior have increasingly used
concepts from computer science, esgpecially Artificial Intelligence (AI).
.The use of semantic networks as memory mocdels is a familiar example. 1In
this paper we review some perhaps lesser known AI ideas that might also

“have utility in psychological modeling.

We are interested here in mechanisms for goal-seeking behavior, for
planning sequences of actions, and for common-sense reasoning. We illug-
trate these mechanisms by describing five fictitious robot systems. These
are simple enough so that the AI techniques involved can be clearly exposed.
Original sources are cited for more details and for examples in which the

techniques were used for solving more complex problems.

I. INTRODUCTION

A. The Use of AI Concepts in Psychology

There is a long tradltlon in psychology of constructlng models

_to help explaln human and an1ma1 behavior. Some of these models have been
B successful at predlctlng behav1or under certaln specified condltlons, others
'have ‘been at 1east of metaphorlcal value in helplng us to understand the

 possible mechanisms of intelligence.

For the past twenty years or so, some”of the most provbcative |
models of aspects of intelligent behavior have been developed using ideas
borrowed from computer science and especially from Artificial Intelligence
(AI). Probably the most well-known example of psychological modeling
using computer-science concepts involves "semantic network’ models (Quillian,
1968; Anderson and Bower, 1874; Norman, et al., 1975) for the organization
;bf long~term memory and for language comprehension. Refining these models
is now almost a subspecialty of cognitive psychology, and the subject needs
no further elaboration here. Equally familiar is the work of Newell and
Simon, 1972, who describe problem—-solving models based on "heuristic search"”

and "productions'--computer science concepts that they helped develop.

_ Other potentially useful ideas abound in AI, and some of these
might not be as familiar to psychologists ag are semantic networks and the
~work of Newell and Simon. Unfortunately, there is no written catalog of
these ideas, and the AI literature is becoming somewhat formidable and
inaccessible to nonspecialists. It is the goal of this paper to take a

- constellation of four or five of these ideas and to describe them in clear
. terms so that their merlt (or ‘lack of it) for psychological modellng pur-

-_poses can be examlned.

"5“'Bﬂ' Organlzatlon of the Paper

B I shall be talklng about some prlnclples and methods,:developed
'by computer sc1entlsts and AI researchers, for goal-seeklng behav1or '
]fproblem solvzng, plannlng, and reasonlng ' To base thls exp031t10n on the
 or1g1na1 papers ‘and to descflbe the automatlc problem solv1ng systems

: presented there would_be 1engthy=and,-1-th1nk,_confuszng.-_lnstead,.I shall

take the liberty of describing some fictitious systems suitably scaled.down
so that their principles of operation are laid bhare. In deoing so, I risk

. arguments with the authors of these ideas, for I might have oversimplified
_beyond their tolerance. My defense is that this paper should be considered
‘as a primer; readers who-sre=intrigued by any of the ideas -should next
consult the refereénced sources.

1. FIVE ROBOTS -

A. Goal Seeking: MARK

Fundamental to much behavior are mechanizms for pursuing a goal,
setting up and pursuing subsidiary goals, and recognizing when goals have
been met. Some proposed mechanisms are illustrated below in a robot

called MARK.

MARK is a robot for finding buried treasure. He has a hierarchy
of routines that elicit behavior, and he has a model of the world he inhabits.

- His model of the world at any instant of time is a set of statements such

“as: "I am at position A," "I have a shovel,” "I have a map,” "B is a

treasure site,”

sions like: AT(A), HAVE(SHOVEL), HAVE(MAP), and TREASURESITE(B). These

aﬁd'so-on. _We-shell represent these statements by expres—

expressions are called "propositional” statements and use formalisms
borrowed from the predicate caleculus. Each such statement can be true or
false. If it is true, and if MARK "knows™ it is true, it is contained in
his model. If MARK knows it is false, then its negation is contained in
'his model. For example, if MARK knows that he doesn't have a shovel, then
~ his model will contain ~ HAVE(SHOVEL) . (Sets of propositional statements
have often bheen used by eognitive psychelogists for short- and longaterm'
‘memory models . Semantlc networks can be thought of as structurally rlcher'

.fvarlants of prop051t1ona1 models . }

MARK s model keeps h1m up to date about ‘the status of hls world

"s'and hls condltlon 1n 1t We assume that MARK s perceptual processes dlrectly

”f“modlfy hlS model so that 1f he 1s 1ook1ng at burled treasure, hlS burled~:f.'“

' “.sitxeasure detector adds INVIEW(TREASURE) to the model

The model also serves as .a central "bulletln board" for MARK s f

-behav1or routlnes Chalns of actlons approprlate to MARK s c1rcumstances

are triggered by the conténts of the model, and thésé actions in turn éhange
‘the model in ways sufficient to trigger appropriate subsequent behavior.
The behavior routines are organized in a formalism called "Markov tables.”
i (These tables are similar to Markov algorlthms See; for ekample, Gallier
and Perlis, 1970.) | |

_ Slnce MARK is a treasure-seeklng robot “he ‘is under the control
:_'of a top—level actlon routlne called flndtreasure Thls routlne is”

deseribed in Markov table form below:

findtreasure
Condition ' Action
HAVE (TREASURE) stop
INVIEW(TREASURE) pickup (TREASURE)
TREASURESITE(x) excavate (x)
HAVE (MAP) read (MAP)
iy shopfor (MAP)

MARK's:behavior is controlled as follows: A "behavior interpreter,”
with access to the Markov table and to the model, checks in turn each of

the propositions listed under the "condition” column of the Markov table.

The interpreter starts at the top condition and, working down the list, looks
for the first one found to be contained in the model. It then "executes”
.“the corresponding actidn {or sequence of actions) listed opposite this
condition and, after finishing the execution, returns again to the top of
'_the-table to continue checking conditions. . For example if MARK ‘does not
-_already have the treasure, but 1t is 1n v1ew,.MARK will p1ck 1t up (Unfor-.
j-tunately for MARK -as soon as he has a treasure, the - stop actlon 15 oo

:executed cau31ng hls behav1or to cease)

One of the condltlons 1n flndtreasure, namely, TREASURESITE(x),.

3-'conta1ns a varlable x Thls cond1t1on 1s satlsfled by the model if the

.'{fmodel contalns a prop051t10n of the form TREASURESITE(X), for example:L,;f

'; TREASURESITE(A), where A 1s a deflnlte place : In thls case the varlable x .
K "bound " ‘to the definite place ‘found in ‘the model and the bound form ¢

ot the’ actlon, for example excavate(A), is executed

s

_ Each of the actions in a Markov table may itself be a routine
" described by a Markov table, or it may be a primitive action that is '"hard-
wired"” into MARK. In interpreting findtreasure, we are guaranteed eventually
- of finding a condition satisfied by the model, because the last condition
T (for True) is by definition always satisfied. - :

©. . Some of MARK's actions in the fifdtreasure #éble*afe themse1ves"
'-Méfkbv'fablési” TheééHaré.éhbwn in Fiéﬁré'i.- Iﬁ'"eicéVé£e(k);" note the -
.fdiioﬁihg points: = If INViﬁW(TREASURE) is contained in the model;'the a¢tion'
-is "return.” This action merely ceases activity in the excavate table and
' returns activity to the process that called for the excavate action. If
DUG(A), for any A, is satisfied in the model [after the interpreter "falls
through” INVIEW(TREASURE)], then TREASURESITE(A) in the model is deleted,

and control returns to the calling process.

excavate (x)
Condition Action
~ INVIEW(TREASURE) return
DUG(X) delete: TREASURESITE(X),

L S return .

.. HAVE, (SHOVEL) godig{x)

T shopfor(SHOVEL)
shopfor(x)

- Condition Action
HAVE(X) return
AT[store(x)] buy(x)

T gotolstore(x)]
Lt | godig(®) -

o gomdition . o aetfn .
ZTAT(k)ff }:f 5;ff: g ' __,dig;{aESe}t:ﬁ;DUG(#);;,: 5 5
Ly lpeturn
B Clgetolx) ot

S ©muy Fi
' . ﬁAvE(MDNEY) ' o pﬁfché$é(x), assért:. HAVE(x);
' o return .- o Lo
T - gtop -

Figure 1 MARKOV TABLES FOR MARK'S SUBSIDIARY ACTIOKS

:'4_

In the Markov table for shopfor(x), note the construct "store(x)."

" Here, "store" is a primitive function that produces for any item the store

that sells it. Thus, for-example, store (SHOVEL) might yield SEARS, and

'dstore(MAP) mlght yield BRENTANOS. (Sears and Brentanos are American stores
‘that - sell among other thlngs, shovels and maps, respectlvely) - When the

Qlcondltlon AT[store(x)] is’ met in’ the table, we' assume ‘that store(x) has

been replaced by its value ' Note that ia’ god1g(x),'1f actlon dlg

executed, the action assert. DUG(X)" follows. This assertion adds an

‘instance of DUG(x) to the model. The "stop' action in buy(x) causes the

whole complex of behavior to cease.

Besides the five Markov tables, MARK has a number of primitive

‘actlons that we will not break down further. The action pickup(TREASURE)

causes MARK to have the treasure and adds HAVE(TREASURE) to the model.

. The action read(MAP) causes MARK to know a treasure site by adding a

specifiec statement of the form TREASURESITE(x) to the model. The action
"dig," digs a hole wherever MARK happens to be. If 'dig" uncovers the
buried treasure, it adds INVIEW(TREASURE) to the model. The action goto(x)

_causes=MARK to go to the place x, and after finishing, adds AT{(x) to the

model and deletes any other AT() from the model. The action purchase(x)
caiises MARK to have x.

Thus, ‘here is a relatively simple system consisting of a propo-

”s1tlona1 model ‘some Markov tables and an interpreter, and some primitive

"actions and functions. -It is capable of rather complex goal-seeking

behavior -The reader ig encouraged to work through various action seguences

by hand for some hypothetlcal ‘models to gain a feeling for the capabllltles._V.

of the system

The prlmary advantage of MARK S goal-seeklng mechanzsm 15 flex~ ng”

dflibiiity It can operate 1n a varlety of dlfferent 51tuat10ns, some close :i;;;ﬂg.“-:';

cs*;jto the goal of treasure pOSSeSSIOH, others dlstant The Markov tables

”ervaluate the 51tuat10n and speclfy the approprlate actlon If durlng
= operatlon, certaln actlons fall to achleve thelr usual effects, subsequent "Q:”

- act1ons wlll nevertheless be based on whatever 51tuat10n exlsts

The system does have several llabllltles One is that whlle 2

-l;gsub51d1ary actlon 1s belng executed key -condltlons in superordlnate

zactlon tables ,mlght-become- fortultOUle.satisfied,:.thns renderingxeither":

futile or inappropriate the continuation - of the subordinate action.

Also the system'is capable of getting into infinite loops. 'Returning to the
"top condition in a table after executing an action is rather blind and
sometimes.Wasteful even if foolproof.

Several elaboratlons can be added to mltlgate these drawbacks

A large—scale system of Markov tables,-w1th a few added features, was’

'5Jconstructed to control the SRI robot SHAKEY (See Raphael, et al. 1971')

'Markov tables are known 1n computer sc1ence as a form of ”productlon system
Tt can be shown that su1tably elaborated systems of Markov tableg are

"universal” in the sense that they can produce any describable behavior.

Specialized production systems have previously been employed in
'psychological models. (See Newell and Simomn, 1972, and Newell, 1973.)
Systems of Markov tables bear some resemblance to stimulus-response models
in psychology. (See, for example, Estes, 1959.,) Markov tables are more
:'oomplex because the "stimulus"” can be any statement occuring in the propo-

' sitional modél--éven special "control statements” contrived to force certain

~* behavior sequences. Also the actions are arranged in a hierarchy that gives

'thé"fﬁllVPoﬁer'of subroutine calls. (Recursion, an action invoking another
‘version of itself,. is also permitted.)

B. ‘Planning: MAY

_ To a person accustomed to thinking through the consequences of
.actions,'MARK's behavior may seem a bit impulsive. True, if the Markov
tableS-are'clevefiy organized, each triggered action may be appropriate and
‘without bad effects. .But a more cautious and untrusting robot might want
to construct for each goal a proposed chain of actions and to "simulate" -
" this chaixn before actually performlng any of the actlons Tin short he may ;ﬂ;

'iwant to plan

o I Wlll now descrlbe a robot called MAY MAY is also 1nterested
 ;'1n treasure flndlng, but her act1v1t1es are conflned to plannlng how to fﬂ
% obta1n the treasure The chlef problem 1n plannlng is creatlng a sequence .{"'

"f-of actlons that w111 achleve the goal

':In order to construct plans,-MAY has, 1n addltlon to a prop051— '
' tlonal model -a model of each actlon she mlght want to perform These R

'3models of actlons, or :m-actlons, are programs that do not actually perform'f

3 _6.

“actions in MAY's world, but they do change MAY's propositional model in
' ways similar to how it would be changed if it were tracking changes actually -
made in the world.

Thus the mﬂactlons are used to _simniafe“ actions .. When a chaln '

'of mmactlons 1s found ‘that changes the prop031t10nal model in a de51rab1e

”.way [cau51ng 1t to contaln HAVE(TREASURE), for example}, then this’ chaln

'constltutes a_ plan that refers to actual actlons that MAY could execute s
:to produce a d951red effect (We assume that each m~act10n corresponds to
an actual executable actlon that changes the world in a manner modeled by

the m~action.)

We note that the planning process makes changes to the proposi-
“tional model, so that it no longer corresponds to MAY's actual world but
to some hypothetical world that MAY is considering. In order to consider
several competing hypothetical worlds, MAY will construct copies of her
propositional model differing only by the effects of the different actions
" she is congidering. (We assume that MAY also keeps an intact copy of a

-propositional model to keép track of her world as it actually is.)

_ Just ‘as real sctions can be executed successfully only if certain
' prellmlnary condltlons are met, MAY's mactions also have ''preconditions."
'fOne_of the-lmportant-problems in constructing a plan is to make sure that
‘the preconditions of esch m~action are satisfied at the time it is applied.
_MAY'etfeﬁﬁfs*to'solfe this problem by "reasoning backwards' from her main
__goai. *(heésoﬁing'backwaras'is similar to the process of "means~ends”
:ana1y51s ‘discussed by Newell and Simon, ‘1972.)
The mechanlsm that perm1ts MAY to reason’ backwards 1nvolves a’ df

'dset of reducer programs Each reducer program 1s advertlsed ‘to know how:

.c_to achleve a’ certaln effect (That 1s, 1t knows how to add a certaln type

.170f propos1t10n to the model) It achleves thls effect by u51ng one of the7_':'

"*.jm-actlons after hav1ng flrst set up and solved the subgoals of achlev1ng

"fgthe m—actlon 5 precondltlons. These subgoals are reduced to others by

'fffappropr1ate reducers unt11 a chaln of mractlons 1s produced that achleves:

'the maln goal Thls process depends for 1ts success on an- assumptlon that ede'.'

the reducers spec1fy subgoals that are 1n some sense szmpler (or closer {

_to ‘the present 51tuatlon) than are the goals belng reduced

Let us consider an example reducer, called "r-findtreasure, " for
_finding actreasure. The program for this reducer is shown below:
_r—find_treas;ure [to-achieve: HAVE(TREASURE)]
achiéve: - INVIEW(TREASURE)
B apply mrplckup(TREASURE) _ _

_ j_ The notation of the program is explalned as folIOWS'- The“éxpres-i
31on [to~ach1eve'- HAVE(TREASURE)] after the name of the program descrlbes
':the program s purpOSe, namely, to cause the model to contaln the expre551on
:HAVE(TREASURE} ' Slnce MAY reasons backwards, this purpose statément is o
very 1mportant it is the clue that tells her that if her goal is to have
treasure, she should consider applying the reducer r-findtreasure. The body
of this reducer consists of an "achieve' statement and an "apply' statement.
- The achieve statement sets up a subsidiary goal for MAY, namely, the goal
of getting the expression INVIEW(TREASURE} into the model. Once this pre-
condition is achieved, the m-action, m-pickup(TREASURE), can be "applied.”
The effect of m-pickup{TREASURE) is to add the statement HAVE(TREASURE) to
MAY's model. Thus we see that this reducer merely converts the problem of

'achieving its goal_into a.problem of achieving a subsidiary goal.

o - MAY hae'a full éomgiéﬁéﬁt of reducers. In particular there is
_one that advertises itself as being able to achieve INVIEW(TREASURE) so
that MAY can continue reasoning backwards until she can actually begin
‘applying some m-actions. .In running reducers, whenever an ''achieve' state-
_ment is encountered that is already satisfied by the model, it can be passed
" over and the next statement can be considered.

'ﬁeaeohing backwards, sometimes called problem reduction; top-

. down, or goal directed reasonlng, is a’ key strategy in AT’ systems._ Reducers
H‘of the kind we are dlscu351ng here have proved to be valuable formallsms E

.for thls type of reasonlng._

K We ‘could . ea511y 1ntroduce other types in addltlon to the - "to~ach1eve

.'ﬂﬂreducers. ‘Someof ‘these would be of 1nterest 1f MAY 2] world (and model)

,rcould change spontaneously due, perhaps, to: the effects of other agents

L Thus we nght also have reducers descrlblng how' to escape ‘from an’ ex1st1ng'"”f

.g.:unde51rab1e 51tuat10n, how "o protect ‘an’ exlstlng de51rab1e 31tuat10n from
“Lzbelng spoiledias a‘side effect of another actlon, “how "'to av01d creatlng :

- an undesirable situation, how "to await' the’ spontaneous occurrence of a
‘‘desirable situation, how "to: endure -an unde51rab1e situation ‘that is ‘about -

to end spontanecusly, how "to maintain” an existing desirable situation that = .

would otherwise end spontaneously and’ ‘how "to- prévent” an undesirable :
“situation from occuring spontaneously. - (See Fikes, Hart, and Nilsson, 1972a,
for a more complete: dlscu551on of these other p0551b111t1es) :

_ _ It is likely.that'MAY Would:have more than one reducer fo achieve
" a particular goal. In such a circumstance, MAY faces a choice about which
one to'use.; The choice may be'crﬁcial'beCause one may SpeCify subgoals
.:jthat turn out to be difflcult ‘or. 1mp0531b1e to achleve “while others may

.spe01fy tr1v1a1 subgoals.-

Let us conszder an example. MAY also has a reducer called
—shopfor(x) that can be used" to achieve HAVE(X) -The program is as

”follows:'
r-shopfor(x) [to-achieve: HAVE(x)]

condition: PURCHASABLE(x)
condition: HAVE(MONEY)
achieve: ATI[store(x)]

apply: m—purchase(x)

:In'fhis program we use a condltion statement. The condition
'statement checks to see if the proposition listed after it is contained in
'the_prop051t1ona1 model. - If not, ‘a "failure report' is generated. (I'll
mentiaﬁ whatJhappehs to this failure report later.) If the condition is
satisfied in the model, the next statement is considered. Condition

'_stafements'are-osed instead of achieve statements for those propositions
_thaf"gggi.be7tfﬁé ih order to apply the reducer., Here, if x is not
'ePURCHASABLE the reducer r-shopfor cannot bhe applled at all.
_ The last statement in r= shopfor(x) changes the model by applylng
m-purchase(x) This m-action adds HAVE(X) to the model

Before llsting some of MAY s other reducers, let us con51der what_'
:': happens 1f we start MAY's plannlng act1v1t1es by runn1ng the 51mple program- e
s _ach1eve'- HAVE(TREASURE) : Assumlng that HAVE(TREASURE) 1s not already in

:.'_the prop051tional model there are two reducers MAY could use._:r—shopfor, L

Q}w1th X bound to TREASURE and r~findtreasure._ Lacking absolute fore~ﬂc

.':pknowledge of whlch would be best MAY creates a’ symbol1c structure, called

B a plannlng tree, to keep track of both p0351b111t1es._ The tree is shown

'1n Flgure 2.

The nodes of the plann1ng tree con51st of two parts. The flrst

-.-part ‘names the prop051tlonal model from wh1ch a plan is to be constructed.-

In this case, let us call the initial model;'MO.- The second names the
reducer program that MAY would use at that node of the tree in order to

' generate the plan.

~IMy, achieve: HAVE(TREASURE)]

~IM,, r-shopfor(TREASURE)] ' . [M,, r-findtreasure]
Figure 2 INITIAL VERSION OF MAY'S PLANNING TREE

We assume MAY has some way of selecting which tip node of the
pianniﬁg tree to try. The AI literature (see, for example, Nilsson, 1971)
discusses several ways of proceeding, and for our present purposes we do
‘not need to concern ocurselves with tree-searching mechanisms. Suppose MAY

Selects'the leftwhand node and begins to execute r-shopfor(TREASURE). She

s qulckly encounters a condition that fails: There is no PURCHASABLE(TREASURE)

_1n Mo-. When the failure is reported MAY rules out the left-hand tip node
‘and decides- to work.on the right~hand one. That is, she decides to use the
reducer, r-findtreasure, still using Mb as the model. (If r~-findtreasure
should fail, MAY's entire planning effort would itself fail, but fortunately,

as we shall see, this branch of the tree will succeed.)

Before continuing with MAY's plan~generat10n task, let us intro-
'duce some add1t10nal reducers that MAY will need to complete her plan
'_These are shown 1n Figure 3. In r-excavate, the first condition statement,
66ndition TREASURESITE(x), has .an unbound var1able,_x.3 When thls state—

':ment 1s encountered the model 15 searched for a prop051t10n of thls form. _

'I1eIf one is found say TREASURESITE(A), x 1s bound to the speczflc place,;A,.'"
f_;named in the prop051t10n There may be more than one p0531b111ty, for - ' :
f eexample TREASURESITE(B) may also occur in the model If multlple p0551b11— '
'5 ;1t1es exlst note 15 made of that fact 1n case the p0551b111ty chozen :?':".
ieauses a fallure later f'”' [: ' '

In rwexcavate we also employ a hegafiﬁe:condifieﬁ statement

.e'enameiy, negcond1t10n DUG(x) By thls we' mean that 1f DUG(x), wlth X'E

r-excavate [to—achieve: ~INVIEW(TREASURE)]

condition: TRRASURESITE(x)
negcondition: . DUG(x) _
‘achieve: . HAVE(SHOVEL)
éehieﬁe:' ATk£)'

;3ﬁpIYfi:m-aig-'

r-goto(x) [to-achieve: AT(x)]
. apply: m~go(x)

Figure 3 ADDITIONAL REDUCERS FOR MAY'S PLANNING

‘bound to the specific place obtained in the line above, does exist in'the
model, a failure is sent back to the previous choice point. In this case
the failure would be caught by the line above, namely, condition:
. TREASURESITE(x),.and a new value for x would be sought in the model. The
:veriabIE'x would bé bound to this new value, and the negcondition tried
again.. If no new values of x can be found, condition: TREASURESITE (x)
itself fails, and the failure is sent back to the program that called

r=excavate.

After all condition tests and subgoals have been achieved in
r-excavate, the model is changed by the application of m-dig. This m~action
~adds INVIEW(TREASURE) to the model. (MAY's planning system is optimistic
‘and assumes that r-excavate will result in putting the treasure in view.

'As it happens, none of MAY's m~actions can but the proposition DUG(x) in
“the model. -We are merely allowing for the p0531b111ty that ver51ons of 1t :ﬁ

'.'”may already be there)

The other reducer contalned in Flgure 3 namely, r-goto, sets up

:f no- subgoals and tests ‘no condltlons Thls e3511y—sat15f1ed routlne merely"

'I:echanges the prop051t10nal model by applylng m—go(x) The m—actlon m—go(x)e e j

'eadds AT(x), for some value of x, to the prop051t10nal model after deletlng i e

"7Jany other pr0p051t1ons of the form AT(x)

Now we can contlnue Wlth MAY s plannlng process As can be seen'

".j'ln the plannlng tree in Fzgure 2 she executes the reducer r—flndtreasure

f11”'

“In so doing, she runs into the statement achieve: INVIEW(TREASURE). At
- this point, MAY's attention is shifted to the problem of achieving this
fsubgbal [She notes that after achleVlng it she must return to contlnue

'rFfindtreasure, startlng at-apply m—plckup(TREASURE).] Assume INVIEW(TREASURE)

“zhls not already 1n the prop051t1ona1 model There*iS’ouly One'reduCer-Ed— .

”-.}jvertlsed to put it there,'namely, ruexcavate So a 31ng1e successor node

”f.below [M r—flndtreasure] is’ set up in the plannlng tree as in’ Flgure 4.

- .Thls node contalns M to refer to.the fact that we are still worklng from

' the initial prop051tlona1 model. It also contains the "stack” of reducers,
'.rrexcavate, and ‘r~findtreasure. The top routine in the stack, r—-excavate,
is the next to be run, and ‘r~-findtreasure refers to the continuation of

r-findtreasure [namely, the statement apply: wm-pickup(TREASURE)].

[y

”’/,/f‘-\\\~ﬁ\\\‘
[M?;/r;shdﬁgor(TREASURE)] EMO, r-findtreasure]
. (failed)

: . r-eXcavate
M., .
10’ r-findtreasure

 Figure 4 A STAGE OF MAY'S PLANNING TREE

, achieve: HAVE(TREASURE)]

Now MAY looks at her planning tree to decide which tip node to
"Work on next. In this case there is only one, so MAY runs the routine
r-excavate. In running this reducer, suppose MAY's model contains the
proposition TREASURESITE(A) and does not contain DUG(A) . Then, achieve:

- HAVE(SHOVEL) w111 be encountered, whlch assuming no HAVE(SHOVEL) in the

. model w111 cause- additions to the plannlng tree. If we :skip over some of].
r_the 1ntermed1ate detalls of MAY s backward reasonlng processes (assumlng
'fthat the achleve statements call the approprlate reducers) we eventually
.fproduce the plannlng tree shown 1n F1gure 5 ' In thls flgure, note that

'dthere are several reducers to be contlnued at the p01nts where MAY s

'ﬁs_;attentlon was shlfted to work on suhgoals These are all 1nd1cated by '

'jithef"’" hotatlon
At thls stage, MAY selects the node at the bottom of Flgure 5

_fand executes r—goto(SEARS) g ThlS reducer creates no sub51dlary goals, butf

| .12_.”

_ position. . Let us call this new model M

M,, achieve: HAVE (TREASURE)

[:0, - for(TREASURE{J [, r=findtreasure]
(failed) E _
. reexcavate
My, TOTOUEEE
: 'r~findtreasure
[- r-shopfor(SHOVEL) |
: MO,-’rAexcavate
i ‘r~findtreasure
B r~goto (SEARS)
‘r-shopfor(SHOVEL)
M., ,
0 r-excavate
‘r~findtreasure

Figure & ANOTHER STAGE OF MAY'S PLANNING TREE

allows the direct application of m~go(SEARS). This m-action changes the

‘propositional model, M directly by substituting AT(SEARS) for MAY's

0,

1 We fepresent this change in

‘the planning tree by creating a new successor node:
’r-shopfor (SHOVEL)
1’ ‘r-excavate

'yr~findtreasure

MAY aiso'keeps'é-list'of the m-actions used so far. This list will ulti-

mately constitute the finished plan. At this stage it is m-go(SEARS) .

‘Again let us skip over some intermediate details and continue the

" planning process until the planning tree shown in Figure 6 is produced.

. The bottom node has an empty (indicated by "nil ') stack of reducers to run,:' e

- and M contalns the goal ‘statement HAVE(TREASURE), ‘8o plannlng 1s now'j _
_'.complete The flnal 1lst of m—actlons 1s the plan' [mngo(SEARS), m~purchase
: (SHOVELL m—go(A), nrdlg,_m—plckup(TREASURE)] Each of these routlnes

" 5'corresponds to an actlon 1n MAY s actlon repert01re that can now be executed:'”

”to achleve her ‘main’ goal

_ A glance at MAY s plannlng tree shows that her plan generatlon
S was rather dlrect (wzthout many fallures) 1n thls 51mp1e example A more

'powerful plannlng system would have a greater varlety of reducers—-somet1mes ;

"913'

My, achieve:. HAVE(TREASURE)

_fufindffeasﬁrE]“

Mﬁ; rfé Spfor (TREASURE) g o o
T _;(failgd) T [. reedtcavate - .’
e } . -MO’ : TR

T p=findtreasure

i r-shopfor(SHOVEL)
MO’ 'r~excavate
| r~findtreasure
i r-goto(SEARS)
M 'r-shopfor(SHOVEL)
0’ Ir-excavate
_ 'r-findtreasure
B _
_ 'r-shopfor(SHDVEL)w
: Ml’ 'r-excavate
fr-Ffindtreasure
" 'r-excavate -
E‘2’ !r-findtreasure
T r~goto(A) i
Mz, ! ir=excavate
r~findtreasure
T "'r-excavate]
' Mé’ ’r-findtreasurec

My ffr4findfréaSure]

./ Figure 6 MAY'S FINAL PLANNING TREE

several different ones for accomplishing the same goal. -The resulting _
planning trée would have had more branches and there would be a need to -
make use of better mechanisms to select best tip nodes. ,In'faét'fhe greatest

limitations to using AI techniques like this for genmerating plans is the fact

14

that planning trees usually have too'many branches to permit finding long

plans. The so-called "combinatorial explosion" of alternatives finally

. .dulls the power of this simple process.

_ _The mechanisms used by MAY are simplifications of a cluster of
'more elaborate AI 1deas in part1cu1ar,-l have limited the discussion to
: 51mple' stralght-llne plans~~ones w1thout .loops and branches. A planning
.7system called STRIPS (Fikes and Nllsson, 1971) ‘that generated plans for the.
1SRI robot SHAKEY (Hart, et al 1972) is quite 51m11ar in spirit to MAY.
MAY's reducers can also be thought of as simplified versions of the "con-
sequent theorems” of Hewitt, 1972. (Consequent theorems allowed arbitrary
programming operations in addition to condition tests, subgoal generation,
and model changes.) MAY's planning tree and ability to shift attention
from one tip node to another closely parallel the mechanisms of STRIPS

and the built—~in features of the planning language QA4 (Rulifson, 1972).
{Neither STRIPS nor QA4 ;iterally made multiple copies of complete propo-
sitional planning models. Fach had efficient ways of representing different

" models merely by noting the differences among them.)

. MAY illustrates rather forcefully the advantages of reasoning
backwards. Her only forward steps, namely m-actions, are embedded in
feducers, and therefore they are applied only in the service of achieving
specific goals} ‘There are other occasions, however, when a forward-reasoning
step is appropriate. For example, suppose MAY had been frustrated in her
. planning to find buried treasure because of lack of money to purchase a
" map listing treasure sites. Now if someone told MAY that place C is a
place visited by Sir Francis Drake, then we might expect that she should
jump (forward) to the conclusion that it is also a treasure site. That is,'.
should if ever: - VISITED-BY-SIR-F-DRAKE(x) suddenly ‘appear in her ﬁro'po'si«

: tlonal model we mlght thlnk it approprlate that”’ TREASURESITE(Y} should be

:1mmed1ate1y added

: _ Let us suppose that an augmented MAY possesses such watchful
Tprograms, that we ' shall call demons, for addlng (or deletlng) model
:pr0p051t10ns Demons are a means of forward reasonlng Just as reducers_gﬂ-ﬂV-s

:.{eare a means of backward reasonlng The form of MAY s demons is 111ustrated

: 'by the’ follow1ng example

dl(x) [if-ever: VISITED-BYwSIRuE-DRAKE(x)]
assert: TREASURESITE(x)

Demons are similar to- productions and Markov tables in that they
trlgger actlons based on the contents of the prop051t10na1 model. . In
.-general the events trlggered by demons ‘can’ he arbltrary They might be

'_fm—actlons, actlons in the real world or plannlng efforts. The following

. Fexamples 111ustrate some p0551b111t1es

42(x) [it-sver: TREASURESITE ()]
apply: m-go(x)
achieve: INVIEW(TREASURE)
d3(x) [if~-ever: HAVE (MONEY)]
achieve: HAVE(TREASURE)

Skillful use of both demons and reducers by designers of robots like MAY

can result in quite sophisticated and highly competent systems.

C. Hierarchical Planning: MATT

_ In the last section I spoke of the combinatorial explosion that
limits the power of MAY's planning system. Here I shall describe g
"hierarchical planner" that impedes the combinatorial explosion a bit and

thus has greatly increased powers.

In attempting to compose a plan, MAY reasoned backward one step
at a time until an m-action was found that allowed an immediate change to
the propositional model. At each step, MAY was faced with possible choices,
+ 50 long plans might require the investigation of large numbers of alternatives,
_Some of her reducers accomplished goals that could be regarded as’ unlmportant
-~ details compared with the goals achieved by more :meortamt reducers
 Cons1derat1on of detalls could well be postponed unt11 the important "hlgh—_:-'
flevel components of the plan are in. place. For example, when an archltectiﬁ'

-"de51gns a house, he does not allow -al concern about where to purchase nalls L

"ﬂfl;to frustrate the complet:on of hls prellmlnary sketches

MATT 1s a robot who also makes plans to flnd burled treasure. fHetﬂﬁ"

'tfreasons backwards, as dld MAY except that his reasonlng proceeds in

'hlerarohlcally organlzed levels The hlerarchy is determlned by the way

16

in which his reducers are defined. These reducers distinguish between
those subgoals that must be achieved at the "same level” as that of the
m—action in the reducer and those that can be postponed until a rough plan
at this level has been completed. The process is best explained by refer-
ring to an example.
MATT's :educéré5are'written!slighfly differently than are MAY's.

'ﬂ::Again.we'sféft'ﬁith’r¥findfréaéuréf’
‘r-findtreasure [to-achieve: .HAVE(TREASURE)j
. p-achieve: HAVE(SHOVEL)

achieve: INVIEW(TREASURE)

apply: m~pickup(TREASURE)

The statement "p-achieve: HAVE(SHOVEL)" means that planning for this

subgoal is a detail to be postponed until later. For the moment, we assume
the existence of some sequence of m~actions, temporarily denoted by p-achieve:
HAVE(SHOVEL), that successfully changes the model by adding HAVE(SHOVEL)

to it. Thus, a p-achieve statement optimistically adds its proposition to
the model, but sets up the need to generate a more detailed plan later for
accomplishing its assumed result. The rest of MATT's reducers are shown in

Figure 7.

r~shopfor(x) [to-achieve: HAVE(x)]
condition: PURCHASABLE (x)
condition: HAVE(MONEY)

p-achieve: [AT store(x)]
- apply: wm-purchase(x)

r-excavate [to-achieve: INVIEW(TREASURE)]
S édndifion:j.TREASURESITE(x)"_f'_
© ‘megcondition: DUG(x) .- =
. p=achieve: AT(x) =
~apply:. medig -

_ f;gotbtk) {to;achievé: AT(x)Y]
apply: megoGo)
- Figure 7 ADDITIONAL REDUCERS FOR MATT'S HIERARCHICAL PLANNING

17

Let us trace through a levelsof MATT's plannisg activify-evoked
by executing the statement "achieve: HAVE(TREASURE).' For economy of
'_explanation, let's ignore the blind alley that results from considering
.r—shopfor(TREASURE) and instead invoke r-findtreasure directly. This
reducer first assumes that HAVEfSﬁOVEL)-oan'be'aohieved at a lower level’
' of detail and ‘then runs into the statement "achieve: .INVIEW(TREASURE)."
The5redﬁoer?r-ekcavatenis.oalied;'and'fhis'reducer in turn assumes that
‘a treasure site A can be visited. After applying the appropriate m-actions,
the first level of the plan is completed. The planning tree generated in

completing this first level is shown in Figure 8.

Notes
in Ml we add HAVE(SHOVEL)

[M,, achieve: HAVE(TREASURE)] as an assumed result of a

0

p-achieve,
[MO, r-findtreasurel
In M, (not shown here) we

2
r- t
{M excaviate } _ add AT(A) as an assumed

r-~-findtreasure
result of a p-achieve.

M ‘r-frindtreasure]

3? In M3 we add INVIEW(TREASURE)

™ ni1l as a result of an m-action.
4!

In M4 we add HAVE (TREASURE)

as a result of an m-~-action.

Figure 8 PLANNING TREE TOR FIRST LEVEL OF MATT'S HIERARCHICAL PLAN -

A In this plannlng tree, new models Ml’ M Mé, and M4 ;are produced
'o-as a result of applylng m—actlons and of assumlng the results of p-achleves
The’ plan generated hy the process at thls stage is:

=u[p-ach1eve-' HAVE(SHOVEL), p—achleve° AT(A), m—dlg, m—plckup(TREASURE)}

J3fs_In thls plan- there are two pﬂachleve statements that now need to be planned

'gto a’ deeper level _ These are converted to achleve statements and the _
'”plannlng process is called to generate plans for each of them The plane

Inlng trees for each of these-are'shown'injFigure 9. .

i8

[M,, achieve: HAVE(SHOVEL)] [M,, achieve: AT(A)]

[MO, r-shopfor(SHOVEL)] [Ml’ r-goto(a)]

|

[, 4, nil] [Mz’, ni1l
Figurezg -pLANNiNG TREES PRoDﬁcED'AT-A-LowER LEVEL OF MATT'S PLANNING

1’ and M 4 appear Ml’ is the result of

assumlng 'AT(SEARS) and applying mupurchase(SHOVEL) Thus it differs from

" In Flgure 9 new models M

M, by possessing the additional "detail” AT(SEARS). Mz' and M, are identical;

they each contain AT(A).

The plans produced by each of these subsidiary planning efforts,
together with the higher level plan generated earlier, can be represented
in another tree structure called a "plan net." We show the plan net in

Figure 10,

p-achieve: HAVE(TREASURE)

_

p~achieve: HAVE(SHOVEL)

p-achieve: AT(A) m~pickup (TREASURE)

.p~achieve: AT(SEARS) m-purchase (SHOVEL)
m-go(A)

Figure 10 THE PLAN NET FOR THE FIRST TWO LEVELS OF MATT'S PLANNING

In the plan net, each p-achieve node has as descendants a sequencé.

‘of nodes that represent a plan for the p-achieve node. The net of Figure 10
 indicates that the plan must be carried to yet another level of detail 51nce _ :
_gthe net stlll contalns a p~ach1eve node at a t1p The next stage of plannlng
'f,merely adds’ the node m—go(SEARS) as the 31ngle successor of the ‘node p-achleve'-:
E..-MT(SE.I’JARS) ' The final detalled plan is obtained by collectlng the tlps of o

 the plannlng tree,'ln left to*rlght order,'lnto a list.

19

It should be obvious that the postponement of planning of details
greatly inereases efficiency when there are several reducers to accomplish
the same effects. DPostponing details reduces the branchiness of the planning
;tree and allows plans that are going to fail for high-level reasons to fail
- more quickly so that successful ones can be investigated sooner. The price
._MATT_must pay for this enhanced efficiency is that sequences of low-level
 plans might not mateh up properly. That is, the unanticipated detailed
éffects;on'the”mbdei of the low-level plans might. cause higher~leével plans
"to be invalid. MATT may sometimes generate plans that paint him into a

corner!

Such difficulties can usually be dealt with, however, bhecause
after all, MATT is only planning, not performing. Plans produced by MATT
can be examined and criticized by other processes that look specifically for

such conflicts and defectis.

My description of MATT has attempted to explain just a small
part of a much larger hierarchical planning and execution system, called
NOAH, developed by Sacerdoti, 1975. NOAH generated hierarchical plans for
assembling and disassembling mechanical equipment. (An air compressor was
used as the chief experimental example.) NOAH had other impertant mechanisms,
‘too. It could "eriticize" its plans to spot and eliminate various conflicts
and inefficiencies in them. It could generate plans in which no unnecessary
cormmitments were made about the order in which some of the component actions
‘were to be performed. Lastly, it had mechanisms for supervising the execu-
tion of the plans it generated, and it could replan if the execution got

into unexpected difficulties.

) In my descriptions of MAY and MATT I have ignored'the-prebiem'df -
setually-EXEcuting the plans that are produced.. One would hope that there
'_.would be some way to combine-the aefion abilities of MARK with the plaﬁningf'
_ _ab111t1es of MAY or MATT. Sacerdoti’'s NOAH system (Sécerdoti,'1975) did
'7 c0mb1ne plannlng and executlon as did the STRIPS system for controlllng thef:”;
SRI’ robot SHAKEY (Flkes, Hart " and Nllsson, 1972b Hart et al 1972) '

'HfBoth of these plannlng/executlon systems 1ntroduced 1mportant 1deas, but a

o eompletely satlsfactory synthesis is probably still to be achieved.

.20

D. Deductions: MAX

The logical powers of the previous robots were limited to checking
for the presence of a given proposition in a propositional model. Their
‘most complex feat required them to look for specific instances of a general
- proposltlon containing a variable. One could hope to expand theseé powers
.80 that both the model and the condition to be tested could contain general
logical Formulas with quantified variables.

'MAX is a robot that can perform some of these feats of deduction.
MAX reasons about a static world. He does not perform actions nor does he
even make plans to do so. He nevertheless is interested in buried treasure
and can make various deductions about some propositions having to do with

treasure hunting.

MAX reasons backwards alsc. He has reducers that replace pro-
positions that he is trying to prove, with (it is hoped) easier propositions.
'He uses reducers until he obtains propositions that are contained in the
model. (Each reducer embodies some particular chain of reasoning using

inference rules of logic.)

MAX is interested in knowing whether or not SEARS sells items
that his friends need for treasure hunts, namely, maps and shovels. One

of his reducers can be written as follows:

ri(x) [to-deduce: SELLS(x,MAPS)]

deduce: LARGE(x)
deduce: HAS(x, STATIONERY-DEPT)
assert: SELLS(x,MAPS)

This reducer is able to add the proposition SELLS(x,MAPS) to the proposi-

- tional model if it first can show that the model contains LARGE(x) and

' HAS(x, STATIONERY-DEPT) . The "assert statement" adds a proposition to the

-model. The "deduce” statements set up subgoal deductions. The reducer
- rl(x) makes use of the f0110w1ng sylloglsm
o _ from: LARGE(x) AND HAS(x, STATIONERY-DEPT)

.----_-_and I VL R SR
LARGE(x)"Anb'HAS(x;STATioﬁERY;DEPT)':53ELLS(&,MAPS)'
" we can infer:
SELLS(x, MAPS) ~
| 21

.-_ assume that MAX s 1n1t1a1 model M

Because there may be multiple reducers that can be used to deduce
the same statement, again there is a need for some selection mechanism.
Since we are not here considering different hypothetical worlds resulting
:from different reducers, we can use 2 single model that benefifs from all
of the assertions made.

?igufé 11 shows soﬁe additional reducers used by MAX. Now let us
0 contains only the statements.
”SELLS(SEARS PENCILS) and HAS (SEARS, PARKINGLOT) If MAX is given the task
'deduce: SELLS (SEARS,MAPS), its "deduction tree' might look something like

that shown in Figure 12. The end result of this deduction process is to

add the desired statement, SELLS(SEARS,MAPS) to the model.

r5(x) [to-deduce: LARGE(x)]
deduce:; HAS(x, PARKINGLOT)
assert: LARGE(x)

r6(x) L[to-deduce: HAS(x,HARDWARE~DEPT)]
deduce: SELLS(x,NAILS)
assert: HAS(x, HARDWARE-DEPT)

r2(x) [to deduce: SELLS(x,SHOVELS)]
deduce: LARGE(x)
deduce: HAS(x, HARDWARE-DEPT)
assert: SELLS(x,SHOVELS)

" r3(x) [to deduce: HAS(x,STATIONERY~DEPT)]
deduce: SELLS(x, PENCILS)
_-assert: HAS(x,STATIONERY-DEPT)
T4(x)’ [to-deduce: HAS(x,STATIONERY-DEPT)]
 deduce: SELLS(x BOOKS) '

- assert: _HAS(X,STATIONERY—DEPT)

‘Figure 11 ADDITIONAL REDUCERS USED BY MAX

22

{-MO, deduce: SELLS(SEARS,MAPS)]

{MO, r1(SEARS)]

.AMO;-IE(SEARS)}

, _
rl1{SEARS) note: M1 contains
LARGE (SEARS)
[y, ‘r1(sEARS)]
1 11 (SFARS) 7 'r1(SEARS)

(failed) I

[M2, //ri(SEARS)]

note: M2 contains
HAS (SEARS, STATIONERY~DEPT)

{M3, nill
M3 contains
SELLS (SEARS, MAPS)

Figure 12 A DEDUCTION TREE GENERATED BY MAX

The deductive mechanisms of MAX are similar to those of several
programs written in the newer AI languages such as QLISP (Sacerdoti, et al.,
1976) . Programs have been written to prove theorems (Waldinger and Levitt,

1974) and to make deductions about electromechanical equipment (Fikes, 1975).

_ In some instances enhanced efficiency is achieved by using demens
.'fO'generate propositions that follow directly from other propositions already

in the model. Thus, besides his reducers, MAX could have demons to do
 forward reasoning. In fact, the information in each of his reducers could
_also be wrltten 1n demon form The de0151on about whether to 1mp1ement a
10g1ca1 1nference rule as a reducer or as a demon (or both) is 1arge1y a _
: quest1on of efflClency Are the requlred deductlons made more qulckly and -
dlrectly by backward or by forward reason1ng° ‘The rlght mix depends largely :
.-on the domain being reasoned about.;.If there dre few goals and many "axioms, "
reducers are likely to be more efficient. If there are Tew axioms and'maﬁy'
possible goals, demons might be preferred.

23

MAX's example deduction involved only a simple goal expression
not containing any quantified variables. More complex expressions can be

handled by similar mechanisms. (See, for example, Fikes, 1975.)

Processes of deduction are as susceptible to the combinatorial
-explosion as are those of planning. It would probably be worthwhile to
incorporate hierarchical techniques in deduction (similar to those used by
MATT) to help make deductions more efficiently. One could consider aug-
_hénting MAX's reducers by using ''p-deduce” statements in connection with
subgoals that can be regarded as mere details. (I am unaware of any AI

systems that use p~deduce statements.)

E. Inference: MAGGIE

The propositional models that we have used so far had only limi-
ted abilities for expresging uncertainty. If a proposition occurred in
a robot's model, the robot was completely certain about it; if a proposi-
tion was absent, the robot was completely uncertain about it. Intermediate

~degrees of certainty were not represented.

_ If we examine the reducer programs used by MAX, we note that each
incorporates a logical rule of the form: if {various subgoal expressions
can be deduced), then (a conclusion can be asserted). This "if...then"

-rule is certain: it is not hedged by '"maybes."

Yet in many situations (even in MAX's map-buying example) it
would be more realistic to use deduction rules whose conclusions were
uncertain (to a degree) even if the premises were certain. A parking lot

might only suggest a larpe store, not necessarily imply one, for example.

_ ~ MAGGIE is a robet that can deal with these kinds of uncertainties.
';MAGGIE:represents'both her propositional knowledge and her knowledge about

how to make inferences in a"strquure'called an "inference net." For each

of the reducer programs used by MAX there is an ‘analogous 'inference rule"

in MAGGIE ' s 1nference net The rules correspond to - lines connectlng nodes i1

in the net. Each rule has a premlse node or nodes, a conclu51on node and
"a palr of numbers representlng the strength of the rule Each node in the

net corresponds to a propos1t1ona1 statement to which MAGGIE ‘attaches a
.7probability'(or'degree of truth) varying_between 0 (certainly false) to
1 {certainly true). o

24

MAGGIE's inference net is shown in Figure 13. To each node there
is attached a number representing MAGGIE's subjective view of the probability
of the corresponding proposition. Thus, for example, MAGGIE is more sure
that SEARS sells shovels than she is that it sells maps. We use a triangular
-symbol to indicate that two propositions combine as premises for a single

- conelusion.

_ 'Le Each rule hag a pair of numbers to denote its strength. The

flrst number in the pair indicates how sufficient the premise is to support
the conclusion. Large positive values indicate a high degree of sufficiency;
large negative values indicate that the premise is strongly sufficient for
supporting the negation of the conclusion. The second number in the pair
indicates how necessary the premise is for supporting the conclusion. Large
negative values indicate a high degree of necessity; large positive values
indicate that the premise is strongly necessary for supporting the negation
of the conclusion. For both numbers, values near zero indicate weak
connections between the premises and the conclusion. Thus, it is quite
necesgsary for Sears to sell pencils for MAGGIE to believe that Sears has a
stationery department, and it is strongly sufficient that Sears sells books

to make that same conclusion.

The rule strengths are used by MAGGIE whenever it is appropriate
for her to update her probabilities. For example, if someone were to tell
MAGGIE (convincingly) that Sears had a parking lot, then MAGGIE would use
the (6,-1) strength measure to update the probability of LARGE(SEARS)
from 0.7 to 0.8, perhaps. This change would then in turn propagate to
affect MAGGIE's belief in SELLS(SEARS,MAPS) and SELLS(SEARS, SHOVELS).

The updating procedure uses the rule strength numbers and the new probabil-
ities of the premises to calculate the new probability of the conclusion.
(A full discussion of a suggested probability updating procedure and its

. relation to probability theory is contained in Duda, Hart, and Nilsson,

'-1976. These'details'are not'needed for'our:ﬁreéent disbussioh.)

MAGGIE s 1nference net also tells her how to become more certaln

- of any prop051t10n -She’ should 51mply become more certaln about some of

its possible sets of premlses. Note the-close parallel between these '

inference net operations and MAX's reducers and demons. Working backward

25

SELLS (SEARS, SHOVELS)
0.6

SELLS (SEARS, MAPS)
0.2

HAS (SEARS, HARDWARE~DEPT)

HAS (SEARS, STATIONERY-DEPT)

LARGE {SEARS)
0.7

SELLS (SEARS, NAILS}
0.2

(5, -8}

SELLS (SEARS, BOOKS)
0.3

HAS {SEARS, PARKINGLOT}
0.3

SELLS (SEARS, PENCILS}
0.9

FIGURE 13 MAGGIE'S INFERENCE NET

26

P

through the net from conclugionsg to premises that might support them is
analogous to using reducer programs. Propagating new probability values

forward from premises to conclusions is analogous to using demon programs.

Let us suppose that MAGGIE ultimately gets new information about
its world by talking on the telephone. She calls up Sears to ask if they
:séll maps, but has the misfortune of speaking with a2 new and not well-informed
“clerk. .The clerk thinks Sears might sell maps, but isn't sure. MAGGIE
revises the probability of SELLS(SEARS,MAPS) from 0.2 to 0.4. Using her
inference net structure MAGGIE asks the clerk if Sears has a stationery
department, updates probabilities, and so on until she has sufficient

supporting evidence for her main question.

MAGGIE uses simple versions of techniques just now being explored
by AI research. Her knowledge base of imprecise inference rules is similar
to that of a large medical diagnosis system called MYCIN (Shortliffe, 1976).
MYCIN uses inference rules that were obtained by interviewing physicians;
each has rule strength values also supplied by the physicians. Questions
involving how to search backwards through an inference net are just now
being approached. But even though this work is preliminary, its goals are
important. Much human reasoning seems to involve the ability to deal with

uncertain evidence using nondefinite inference rules.
ITI. DISCUSSION

The AI mechanisms I have described have been used in a variety of
applications. Their utility extends beyond the domain of goal-seeking
actions, planning, and common-sense reasoning illustrated by our five robots.
Similar mechanisms have been used in AI programsg for visual scené analysis
(Winston, 1972; Garvey, 1976), language understanding (Winograd, 1972),

':énd the automatic generation of computer programs (Manna and Waldinger, 1975).

'_Nbr does this class of mechanlsms exhaust the set of AI concepts that might

'-fgbe of use for constructlng psycholog1ca1 models ‘Our brief v1gnettes of

"AI mechanlsms should be regarded as just a sample Slm11ar ones could _
_ :probab1y be wrltten to 111ustrate other 1nterest1ng AI concepts 1nvolved
.'1n language understandlng (par51ng, augmented transition networks, semantlc
networks) and perception (structures for describing scenes, scene-analysis

methods.)

27

Seméntic networks, in particular, are of increasing interest to
psychologists. They c¢an be regarded as a type of propositional model
possessing somewhat richer interconnections than do most computer imple-
mentations of predicate calculus models. (Specifically, the "pointers”
between predicate symbols and argument symbols are bidirectional in semantic
networks.) Many of the early shortcomings of semantic networks have been

.overcome. Hendrix's partitioned semantic networks (Hendrix, 1975) can
' easi1y'réprésént quantified propositions, hypothetical worlds, modal

propositions and other constructs.

In view of the enhanced power of semantic networks, it is interesting
to speculate about what changes would be necessary to our five robots if
each used a semantic network propositional model-instead of a standard
predicate calculus propositional model. We would certainly have to extend
our notion of reducers and demons so that they responded to and generated
. "pieces" of semantic network rather than sentences of the predicate cal-
culus. To the extent that such semantic networks were also useful in
building natural language understanding (and'generating) systems, our robots

- would then have the added potential for conversation.

With or without semantic networks, the AI concepts discussed in this
paper would appear to be useful building blocks in psychological models
of both stimulus-driven and goal-seeking behavior invelving action, planning,
and reasoning. Perhaps a useful first domain would involve modeling nonhuman
animals. An ideal choice to model might be some higher animal in which
language and super—-reasoning abilities would not have to be accounted for
but one possessing modest planning abilities. Such a modeling effort would,
“to be sure, contrast somewhat with the current directions being pursued by
~cognitive psychologists. It is not being suggested here as an alternative
.to their work but rather as an addition.. Also, just as the modern cognitive
..psychologists have elucidated certain ideas useful to AJ scientists, we
~might hope that renewed efforts in animal modeling would help to clarify
- certain conceptual impediments invoiving’cébfdinaﬁed'pianﬁing'and plan
‘execution.

- 28

Acknowledgments

The author would like to thank the following people for reading an
early draft of this paper and for making many helpful suggestions:
. Richard Duda, Richard Fikes, Peter Hart, Earl Sacerdoti, CGeorgia Sutherland,

- and Jay Tenenbaum.

29

REFERENCES

" Anderson, J.'A., and G. H. Bower, Human Associative Memory, John Wiley and
Sons, New York (1974).

Duda, R. 0., P, E. Hart, and N. J. Nilsson, "Subjective Bayesian Methods
for Rule-Based Inference Systems,' SRI Artificial Intelligence
Center Technical Note 124, also in Proc. 1976 National Computer Con-
ference (1976).

Estes, W. K., "The Statistical Approach to Learning Theory,'" in S. Koch (ed.),
Psychology: A Study of a Science, Vol. 2, McGraw-Hill, New York (1959).

Fikes, R. E., '"Deductive Retrieval Mechanisms for State Description Models,”

Advance Papers of the Fourth International Joint Conference on Arti-
fieial Intelligence, Vol. 1, pp. 99- 106 Thilisi, Georgia, USSR
{September 1975),.

Fikes, R. E., P, E. Hart, and N, J. Nilsson, ''Some New Directions in Robot
Problem Solving,” B. Meltzer and D. Michie (eds.), Machine Intelligence,
Vol. 7, Edinburgh University Press, Edinburgh (1972).

Fikes, R. E., P. E. Hart, and N, J. Nilsson, 'Learning and Executing
Generalized Robot Plans,' Artificial Intelligence, Vol. 3, No. 4,
pp. 251-288 (Winter, 1972).

Fikes, R. E., and N, J. Nilsson, "STRIPS: A New Approach to the Applica-
tions of Theorem Proving to Problem Selving,' Artificial Intelligence,
Vol. 2, pp. 189-208 (1971).

Galler, B. A., and A. J. Perlis, A View of Programming Languages, ' Markov
Algorithms,” pp. 3~l11, Addison-Wesley Publishing Co., Inc. (1970).

Garvey, T., ''Perceptual Strategies for Purposive Vision," SRI Artificial
Intelligence Center Technical Note 117 (1976).

Hart, P. E., et al., Artificial Intelligence-Research and Applications, Stan-~
ford Research Institute Annual Technical Report on Project 1530, Advanced
Research Projects Agéncy, Contract DAHCO4-72-C-0008 (December, 1972).

7Hendr1x,.G.,5_Expanding the Utility of Semantic Networks Through Partitibnihg,f
“Advance Papers of ‘the Fourth International Joint Conference on Artificial -
Intelllgence, Vol 1, pp. 115—121 Tb11151, Georgla, USSR (September, 1975)

 HeW1tt C., Descrlptlon and Theoretical Ana1y51s (U51ng Schemata) of PLANNER:f
~ ‘A-language for" Prov1ng Theorems and Manipulating Models in a- Robot, MIT
" Artificial Intelligence Laboratory, Report No. AI-TR-258 (1972),

Manna, Z., and R. Waldinger, "Knowledge and Reasoning in Program Synthesis,"
Artificial Intelligence, Vol. 6, No. 2, pp. 175-208 (Summer, 1975).

30

Newell, A., "Production Systems: Models of Control Structures,” in
W. G. Chase (ed.), Visuval Information Processing, Academic Press,
New York (1973).

Newell, A,, and H. Simon, Human Problem Solving, Prentice Hall, New York
(1972).

"Nilsson, N. J., Problem-S8olving Methods in Artificial Intelligence, McGraw-
Hill, New York (1971).

Norman, D. A,, D, E. Rumelhart, and the INR Research Group, Explorations
in Cognition, W. H. Freeman and Co., San Francisco (1973).

Quillian, M. R., "Semantic Memory,' in M. Minsky (ed.), Semantic Information

Processing, M.I.T. Press, Cambridge, Massachusetts (1968),.

Raphael, B., et al., Research and Applications—~Artificial Intelligence,
Stanford Research Institute Final Report on Project 8973, Advanced
Research Projects Agency, Contract NASW-2164 (December, 1971).

Rulifson, J. ¥., J. A. Derksen, and R. J. Waldinger, QA4, a Procedural
Calculus for Intuitive Reasoning, SRI Artificial Intelligence Center
Technical Note 73 (1972).

Sacerdoti, E. D., A Structure for Plans and Behavior, SRI Artificial Intel-
ligence Center Technical Note 109 (August, 1975),

Sacerdoti, E., et al., "QLISP: A Language for the Interactive Development
of Complex Systems," SRI Artificial Intelligence Center Technical
Note 120 (March 1976).

Shortliffe, E. H., Computer-Based Medical Consultations: MYCIN, Elsevier,
New York (1976).

Waldinger, R. J., and K. N. Levitt, ''Reasoning About Programs," Artificial
Inteiligence, Vol. 5, No. 3, pp. 235-316 (Fall, 1974),.

' Winograd, T., Understanding Natural Language, Academic Press, New York (1972).

Winston, P. H., "The MIT Robot," Machine Intelligence, Vol. 7, pp. 431-463,
B. Meltzer and D. Michie (eds.), Edinburgh University Press, Edinburgh
(1972).

31

