il B

AR

STANFORD RESEARCH INSTITUTE

Menlo Park, California 94025 - U.S. A,
SN 114

RN A

September 1970

SRI - TRACE PACKAGE FOR PDP-10 LISP

by

Robert E. Kling

" Artificial Intelligence Group

Technical Note 37

{Supersedes TN 27)

SRI Project 8259

This research was sponsored by the Advanced Research Projects Agency of
the Department of Defense and was monitored by the National Aeronautics
and Space Administration under Contract NAS12-2221,



I've written a new LISP TRACE package which supercedes the
current TRACE package. Briefly, it differs from the basic LISP trace
package by: (a) having a clearer, indented printout format; (b) allow-
ing a variety of information to be suppressed or printed when a function
is traced; (c¢) allowing a user to break a function or to suppress the
tracing when a particular condition is met; (d) modifying edit[ﬂ] and
grindef[ﬂ] to be compatible with traced functions; and (e) has a
PRINTLEVEL control. To some extent these features are easier to use
than to describe. I suppose that most users will select their personal
preferred subset of those available,.

1., All the functions described below are upwards compatible with any
that are used in the system-associated TRACE package.

2. To access the package, type N when the LISP system asks whether
you want TRACE?. Then type (INC SYS: SRITRF) from within LISP,
The new package uses about 4300 free words, compared to 1800 used
by the original package. So allow 2.5K more free sotrage (or
expect 2,5K less free space available). A list of functions util-
ized in this package is bound to the atom SRITRF,

3a, All the printing done by the system is effected by a global varia-
ble, PRINTLEVEL, which is initially set to 10.

3b. When the TRACE package encounters an error or if a function is
broken, the system calls help[m] which prints a message m and then
enters a READ-EVAL~PRINTN loop. printn[s], the print function, is

responsive to PRINTLEVEL,



3c.

43,

4b.

This system sports a new format which is indented for various
levels of function calls and variable bindings, A global param-
eter named %-INDENT (which is initialized to Q) controls the
left margin position,
To trace fnl...fn;, execute (TRACE FN1 FN2 ... FNK) as usual.
All the arguments will be priqted. Consider a function fnz[x;y;z].
Suppose you only want to see the values of x and cdr(y); and you
want only to see the length of the value of fnz[x;y;z]. Then
execute
(TRACE (FN2 X (CDR Y) ; : (LENGTH FN2))}) .
The preceding example provided an instence of the general trace
format which is:
Trace[fnl; fnz; can fnk] ,
where
FNJ
fn = or (FNJ El)
or (FNJ L5 Ayt g(fnj)) .
FNJ is the name of the function to be traced. In the list format,
31 is a list of variables or functions whose values are to be
printed just before fnj is evaluated (e.,g. just as it is entered}.
£2 is a list of functions or variables to be printed just after fnj
is exited, g(fnj) represents some function of the value of fnj

which will be printed instead of the value of fnj. If 21 is empty,

a header will be printed when fnj is entered, but no argument



bindings will be printed. If £2 is emﬁty, no special :unctions
or arguments will be printed after fn‘:i is exited. If g[fnj] is
empty, the value of fnj itself will be rgturned. If g[fnj] is
specified, the name of fnj should be inserted as a token for its
value, Thus,

(LENGTH FNJ)

(CONS (CAR FNJ) (CADR FNJ))

(TESTFN FNJ T) etc.
In the non-default conditions, the elements of El and £2, and
g(fnj) are passed onto EVAL. Thus, any LISP expression compu-
table by EVAL at the appropriate location may be evaluated at
this time. The £2 device, called POSTEVAL(uation), is quite
convenient for checking the status of global parameters and
data structures that may be modified by fnj.

If fnj = FNJ, then all the arguments of FNJ are printed

when FNJ is entered and its true value is printed when it is
exited. If fnj = (FNJ zl; .Ez; g[fnj ])so that 22, or g(fnj)

l“ ”r

are specified, the ":" and ":"” must both appear in proper order

2

in the trace format.



4c,

4ad ,

4e,

4f,

If a function FN3 to be traced is compiled, the TRACE routine will
respond with

(FN3 15 A COMPILED FUNCTION: ARGS = ?7) .
Enter a list of function arguments, Thusﬁ to trace subst[x;y;z],

type (X Y Z) when asked for an argument list,

To untrace fnl...fnk execute (UNTRACE FN1 FN2 ... FNK). When é
function is traced its name is added to the global wvariable ALLTR.
(UNTRACE ALLTR) will untrace everything.

The functions which are called by the TRACE package in tracing a
function may not themselves be traced. These functions include:
MAPC, MAPCAR, LENGTH, SUBl, ADDl, PLUS, *DIF, SUBST, CAR, CDR,
GET, GETL, and CADADR.

The tracing functions are heavily error protected with errsetlsl,
When an error occurs during tracing the message (HELP CONTROL) is
printed and you have access to EVAL with variable bindings as
saved local to the error location. In order to uplevel to the
bindings as they are stored at the time the last traced function
was entered, type (ERR). Successive evaluations of (ERR) will
unwind you step-by-step through each level of traced-function
calls. A control G will bring you to the top-level eval. After
exiting from an error-interrupted trace, execute (RESET) to
reintialize varilable bindings and restore certain global tracihg

parameters. Warning' Do not evaluate (RESET) within the TRACE

package, but hit control G and exit to the top level first.



5a.

Sb.

Ga .

6b,

7a.

Th,

TC.

To trace fn only when 1t 1s called by fnl.‘.fnk, execute
{TRACEIN FN FN1 ... FNK) .
For example, to trace memqlx;£] only when it is called by testfnll

and testfn2[] execute

(TRACEIN MEMQ TESTFN1 TESTFN2) .

If you want to see only x and length (£), execute

(TRACEIN(MEMQ X (LENGTH L); :) TESTFN1 TESTFNZ2) .
To deactivate the tracein feature, for MEMQ, execute
(UNTRACEIN MEMQ) .
To still trace memglx, 2] within testfn2[], execute
(UNTRACEIN (MEMQ TESTFN1)) .

If you only want to see a function's trace print when some predi-
cate p is satisfled, then execute trshowlfn; pl] for each function-
predicate pair. For memqlx;g] above,

{TRSHOW MEM@ (LESSP(LENGTH L) 10))
will only show a trace of MEMQ 1if length [g] < 10,

trunshow[fnl;fnz;fn ...] reversos the effects to trshow [fn; pl

3

for fn fnz, fn

g "

I've written a simple break feature that stops the system when a

ll

specified function 1s entered and calls the HELP program. Execut-
ing breaklfn; pl] will halt fn upon entering if p is true. A’
message (FN BROKEN) 1s printed and the user has access to EVAL
with the PRINTN feature, A broken function is halted just after
its arguments are bound to the LAMBDA variables and are evaluated.
To exit from a break, type OK.

Unbreak[fnl;fnz;...] will unbreak the listed functions.

All the functions which are broken are stored on a list bound to

ALLBRK ,

(]



8a,

8b.

8c.

tracetl 4] has been modified in several ways:

(1) The output format for SET-SETQ tracing is of the form:

var + value; e.g. X + 3.

(2) GET, GETL, REMPROP, and PUTPROP are traced along with SET

\ and SETQ. Getlnam; propl prints out as: PROP(NAM) = VALUE.

If either prop or nam are on the list ALLSET the preceding
printout will occur.

(3) The tracing may be turned off without having to reinsert
list of atoms to be traced.

(TRACET) will start the SET—SETQ—GET...'tracing;

(TRACET Al A2 A3 .,.) will trace cach of Al, A2, A3...

(TRACET T) will turn the tracing on if it has been turned off.

(UNTRACET) destroys the tracing list ALLSET and turns off the

tracing system.

(UNTRACET Al A2 ...) untraces Al, A2 ...

(UNTRACET T) suspends tracing printouts but does not destroy the

reference list.

Tracet[g] will now allow printing some function of a traced variable

setting instead of the actual setting itself. If settings of X1

are traced and you want to see g(x) printed instead of the value
of X1, execute (TRACET(X(GX1))). The SET-SETQ-GET printing will
then print ocut (G X1) ~ value. This feature is particularly handy

for following the growth of long lists.

If a function is aborted by a LISP error during tracing, type
%-WHERE to find your location, e.g. (FN3 EVALUATION), etc. Other-

wise, the actual break location may be confusing. Remember, all



10a.

10b,

10c.

11,

12,

13.

your bindings are intact in case of error troubles.

I've modified edit to work with traced functions. The SMILE

function Edit[L] has been modified to allow a user to change

an arbitrary number of variables at once. Now one may execute:
(EﬁIT FN3 X X1 Y Y1 Z2 Z1)

to substitute X1, Y1 and Z1 for X, ¥, and Z respectively.

Previously this required three commgnds.

Grindef[ﬂ] has been modified to work with traced functions. 1In

the past, grindef[fn] would printout the definition of trace[ﬂ]

as well as the definition of fn. Now it works properly.

When performing 1/0, be sure that variable tracing is turned off,

Otherwise, a variable used by your program that is identical in

name to a traced variable e.g. x, £, etc. will print out on tape

or disk a value of x whenever it is bound.

The present system is available in symbolic form and compiling

has not yet been attempted. A user who wants listings for com-

pilation purposes or his own use will find a complete list of

functions bound to the atom SRITRF;

All these features are mutually compatible. No doubt hidden bugs

are still lurking within the code. I1'd appreciate a printout

associated with any errors. Or, more effectively, SAVE your sys-

tem at the time a peculiar error occurs and I'll be able to debug

it quickly.

1'd appreciate any comments or suggestions regarding the ease or

difficulty of using this system,



