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1 INTRODUCTION

The frame problem has taken on new significance during recent
attempts to develop artificially intelligent systems. The problem deals
with the difficulty of creating and maintaining an appropriate informa-
tional context or frame of reference' at each stage in certain problem-
solving processes. Since this is an area of current research, we are
not prepared to present a solution to the frame problem; rather, the
purpose of this paper is to sketch the approaches being pursued, and to
invite the reader to suggest additions and improvements.

Although broader interpretations are possible, we think of an
"artificially intelligent system' as meaning a programmed computer, with
associated electronic and mechanical devices (e.g., a radio-controlled
robot vehicle and camera), that is intelligent in the sense defined by

(1) *
McCarthy and Hayes:

"... we shall say that an entity is intelligent if it has an
adequate model of the world (including the intellectual world of
mathematics, understanding of its own goals and other mental
processes), if it is clever enough to answer a wide variety of
questions on the basis of this model, if it can get additional
information from the external world when it wants to, and can
perform such tasks in the external world that its goals demand
and its physical abilities permit."

Reference (2) discusses the research significance of attempting to build

such an intelligent robot system.

. * References are listed at the end of this paper.



The intelligent entity, as defined above, will have to be able to
carry out tasks. Since a task generally involves some change in the
world, it must be able to update its model so that it remains as accurate
during and after the performance of a task as it was before. Moreover,
_:itrmust be able to EEEE how to carry out a task, and this planning process
usually requires keeping "in mind," simultaneously, a variety of possible
actions and corresponding models of the hypothetical worlds that would re-
sult from those actions. The bookkeeping problems inveolved with keeping
track of these hypothetical worlds account for much &f the difficulty of
the frame problem.
i1 THE FRAME PROBLEM

We shall illustrate the frame problem with a simple example. Suppose
the initial world description contains the following facts (expressed in
some suitable representation, whose precise form is beyond our immediate
concern) ;

(F1) A robot is at position A,

(F2) A box called Bl is at position B.

(F3) A box called B2 is on top of Bl.

(F4) A,B,C, and D are all positions in the same room.

Suppose, further, that two kinds of actions are possible:

(A1) The robot goes from x to y, and

(A2) .The robot pushes Bl from x to y,
where x and y are in {A,B,C,D]. Now consider the following possible tasks:

- Task (1): The robot.should be at C.
This can be accomplished by the action of type Al, "Go from A to C."

After performing the action, the system should "know’ that facts F2



through F4 are still true, i.e. they describe the world after the action,
but F1 must be replaced by

(F1’) The robot is at position C.

Task (2): Bl should be at C,
Now a "push" action must be used, and both ¥1 and F2 must be changed.

One can think of simple procedures for making appropriate changes
in the model, but they all seem to break down in more complicated cases.
For example, suppose the procedure is:

Procedure (a): 'Determine which facts change by matching the task

specification against the initial model .”

This would fail in task (1) if the problem solver decided to get the
robot to C by pushing Bl there (which is not unreasonable if the box were
between the robot and C and pushing were easier than going around), thus
changing F2.

Procedure (b): "Specify which facts are changed by each action

operatOr."

This procedure is also not sufficient, for the initial world description
may also contain derived information such as

(F6) B2 is at position B,
which happens to be made false in task (2).

More complicated problems arise when sequences of actions are
regquired. Consider:

Task (3): The robot should bhe at D and, simultaneously, B2 should

be at C.

The solution requires two actions, 'Push Bl from B to C" and "Go from C

to D," in that order. Any effective problem solver must have access to



the full sets of facts, including derived consequences that will be true
as a result of each possible action, in order to produce the correct
sequence.

Note that the frame problem is a problem of finding a practical
solution, not merely finding a solution. Thus it resembles the famous
traveling salesman problem or the problem of finding a winning move in
a chess game, problems for which straightforward algorithms are known
but usually worthless.

(1)

McCarthy and Hayes divide intelligence into two parts: the

epistemological part, which deals with the nature of the representation

of the world, and the heuristic part, which deals with the problem-solving
mechanisms that operate on the representation. They then proceed to con-
centrate upon the epistemological questions related to several aspects of
intelligence (including the frame problem). Here, on the other hand, we
are concerned with constructing a complete intelligent system, including
both the world representations and the closely related problem-solving
programs. In the following we shall assume that the representations are
"basically in the form preferred in Ref, (1), namely sets of sentences in a suit-
able formal logical language such a predicate-calculus; and we shall
describe candidate organizations for the "heuristic part,” i.e. the
problem solver, of an artificially intelligent system that can cope with
the frame problem.

IIT CURRENT APPROACHES

A, Complete Frame Descriptions

A frame can generally be completely described by some data

structure, e.g. by a set of facts-—-expressed as statements in a predicate



calculus. If we think of each such frame as an object and each possible

action as an operator that can transform one object (frame) into another,

then we may use a problem-solving system such as GPS(S) for attempting

to construct an object for which the desired goal conditions are true.
Unfortunately, when the data base defining each frame reaches a non-trivial
size, it becomes impractiical to generate and store all the complete frame-
objects, For example, suppose each possible frame is defined by 1000 elementary
facts, an average of six different actions are applicable and heuristically
plausible”in any situatign,_and a typical task requires a sequence of‘fpur
actions——-not unreasonable assumptions about a simple robot system. Then the
search tree of possible frames may have about 1000 nodes; it is not practical to
store 1000 facts at each node. If each action causes changes in, say,

three facts, then storing just the change information at each node EE
practical--provided appropriate bookkeeping is done to keep track of which

of the original facts still holds after a series of actions. This book-

keeping seems to require considerable program structure in addition to

(and quite separate from) the basic object, operator, and difference struc-—

ture of a GPS-type system. The following approaches are concerned with this

new. bookkeeping problem.

B. State Variables

One way to keep track of frames is to consider each possible
world to be in a separate state and to assign names to states., In
this formulation, actions are state transition rules, i.e. rules for
transforming one state into another. Since action rules are generally
applicable to large classes of states, the description of an action can

contain variables that range over state names.



Green describes an approach of this kind in detail in Ref. (4).
Each fact is labeled with the name of the state in which it is known to be
true. Additional facts that are state—-independent describe the transdtional
effects of actions. For example, if S is the name of the initial state

0

and At(ob,pos,s) is a predicate asserting that object ob is at position

pos in state s, then the conditions of the previous:example may be:partially. . ...

defined by the following axioms:

(Gl) At(Robot, A, SO} (from F1)
(G2) At(Bl1, B, SO) (from F2)
(G3) Box(Bl) A Box(B2) (Bl and B2 are boxes)

(G4) (Vx,y,x) [At (Robot,x,s) DO At(Robot,y,go(x,y,s))]1(from Al) .

At this point some explanations seem in order. Box(x) asserts
that x is a box. Perhaps it would have been more consistent to write, e.g.,
Box(B1, SO), because we only know that Bl is a box in the initial state.
However, we do not contemplate allowing any actions that destroy box-ness,
such as sawing or burning, so we could add the axiom (Vs)Box(Bl,s). Since
we would then be able to prove that Bl is a box in all states, we suppress
the state variable without loss of generality.

Each action, in this formalism, is viewed as a function. One
argument of the function is always the state in which the action is applied,
and the value of the function is the state resulting after the action. Thus,
e.g., the value of go(A,C,SO) is the name of the state achieved by going to
C after starting from A in the initial state.

The appeal of this approach is that, if we have a thecrem-proving
program, no special problem—-solving mechanisms or bookkeeping procedures

are necessary. Action operators may be fully described by ordinary axioms



{such as G4 for the go operation) and the theorem—-proving program, with
its built-in bookkeeping, becomes the problem solver. For example, task (1)
may be stated in the form, "Prove that there exists a state in which the
robot is at C," or in predicate calculus, prove the theorem:

€)) #s) At(Robot,C,s) .
From (G1) and (Gr), we can prove that (%) is indeed a theorem. By answer
tracing during the proof (Ref. (5)), we can show that s = go(A,C,SO), which
is the solution.

For more complex actions, however, the major problem with this

approach emerges: After each state change, the entire data base must be

reestablished., We need additional axioms that tell not only what things

change with each action, but also what things remain the same., For example,

we know that Bl is at B in state 5_ (by G2), but as soon as the robot moves,

0
say to state go(A,C,SO), we no longer know where Bl is! To be able to
figure this out, we need another axiom, such as

(¥x,y,u,v,s) [At(x,y,s) A x # ROBOT 2 At(x,y,golu,v,s))] .
("When the robot goes from u to v, the object x remains where it is at y.")
Thus a prodigious set of axioms is needed to define explicitly how every
action affects every predicate, and consilderable theorem-proving effort
is needed to "drag along' unaffected facts through state transitions.
Clearly this approach will not be practical for problems inveolving many
facts,

C. The World Predicate(s)

Instead of using a variety of independent facts to represent
knowledge ahout a state of the world, suppose we take all the facts about

a particular world and view the entire collection as a single entity, the



model IN. We may then use a single predicate P, the "world predicate, '
whose domains are models and state-names, P(n,s) is interpreted as meaning
that s is the name of the world that satisfies all the facts in M. One
possible structure for I is a set of ordered n-tuples, each of which rep-
resents some elementary relation: e.g., {At, Robot, A) and {At, BI, BY are
elements of the initial model, mi'

The initial world is defined by the axiom P(mi,so) {except
that the complete known contents of mi must be explicitly given). We
can now specify that an action changes a particular relation in M, and

does not change any other relations, by a single axiom, e.g. the go

action is defined by the axiom

(Fx,y,w,s) [P({{At,Robot,x),w},s) DP({{At,Robot,y) ,w},g0(%x,y,s)) ] .
Here w (read 'w-bar') is a variable whose value is an indefinite number
of elements of a set, namely all those that are not explicitly described.

This approach preserves the advantages of the previous state~

variable approach; namely, the problem sclving, answer construction, and
other bookkeeping can be left to the theorem prover. In addition, proper-
ties of the model are automatically carried through state changes by the
barred variables. On the other hand, several difficulties are apparent:
theorem-proving strategies may be grossly inefficient in the domain of
problem solving; the logic must be extended to include domains of sets and
n-tuples; complex pattern-matching algorithms will be needed to compare
expressions containing variables that range over individuals, n—-tuples,
sets, and indefinite subsets; and the fact that properties of the world
are stored as data, instead of as axioms, constrains the problem-solving
process by restricting the class of inferences that are possible. Further

study is necessary to determine the feasibility of this approach.



7
D. Contexts and Context Graphs( )

Suppose we let a state correspond to our intuitive notion of
a complete physical situation. Since the domain of our logical formalism
includes physical measurements such as object pesitions, descriptions,
etc., every consistent statement of first-order logic is either true or
false for every state. We think of each such statement as a predicate
that defines a set of states, namely those for which it is true. We
call such a get of possible states the context defined by the predicate.

We shall find it convenient to allow certain distinguished
variables, called parameters, to occur in predicates. Since each such
predicate with ground terms substituted for parameters defines a context,
a predicate containing parameters may be thought of as defining a family
of possible contexts-—and each partial instantiation of parameters in
the predicate defines a subfamily of contexts (or, if no parameters
remain, a specific context) .

For example, the predicate At(B1,B) defines a context (the
set of all states) in which object Bl is at position B. If x and y are
parameters, At(x,y) defines the family of contexts in which some object
is located any place. At (Bl,y) is a subfamily of this family in which
the object Bl must be located at some (as yet unspecified) place.

A problem to be solved is specified by a particular predicate

called the goal predicate. The problem, implicitly, is to achieve a

goal state, i.e., produce any member of the context defined by the goal
predicate.
An action will consist of an operator name, a parameter list,

and two predicates—-the preconditions K and the results R, In addition,




any of the elementary relations in the preconditions may be designated
as transient preconditions. For example, the go action is defined by

name parameters

Fatn Fomban

go (X:Y)
K{At(Robot,x) | At(Robot,y)}R ,

where underlining designates a transient condition., Each action operator
thus corresponds to a family of specific actions. An action is applicable
in any state that satisfies K; when an action is applied, the resulting
state no longer need satisfy the transients but must satisfy R.

In this approach, the conjunction of predicates in the robot's
model of the world is an initial predicate 1, defining as an initial con~
text the set of all states that have, in common, all the known properties
of the robot's current world, The goal context, defined by a given goal
predicate, is the set of satisfactory target states. When an operator
is applied in a2 context, it changes the defining predicate (roughly, by
deleting transients and conjoining results), thereby changing the context.
The problem—solving task is to construct a sequence of operators that
will transform the initial context intoc a subset of the goal context.

Any context that can be reached from the initial context by
a finite sequence of operators is called an achievable context. Any
context from which a subset of the goal context can be reached by a
finite sequence of operators is called a sufficient context. The main
task may be restated, then, as finding an operator sequence to show
that the goal is achievable, or that the initial context is sufficient,
or, more generally, that some achievable context is a subset of some

sufficient context (and therefore is itself sufficient).

10



The main loop of the problem solver consists of two steps:

(1) Test whether any known achievable context is a subset
of any known sufficient context. If so, we are done.

(2) Either generate a new achievable context by applying
some operator in a known achievable context (”working
forwards ), or generate, as a new sufficient context,
one that would become a known sufficient context by
the application of some operator (”working backwards ') .
Then return to step 1 to test the newly generated con-
text.

An advantage of this approach is that all states and all
properties of operators are defined by first-order predicates, so a
standard theorem—-proving program can do most of the work of testing
operators and results and selecting values of parameters. On the other

hand, a separate data structure, called a context graph, is needed to

keep track of the trees of achievable and sufficient states and the
operators that relate their nodes. For example, suppose we wish to
get from A to D in the directed graph:

B c D

r E

We shall abbreviate by 4 the predicate that gives the graph's topology:
A7 = Path(A,B) ‘A Path{(B,C) A Path(C,D) A Path(A,F) A Path(E,D) .

The initial predicate is I = At(A) A & . The goal predicate is G = At(D).

We shall define the operator go, for this problem, by:

11



ED(XrY)

Path (x,¥y) At(y)
At (%)

The operator is applicable in context I only if we can prove

that

x,y) [I D At(x) A Path(x,y}]
is a theorem. The proof can be done by resolution with answer tracing.
The above statement can be shown to be a theorem when x = A and y is
either B or ¥, Therefore, the go operator can be used two ways to generate
new achievable contexts Cl and C2, with corresponding predicates

P81 =4&1ﬁ At(B), P02 =42'A At(F). To keep track of actions and instantia-

tions, we shall draw the context graph:

B) Cl

go(As

go (A,F) o2
Similarly, from Cl we can prove the applicability of go(B,C), which, when

appl:_ed ) gives Cc3
= /\ t (

To illustrate working backwards, consider whether the result of a go

implies G. The relevant problem for a theorem prover is

@y) [At(y) 2 At (D) ] .
This is trivially true if ¥ = D, so any state that satisfies the pre-
conditions of the operator go(x,D) is sufficient (because the operator
will then be applicable, and will produce the goal). Thus a new sufficient

context is given by the preconditions,

PC4 = At{x) AN Path(x,D) .

12




(Note that C4 is really a family of contexts, because of the parameter

x.) The context graph is now:

g
1 c4 gO(XJD) G
€o
(-
Lay~cz

Finally, the theorem prover can show that

o =
PCS PC4 when x C ’

completing the solution.

Most problems are considerably more difficult than the above
example because of several complications. Suppose in trying to work
backwards from G (using an operator Op with preconditions K and results
R) we find that we cannot prove R 22 G, but instead discover a statement
S such that RA 8§22 G. We may still work backwards with Op, but the new
sufficient context is defined not by K alone but rather by K A S.
Furthermore, some extra bookkeeping must remind us that 5 may not be
disturbed, in a valid solution, by applying Op--e.g., no transients of
Op may appear in S. Similar additional subgoals—--and bookkeeping com-
plications——arise from each incomplete attempt to prove that an achiev-
able context is contained in a sufficient context.

Additional complexities arise from dependencies. That is,

when an expression E is deleted by a transient during an action, other
expressions that were deduced from E in previous contexts can no longer
be guaranteed to be true in new contexts. Thus each deduced expression
is said to depend upon all its ancestors, adding to our growing burden

of bookkeeping problems.

i

13

b



On the other hand, the context graph can take care of much
of the bookkeeping automatically. Each logical expression need only be
stored once, with notations telling in which contexts it was created and
destroyed, rather than being either copied or rederived from context to
context. Finally, if predicates of achievable contexts and operator
results are stored in clause form, and predicates of sufficient con-
texts and operator preconditions are stored in negated clause form,
preliminary experiments show that most of the nuts-and-bolts work of
attempting solutions and generating new contexts can be done in a
straightforward manner by an existing resolution-type theorem-proving
program,

E. Other Approaches

Several other approaches to the frame problem have been
suggested, although few have been worked out in sufficient detail to
test on a computer.

Richard E. Fikes at SRI is developing a system whose formal
framework is similar to that of D above ("contexts and context graphs'),
but which does not use resolution techniques. Instead, proofs are
strongly dependent upon the semantics of the logic, and the problem
solver proceeds by a heuristic, goal-directed, case—analysis approach.
This work is still in an early stage of development.

Eric Sandewall at Stanford is extending some ideas suggested
by John McCarthy for formalizing the concepts of causality and time
dependence, using a method proposed by J. Alan Robinson for embedding
higher order logic in first-order predicate calculus. The resulting

system provides an interesting model for inevitable sequences of events

14



(e.g. "if it is raining then things will get wet, ) but may not be as
useful for describing alternative possible actions by an external agent
(e.g., the robot).

Methods for proving theorems in higher order predicate calculus
are being developed in several places, and the use of this more powerful
formalism may eventually vastly simplify our tasks. Finally, McCarthy
and Hayes(l) suggest some other approaches including modal logics and
counterfactuals, but the details have not been extensively explored.

v CONCLUSIONS

This paper has described the frame problem and the principal
methods that have been proposed for solving it.

Let us review the approaches listed above. A, complete frame and
frame—transition descriptions, was simply a stage—setting "straw man'
that we would not consider actually using. B, the logic-cum-state-
variable approach, is beautifully elegant for "toy" problems, but both the
representational effort and the theorem—-proving effort grow explosively with
problem complexity. C, the world predicate idea, preserves some of the
elegance of approach B while carrying along necessary frame information
implicitly; however, it places a burden on theorem—-proving abilities in
new domains and requires an awkward use of two levels of logical repre-—
sentation (that is, relations among the n-tuples in the model must be
defined in terms of the world predicate), so that the practicality of
the approach is open to serious question. Approach D, the use of contexts
and context graphs {(without explicit state names in the logic), is a more-
or-less brute-force attempt to combine the use of first-order theorem-

proving methods with a GPS~like structure of subgoals and operators;
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although the bookkeeping problems are complicated, they seem to be tractable,
so that the approach is reasonably promising. Finally, under E we mentioned
several interesting ideas that warrant further exploration before they can
be meaningfully compared with the other approaches.
Until now most research in problem solving has dealt with fairly

static situations in narrow subject domains. As we become interested
in building complete artifiecially independent systems, a new kind of
problem—~solving research emerges: We must study how to solve problems
in an environment containing a large store of knowledge, while consider-
ing the possible effects of a variety of sequences of actions. This
paper has described some of the first exploratory steps into this
important area of research.
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