A SIMPLE SENSOR TO GATHER THREE-DIMENSIONAL DATA

Technical Note 249

July 17, 1981

By: Robert C. Bolles, Senior Computer Scientist
Jan H. Kremers, Computer Scientist
Ronald A. Cain, Systems Programmer

Industrial Automation Department
Computer Science and Technology Division

SRI Project 1538

= International

ol N
AT

SR

International

SN WA
SN P

333 Ravenswood Ave. s Menlo Park. CA 94025
(4151 858-6200 » TWX: 910-373-2046 » Telex: 334 435

&



ABSTRACT

A simple triangulation—based range sensor and its calibration
procedure are described. The sensor consists of a projector that
produces a plane of light, a camera that observes the intersection of
the plane of light and objects in the scene, and a computer that
calculates the x-y-z positions of polnts along the intersection.
Sensors of this type have been used in several research laboratories,
but the mathematlcal characterization of these sensors has not been
widely disseminated. In this paper straighforward procedures are
presented for callbrating a camera, computing the equation of a plane,
and combinling a camera calibration and an equation of a light plane to
form a '"sensor" matrix. The sensor matrix can be used to compute the

x-y-z positions for points along the Intersection efficiently.
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I INTRODUCTION

Interpreting a two—dimensional image of a three-dimensional scene
is difficult for a computer for two reasons. First, the three—
dimensional information 1s compressed into two dimensions; second, the
intensities iIn the image are complex functilions of several factors——such
as the positions and orientations of the surfaces in the scene, the
reflectances of the surfaces, and the positions and intensities of the
light sources. People overcome these difficulties in complex,
imperfectly understocd ways—-—including stereo processing and a well-
developed set of models that anticipate what exists in the world and how
it should appear. Although progress has been made toward emulating this
type of processing in a computer [1-6], practical computer vision
systems for the foreseeable future will either avoid three-dimensional
ambiguities by concentrating on two-dimensional tasks or will use

special sensors to extract three-dimensional information directly.

In this paper we describe a sensor that uses a camera and a
projected plane of light to gather three-dimensional information (see
Figure 1)}. This type of sensor has been used in several laboratoriles
[7-11], but the supporting mathematics 1s not widely known outside these
institutions. We at SRI have used such a sensor to inspect three-
dimensional parts [12], provide position and orientation feedback for a

robot arm [10], and gather range descriptions of stacked industrial
parts [13].

The sensor uses triangulation to compute x-y—z positions for points
on the sensed objects. Triangulation is required because 1t 1s not
possible to determine the x-y-z position of a point from just its ilmage
position. It 1Is only possible to determine a ray in space on which the
point must lie. This limitation 1s due to the fact that information is

lost in the projection of a three~dimensional scene onto a two-



{a} DESIGN OF A RANGE SENSOR BASED ON A CAMERA AND (b} IMAGE OF THE INTER-
A PLANE OF LIGHT SECTION OF THE LIGHT
PLANE ANO THE OBJECTS

FIGURE 1 A SIMPLE RANGE SENSOR

dimensional image. To overcome this limitation the sensor uses a plane
of light to locate a unique point along each ray in space. Considered
in ancother way, the reascn the sensor can compute three-dimensional
information 1s that it is possible to establish a one-to—one
correspondence between polnts in the image and points in the light
plane. Knowing the position of the light plane in some coordinate
system, such as that of the world or of the camera, makes it possible to

convert positions on the plane to x-y-z positions in that coordinate

system.

In this paper we represent a camera’s projective transformation by
a 4 X 4 "camera" matrix that maps three-dimensional world coordinates
into two-dimensional image coordinates (see Figure 2). Both sets of
coordinates are represented in homogeneous coordinates (see Appendix A

for an introduction to the latter). The mapping is as follows:



s*y all al2 al3 al4 X

s*v \ = [ a2l a22 a23 a24 |\ * { y

8%y a3l a32 al3 al4 z (1)
8 a4l ad? a43 abd4 1 s

where (x,y,z) is a world point, the aij’s are the components of the
camera matrix, and (u,v) 1s the corresponding image point. This
equation lmplies the following expressions for the coordinates of the
lmage point:

all*x + al2*y + al3*z + al4

u = -—- e (2)
ab4l*x + ad2*%y + ad3*z + add

aZl*x + a22*y + a23%*z + a24
Vv & = s s s s s e e s e —— . (3)
a4 l*x + a42*y + aldld*z + a44

The ray in space defined by an image point and the lens center can be
represented as the intersection of two planes, the u and v planes in

Filgure 3. The equations of these can easily be derived from the

expressions for u and v:

0 (4)

1

(all=u*a4l)*x + (alZ-u*a42)*y + (al3-u%*aé3)*z + (albd—-u*asd)

0. (5)

]

(aZl-v*adl)*x + (a22-v*ad2)*y + (a23-v*ai43l)*z + (aZ4d—-v*ad4)

As mentloned above, it 1s not possible, without some additioral
information, to determine uniquely the three-dimensional position of a
peint in the world corresponding to a point in an ilmage. One adequate
plece of information is provided 1if the poiht in the world is known to
lie in some plane in the world. Then the point’s three-dimensional
position is uniquely determined as the intersection of three planes: the
two defined by its position in the image and the one known a priori (see
Figure 3). 1In particular, if the equation of the a priori plane is
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bi*x + b2*y + bl%*z + b4 = 0 , (6)

then the x-y-z position of a point appearing at (u,v) in the image and
lying in that plane is determined by the solution to the following three

equations:

bl*x + b2*y + b3*z + b =0 (7)
(all-u*a4l)*x + (al2-u*a42)*y + (al3—u*aé3)*z + (ald—u*ad4) = 0 (8)
(a2l=v*a4l)*x + (a22-v*abd2)*y + (a23-v*ad3)*z + (aZé—v*abd4) = 0, (9)

which can be represented as

bl b2 b3 X ~bé4
(all=u*a4l) (al2-u*a42) (al3—u*asl) * |y | = | (u*ad4-ald) | (10)
(aZ2l—v*a4dl) (aZ2-v*aéd2) (a23-v*a43l) z (v*adb4-a24)

Therefore, (x,y,z) can be computed by inverting the 3 X 3 matrix and
multiplying the vector on the right side of the equal sign by the

inverse.

This solution for (x,yv,z) can be applied to some Interesting
speclal cases. For example, 1f one of the coordinates of a point in the
world is known, that constraint can be represented as a plane
perpendicular to one of coordinate axes and Equation (10) can be used to
solve for the other two coordinates of the point. Im Figure 2, since
the top of the block is at z = 5.0, Equation (l0) can be used to compute

the x-y-z positions for any poilnt on the top.

Inverting a 3 X 3 matrix for each point to be computed is
computationally expensive. Fortunately, it is possible to symbolically
invert the matrix in Equation (10) and combine it with the vector on the
right so that (x,y,z) can be computed from (u,v) by simply performing
the following matrix multiplication:



s¥x mll ml2 ml3 u

s*y | = m2] m22 m23 |*{ v

s*z m31 m32 m33 1 (11)
S m41l m42 mé43

and the three divisions required by the homogeneous representation.
Therefore, in this form there are only eight multiplications, eight

additions, and three divisions required to compute each x-y-z position.

In this paper we describe how to compute a matrix of mij’s as in
Equation (11) for a simple range sensor that uses a projected plane of
light as the known plane in the world. We refer to the matrix of mij’s
as the "sensor" matrix, since it depends both on the position of the

camera and the position of the light plane.

The intersection of the light plane and the objects appears as a
broken line in the camera’s image (e.g., see Figure 1(b)). Since the
camera is not in the plane of light, the position of the intersection in
the image is a function of the height of the object. For the
arrangement in Figure 1, the higher the object, the farther right is the
intersection. The analysis of an image, such as the one shown in Figure
1{b), produces a sequence of x-y-z positions for points along one slice
through the scene. HMore information can be gathered by moving the
objects in front of the sensor. It 1is also possible to mount the light
source and camera on an arm and measure positions relative to the arm.
This latter approach has been used at SRI [10], the National Bureau of

Standards [11], and elsewhere.

In the remainder of this paper we describe a straightforward

procedure for calibrating the sensar, discuss some practical

considerations in using it, and conclude with some ideas for extending

it to create a fast, multislice range sensor.



II SENSOR CALIBRATION

The calibration of the range sensor is performed in three steps:

* (Calibration of the camera.
* Calibration of the light plane.

* Formation of the sensor matrix.

The calibration process 1s essentially the same, whether the sensor is

fixed or mounted on an arm.

A. Calibration QE the Camera

Calibrating a camera generally involves determining 1ts
characteristic parameters, such as 1ts position, orientation, and focal
length (see Figure 2). These parameters can be measured directly or
computed from the observed positions of known objects (e.g., see [l4-
16]). However, for the range sensor and many other applications the
actual distances and angles are not important; only the abllity to map
world points Inte¢ image points 1s required. A third method, therefore,
which 1s often easler to perform, 1s sufficient. In this method the
camera matrix is computed directly from the image positions

corresponding to known world points.

One way to lmplement this method 1s to move a special calibration
target to a set of known positions in the camera’s fleld of view and
then use the observed positions, together with thelr world positions, to
form a set of linear equations involving the unknown camera matrix
elements (l.e., the aij“s). These equations can be derived direectly
from Equations (2) and (3); however, thelr solution is simplified if the
form of the camera matrix (in Equation (1)) is modified slightly. 1In
particular, since w is not used, it 1s evident that the third row in the

matrix is unnecessary. Furthermore, since homogeneous coordinates



explicitly include a scale factor, any constant multiple of this matrix
represents the same transformation. Therefore, without loss of
generality, one of the remalning twelve elements can be arbitrarily set
to 1.0. As a result, the task of computing the matrix is reduced to

computing the eleven aij’s in the following equation:

s*y all al2 al3 alé4 x

s*y = [ a2l a22 a23 aZ4 * [y

s*W 0 0 1 0 z (12)
5 a4l a42 a43 1 1 .

After this simplification, the linear equations, derived from
Equations (2) and (3) and involving the known world coordinates, their
corresponding image locations, and the camera matrix elements, take the

form

x*all + y*al2 + z*al3 + al4 - u*x*asl = u*y*a42 -~ u*z*as3d = u - (13)

x*a2l + y*a22 + z%*al23 + a24 = vix*adl - v¥y*ad2 - v*z#a43 v .{l4)
Each world-to-image correspondence implies two constraints on the
eleven alj's. Sets of these equations can be solved by applying the
procedure described in Appendix B to solve an overconstrained set of
linear equations. The set of 2*M constraints implied by a set of M
world-to—image correspondences can be represented in the following

matrix equation:

x1 yl 21 1 0 0 00 —ul*xl =ul#*yl -ul*zl all ul
0 0 00 x1 yl 21 1 —-vl*xl —vl*yl =-vl*zl * fal2z |\ = | vl
. al3 .
. al4 . (15)
. aZl .
0 0 00 —ul*xM —uM*yM —uM*zM . ulM

1
00 x4 yM zM 1 ~vM*AxM —vM*yM -yM¥zM . vM .
a43
The best least-squares estimates for the aij’s can be computed from

Equation (I5) by computing the pseudoinverse of the 2M X 11 matrix and



multiplying it by the column vector on the right (see Appendix B).
Creating this 2M X 1l matrix and solving for the aij’s 1s precisely the

procedure we use at SRI.

Having computed the aij’s for the camera matrix, the camera
calibration 1s complete. Equations (2) and (3) can be used to compute
the image points corresponding to world points, Equations (4) and (5)
define the ray in space corresponding to an image point, and Equation
(10) can be used to compute the position of a world point, given an

image position and a planar constraint in the world.

This method for calibrating a camera is easy to apply and produces
a precise mapping from world to image coordinates, which 1s exactly what
the range finder needs. However, 1if the values of the individual camera
parameters are required (as in visual navigation) a different
calibration procedure is probably more appropriate, because it 1s often

difficult to decompose a camera matrix into a set of parameter values.

B. Calibration of the Light Plane

Calibrating the light plane entalls computing i1ts equation, which
can be done by locating several points on it and applying the plane
fitting procedure described in Appendix B. Equation (10), which is
based on the camera matrix, can be used to compute the world positions
of points in the light plane. For example, if the world coordinate
system 1s defined with respect to the table and a block of known
thickness is placed on the table, the top of the block then defines a
plane that can be used to determine the positions of points along the
intersection of the light plane and the top of the block. By the use of
blocks of different thicknesses, points at different helghts can be
located to define the plane of light. If the sensor 1s mounted on an
arm, the arm can be positioned at different distances from a plane in

order to measure a set of points in the light plane.

10



C. Formation of the Sensor Matrix

Given the camera matrix in Equation (12) and the equation of the
light plane in (6), the formation of the sensor matrix simply involves

evaluating the following expressions for the mij’s and filling in the

matrix:
mll=(b4*a22-b2*a24})*a43 + (b3*a24~bd4*a23)*a42 + (b2*a23-b3*a22) (16)
ml2=(b2*al4~bbs*al2)*a43 + (bd*al3~b3*al4)*as2 + (b3*al2-b2%*all) (17)

ml3=(b2*al3-b3*al2}*a24 + (bbs*al2-b2*alb}*a23 + (b3*als-b4*al3)*a22 (18)
m21=(bl*a24-b4*a21}*a43 + (b4*a23-b3*a24)*a4l + (b3*a2l-bl*a23) {19)
m22=({b4*all-bl*al4)*as3 + (b3*al4-bi*all)*adl + (bl*all3-b3*all) (20)
m23=(b3*all=-bl*al3}*a24 + (bl*ald-bd*all)*a323 + (bd*alld-b3*ald)*a2l (21)
m31=(b4*a2l-bl*a24)*a42 + (b2*a24~bs*a222)*adl + (bl*a22-b2%a321) (22)
m32=(bl*al4-b4*all)*ad2 + (bs*al2~b2*al4)*a4l + (b2*all-bl*al2) {22)
m33=(bl*al2-b2*%all)*a24 + (bs*all-bl*al4)*a22 + (b2%al4-b4*al2)*a2l (24)

m41=(b2*%a2l-bl*a22)*a43 + (bl*a23-b3*a2l)*a42 + (b3*a22-b2*a23)*a4l (25)

-+

m42=(bl*al2-b2*all)*as3 + (b3*all-bl*al3)*as2 + (b2*al3-b3*al2)*a4l (26)

m43=(b2*all-bl*al2)*a23 + (bl*al3-b3*all)*a22 + (bl*al2-b2*al3)*a2l.(27)

This completes the calibration of the sensor. Given the sensor matrix,
Equation (11} can be used to compute the three-dimensional positions of
polnts along the intersection of the light plane and objects in the

scene.

The MACSYMA system at MIT [17] was used to invert the matrix in
Equation (10} symbolically and form the expressions for the mij’s. Agin
was the first to indicate that it was possible to comblne a camera
matrix and an equation of a plane to form this type of semnsor matrix.

He gave a different derivation of the sensor matrix in [18].

11



I1I PRACTICAL CONSIDERATIORS

Figure 4 shows one implementation of this type of sensor that we
have used at SRI. Objects are mounted on an x-y table s0 they can be
moved underneath the sensor. The camera is a General Electric TN2500
with a spatial resclution of 240 X 240 pixels. The light source, which
1s not shown in the photograph, is a laser whose beam 1s spread into a
plane by a cylindrical lens. ' It is not necessary to use a laser;
indeed, we have also used a standard 35-mm slide projector with a slide
that is completely black except for one thin line. (It is easy to make
such a slide by taking a black-and-white negative picture of a thin line

and mounting the negative in a slide holder.)

FIGURE 4 AN SH! RANGE SENSOR
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One problem with range systems based on triangulation, as this one
is, is that there are '"shadow" areas caused by portions of the scene
that are not "visible" to both the camera and projector. The farther
apart these are, the larger the shadow areas. Shadow areas can be
minimized by placing the camera and projector close to each other~-but,
the closer they are, the coarser the height resolution will be.

Height resolution can be maintained by increasing the focal length of
the camera lens and reducing the field of view. Thus, there are trade-
offs between shadow area, height resolution, and field of view. The
light plane in Figure 4 is approximately sixty degrees from horizontal,

which we“ve found to be a reasonable compromise.

We calibrate the camera in this device by inserting posts of known
heights in a hole in the table, moving the table to predetermined
positions, measuring the image locations of the center of the top of the
post, and computing the camera matrix from these world-to—image pairs
(by creating and solving Equation (15)). We calibrate the light plane
by setting blocks of known thicknesses on the table, measuring the
three-dimensional positions of points in the plane {(through the use of
the camera matrix and Equation (10)), and then fitting a plane to the

measured points.

If the world points used to compute the camera matrix contain a
large constant offset (e.g., if they are distributed about (-37,48,30)),
the numerical precision of the camera calibration can be improved
by subtracting the offset from the world coordinates before computing
the camera matrix, and then correcting the matrix for this displacement.

The corrected matrix of ci1j’s 1s formed as follows:

cll e¢l2 ¢l13 cl4 all al2 al3 al4 100 -Dx

c2l c22 ¢c23 c24 =1{ a2l a22 a23 aZ4 * 010 -

c31 c32 ¢33 <34 0 0 1 0 001 =Dz (28)
chl cb2 c43 chd4 adl a42 a43 1 000 1 ,

where the matrix of aij’s was computed from the adjusted (x,y,z)’s

and (Dx,Dy,Dz) is the offset.

13



To check the camera calibration, we use the derived camera matrix
to map the post positions into the Image and then compare the observed
image positions with these predictioms. The errors are generally less
than half a pixel. We check the equation of the light plane by
measuring the distances of the points from the fitted plane. When the
field of view of our 240 X 240 camera is a temrinch square and the angle
of the light plane 1s sixty degrees from horizontal, a horizontal shift
in the image of one plxel corresponds to a change in z of approximately
208 of an inch. The relative precision of this setup is quite good,
generally less than .01 of an inch. The absolute precision is generally

less than the error associated with one pixel, which 1s .08 of an inch.

Figure 5 is a composition of 50 individually processed slices from
a pair of cylindrical castings, one lying on top of the other. Figure 6
shows examples of some of the steps entalled in processing an a single
slice. The intersection of the plane of light and an object is a
relatively thin line but, since there 1ls some thickness, it appears in
an image as a line several pixels wide. Which points in the image
should be defined to be on the plane? For simplicity, most range
acquisitlon systems that use a projected light plane have selected one
point in each row of the image (e.g., see [7]). Usually they choose the
middle pixel of the first long run of pixels that are "on." However,
since the lmages are perspective images, there may be more than one
valid intersection per row. More lmportantly, when the Intersection
line 1s horizontal in the image, the row centers are completely wrong
(see Figure 7). Since important data can be obtalned from horizontal or
almost horizontal intersections, we apply a thioning algorithm (see
[19]) to produce a center line that is independent of the intersection’s
orientation in the image. This centerline still may not lie in the
light plane, but it is close--and to a first order it is independent of

the camera’s focus and the threshold used to produce the binary picture.

14



FIGURE 5 A PICTURE CONSTRUCTED FROM 50 SEPARATE SLICES TAKEN
AT THE END OF A CYLINDRICAL CASTING

{a} THE THRESHOLDED IMAGE (b} THE FILTERED DATA {¢) THE CLASSIFIED SEGMENTS

FIGURE 6 RESULTS OF THREE STEPS tN THE PROCESSING OF AN INTERSECTION

15



FIGURE 7 EXAMPLE OF THE PROBLEM WITH
ROW-BY-ROW CENTERS

16



v CONCLUSION

The range sensor described in this paper 1s simple to set up,
relatively easy to calibrate, and quite precise. However, it only
measures the positions of polnts along one slice through a scene. There
are several ways to extend thils device to measure a reglon of the scene,
such as moving the scene in front of the sensor or scanning the light
plane over the scene. One of the most promising ideas, suggested by
Altschuler et al., 1s to project a sequence of coded patterns of planes
onto the scene and use the pattern of occurrences of an intersection
polnt to ldentify the plane producing it, which In turn specifies the
sensor matrix that converts the polint into its three-dimensional
coordinates [20,21]. Ideas such as this make us optimistic that
inexpensive, high-resolution range sensors will be available in the not-

too-distant future.
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Appendix A

HOMOGENEOUS COORDINATES

In homogeneous coordinates a three-dimensional point, (x,vy,z), is

represented as a 4-vector, (x’,y",z",s), where s is a scale factor such

that
xl yf zl
X = ---! y = ---! Z = === . (Al )
s s s

This representation makes it possible to represent a camera’s
perspective transformation, which is not linear with respect to three-—
dimensional vectors (x,v,z), as a linear operation on 4-vectors. The
advantage of representing transformations as linear operations is that

there is a well-developed theory of linear algebra that can be applied.

To get some insight into how homogeneous coordinates work, consider
Figure A-1, which is a diagram of a one-dimensional pinhole camera. The
camera has a focal length of F, which is assumed to be known. By .
similar triangles, the image position u, of a point at a distance z from

the lens center and x off the optical axis, is given by
u = ——=— . (A2)

For a two-dimensional camera there is a similar expression for the

second coordinate of the image position:
v = mm—— . (A3)

Since u and v are not linear functions of the variables x, y, and z, it

is not possible to represent them in a matrix equation such as

19



LENS CENTER AND
CRIGIN OF THE CAMERA
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FIGURE A-1 GEOMETRY OF A ONE-DIMENSIONAL PINHOLE CAMERA
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ORIGIN OF THE CAMERA COORDINATE SYSTEM

FIGURE A-2 A REVISED MODEL OF A ONE-DIMENSIONAL PINHOLE CAMERA
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u = all al2 al3 * X
v a2l a22 a23 y (Ad)
z .

However, 1f homogenecus coocrdinates are used, the perspective transform

can be represented as follows:

s*u 10 0 0 x

s*v \ ={ 01 0 O Y* /[ y

s*w 00 1 O z (A5)
s 001/F O 1 .

Performing the multiplication on the right side of this equation

produces
s*u x
s*v \ =f ¥y
s*w z (A6)
s z/F R

which implies the desired expressions for u and v shown in Equations
(A2) and (A3). The variable w in this formulation equals to F for all

values of (x,y,z) and can be ignored.

In practice, a slightly different model of the camera is generally
used that leads to a perspective matrix that is invertible, unlike the
one 1n Equation (A4). 1In the new model (see Figure A-2) the origin of
the camera coordinate system is defined to be in the image plane instead
of at the lens center. This shift of the origin leads to slightly

different expressions for u and v:

x ¥ F y *F
U = ——m—me—— V = m————— . (A7)
{z + F) (z + F)

which in turn lead to a slightly different matrix for the perspective

transformation:

21



10 0 ©
01 0 O

00 1 0 (A8)
001/F 1 .

A transformation representing an arbitrarily poaitioned camera
(that projects three—dimensional "world" points onto a two-dimensional
image plane) involves displacements, rotations, and scale changes in
addition to a perspective transformation. All of these operations are
linear and can be represented as 4 X 4 matrices that map one set of
homogeneous coordinates into another. For example, a rotation of theta

about the principal axis of the camera is

cos(theta) sin(theta)

0 0

~sin({theta) cos(theta) 0 O (A9)
0 0 1 0O
0 0 o 1

and a (Dx,Dy,Dz) displacement of the camera from the origin of the world

coordinate system is

-Dz (A10)

Since all of the transformations are linear, they can be multiplied

together to form more complex linear transformations.

A typical camera matrix is a composition of several transformations

performed in a specific order, such as

(1)
(2)
(3)

A displacement from the origin
A
A
{4) A rotation about the new x axis (i.e., roll)
A
A
A

rotation about the z axis (i.e., heading)

rotation about the new y axis (i.e., pitch)

(5)
(6)
(7)

perspective transformation

displacement from the center of the image

scale change.

22



In this paper the specific cholce of parameters and thelr assumed
order of operation are not important. Only the form of the final matrix
that can represent an arbitrarily positioned and oriented camera 1is
lmportant, and that can be characterized by the matrix in the following

equation:

s%*u all al2 al3 al4 X

s*v } = | a2l a22 a23 az4 * [y

5%y a3l a32 a3l a34 z (All)
5 a4l ad2 a4l add 1 .

A more complete description of homogeneous coordinates and their use in

camera modeling can be found in [22, 23].
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Appendix B

OVERCONSTRAINED SETS OF LINEAR EQUATIONS

Many model fitting tasks can be stated as a set of M linear
equations to be solved for N unknown parameters. For example, consider

the task of fitting a plane

al*¥ + a2*Y + a3*Z + a4 =0 {B1)

to a set of three-dimensional points {(xi,yi,zi), 1 = 1 to M., As stated
the task is to compute the four coefficients al through a4. However,
the trivial solution in which all of the al’s are zero satisfies any
number of these equations. This possibility can be eliminated by
reformulating Equation (Bl). DPividing (Bl) by a3 and relabeling

produces the following equation for the plane

bl*X + b2*Y + Z + b3 = 0 s (B2)

which can be rewritten as

X*bl + Y*b2 + b3 = -2 . {B3)

This form of the equation cannot represent a plane perpendicular to the
z axis (i.e., parallel to the x-y plane). However, if the plane is
known not to be perpendicular to the z axils, Equation (B3) is a
convenient form for fitting, because it contains three linearly related

unknowns (bl, b2, and b3) and a constant term {-Z).

Given M points that are supposed to be on a plane, each of them
contributes one constraint in the form of Equation (B3). The M

equatlons can be combined into one matrix equation
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b3 . (B4)

xM yM 1 -zM ,

x1l vl 1 bl -zl
x2 y2 1 * b2 -z2

which can be rewritten as

A*B=C . (B5)

If the data to be fitted contain fewer than three points, the
solution is underconstrained and Equation (B5) cannot be solved. If the
data contain exactly three points, A 1s a square matrix and the "exact"

solution is
3=4a"1 x¢c . (B6)

assuming the imverse of A (represented as A'l) exists, which will be

true as long as the three points are not colinear.

If the data contain more than three points, the solution is
overconstrained and Equation (B5) cannot be solved direectly, because A
is rectangular and does not have an inverse. The problem, then, is to

compute the plane that fits the data as well as possible. If the
measure of goodness of fit i{s taken to be the sum of the squares of the

distances of the points from the plane, the solution is
B = (AT%A)~1x ATx ¢ | (B7)

where AT represents the transpose of A [24]. (AT * A)"l * AT {5 called
the pseudoinverse of A. Notice that (AT % A) is always a square matrix.
For example, given twenty points that are supposed to be on a plane, A
is a 20 X 3 matrix, AT is a3 X 20 matrix, and (AT * A) is a 3 X 3

matrix, which can be inverted.

B having been computed, the equation of the fitted plane is

bl*X + b2*Y + Z + b3 = 0 (B8)
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which 1s the best least—squares fit of a plane to the data.

This fitting technique generalizes to any number of unknowns. For
example, it can be used to compute the second-order equation of two
variables that fits a set of two-dimensional points. Consider the

equation
al*XZ + a2%X*Y + a3*¥Z + a4*X + a5*Y + a6 = 0 . (B9)

Dividing (B9) by al, relabeling, and transferring the '"constant" term to

the right produces
X*Y*bl + Y2 %b2 + X*b3 + Y*b4 + b5 = ~X2 | (B10)

which contains five unknowns (bl through b5). Given M points, where
is greater than or equal to 5, the matrices A and C can be formed as
they were in the plane-fitting example and the best least—-squares
solution for the curve’s parameters (i.e., the bi‘s) is given by

Equation (B7).

This technique is a straightforward way to compute the best least-
squares set of linearly related parameters, but one has to be careful to
make sure that the linear equation represents the desired class of
functions. In the second-order—equation fitting example described
above, there are some parabolas and hyperbolas that the particular form
of the equation cannot represent. If that is not satisfactory, a
different form should be derived. If the class of functions to be
fitted is inherently nonlinear in the parameters to be computed, this
technique cannot be applied directly. However, 1t can be imbedded in an

iterative procedure to solve a nonlinear problem (e.g., see [25]).
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