November 1970

ON PROGRAM SYNTHESIS AND PROGRAM VERIFICATION

by
Zohar Manna

Computer Science Department
Stanford University

Richard J. Waldinger
Artificial Intelligence Group
Stanford Research Institute

Paper presented at the 4th Hawaii International Conference
on Systems Science, Honolulu, Hawaii, January 12-14, 1971.

Artificial Intelligence Group
Technical Note 52
SRI Projects 8721 and 8350

The research reported herein was sponsored in part by the
Air Force Systems Command, USAF, Department of Defense,
through the Air Force Cambridge Research Laboratories,
Office of Aerospace Research, under Contract F19628-70-C-
0246, and by the National Aeronautics and Space Adminis-
tration under Contract NASW-2086.

ON FROGRAM SYNTHESIS AND PROGRAM VERIFICATION

Zohar Manna Richerd J. Weldinger

Computer Science Dept. and Artificial Tntelligence Group

Stanford University Stenford Research Institute
Abstract

Certain similerities between program verification and program synthesis are
pointed out. The analogy is illustreted using a "bubble-sort" program.

Recent work has shown that automatic dedyctive
metheds may be applied to the problems of program
verification [1] and program synthesis [2]. As it
turns out, these techniques are closely related.
We demonstrete this relation using e particular ,
program.

VERIFICATION .

Consider the following progrem for "bubble-sorting"
an array & of ntl real numbers &[0],...,a[n] .
(Ignore for a moment the atteched assertions.)

The operation & « exchenge(a,i,j)} has the effect

of exchanging the contents of a[i] and a[j] . - QSTART
.) . . r
ASSERT: Ordered{a,i,n) A ‘ . (——E

{3[0]3 .. -:&[i]}S[a[i+l]J . -:5-[11]} —

—

ASSERT: Ordered{s,0,n) = m = — e == o=

ASSERT: | o e m . . e o — -
Ordered(a,i,n) A
{al0},...,alil}<fali+1],...,2[n]} A

{falo], .. -,a[j-l]}f{a[j]]

i ei-1

alj] > al[j+1] 2

a « exchange(a, i, j+1)

I

‘Figure 1. The "bubble-sort" program.

j'(——j+l

We wish to prove that this program is correct, and
that it always terminates. To say that this
program is correct is to say that when it halis,
{i} the elements of the array a are the same as
those of the initial array, but (ii)} that they
are in increasing order. It is clear that (i)
holds, since exchange(a,i,j) is the only opera-
tion applied to & , and exchange leaves the
contents of the array a unchanged except for
order. Therefore we shall concentrate on the
establishment of (ii). Imter we shall show that
the program terminates.

Following Floyd [1], we will attach the assertion
Ordered{a,0,n) to the exit ¥ of the program.

The predicate Ordered(a,k,?) is teken to mean
that the elements alk],a[k+1],...,al2] are in
increasing order. (This is considered to be
vacuously true if k > .) Floyd's method
reguires that we affix assertions to certain inter-
mediate points in the progrem, at least one point
within each loop. These asserfions describe the
situation when control passes through those points.
For example, to point & we attach the assertion

Ordered(s,i,n) A {a[0],...,a[i]}<{ali+1],...,a{n]} .
The expression {alkl],...,a[2]} represents the

set {a[m] | k <m <2} (note that this set is
empty if k >{). Furthermore, for any two sets
of real numbers 8 and T, 8 < T means that
every element of 8 1s less than or egual to any
element of T (which is vecuously true if either

8 or T 1is empty).

In order to demonstrate the correctness of the
program, we have simply to prove that when control
passes through one of the labeled points, the
values currently assigned to the variasbles satisfy -
the corresponding assertion, assuming that the
assertion corresponding to the previous point was
satisfied. This implies that if control reaches .
the exit the corresponding assertion will be
satisfied, establishing the correctness of the
program.

. We have not yet discussed the termination of the
program. We do this using the notion of the
"well-ordered" set {1]. For this program we
consider the set of pairs of non-negative integers
well-ordered {lexicographically) as follows

if and only if

either <i

1t
or i, =1, and 315;}2.

There are no infinite sequences of pairs of non-
negative integers that are strictly decreasing
under the above order. In our bubble-sort program,
the quantities 1 and i-j are non-negative
whenever control passes through point B .
-Purthermore, consider the sequence of pairs of
‘non-negetive integers constructed as follows:
whenever control passes through point £ the

,II.

current value of (i,i-j) 1is added to the
sequence. Then it can be shown that this
sequence is strictly decreasing under the
lexicographic order. Since this sequence must
be finite, control can only pass through g
finitely often; hence the program must terminate.

SYNTHESIS

To provide a basis for comparison, let us
illustrate a synthesis process to construct a
bubble-sort program automatically. We are given
the input-output relation denoted by

8% ~ & A Ordered(a*,0,n) ,

where a 15 the input vector, a¥ is the cutput
vector, and e¥ ~ a means that a and a¥ are
the same vectors up to reordering. In general,
if we wish to construct a program satisfying an
input-output relation R({x,y) , with inmput =x
end output y , we can ask the synthesis system
to find & constructive proof of the theorem

(vx) (Ty)R(%¥) -
It then extracts & program that satisfies the
sbove relation, and is thereby guaranteed to
temminate and be correct.
In this case, the theorem to be proved is

{Vn) (Va) (Za*) [a*~ a A Ordered(a*,0,n}] .

- If the system is given this information alone, it

will produce a sort program, but we have no way
of controlling the sorting method it will use.
Therefore, in order to direct the synthesis
procedure to yield a bubble-sort program, and
also to facilitate the search for & proof, we
give the theorem-prover some additionel informa-
tion: it should use "going-down" induction [2]

_¥With the hypothesis

(Fax)[{a*[0], ...,2*[1]}<{a*[i+1], ..., a%[n]}
A 8% =2 & A Qrdered(a*,i,n)] .
Then the theorem-prover proves two lemmas

I. (Initial step)

(z1) (Za*)[{a*[0],...,a¥[1]}<(a*[i+1],...,8%[n]]
A 2%~z & A Ordered(a¥*,i,n)] .

(Inductive step)
(vi)1 £ 0

A (:"[B-*) [{9-*[0]: .eeya¥(i]}<_[&*[i+l], .. -:&*[n]}

A &% = a A Ordered{a%,i,n)]1]

"o (Fa*) [{a*[01, ..., 8% [1-2]}<(a*[1]), ... 8% 0]}

A 8% =3 a A Ordered(a*,i-1,n)] .

If the system succeeds in proving both these

" lemmas, it can conclude

(8ax) [{a*[0]}<{a*(1],...,a%[n]}
Aa¥ma A Ordered(a¥*,0,n)]

- which implies the desired result.

The proof of Lemme I is trivial, taking i to be
n and a¥ to be a .

In order to prove Lemms iI, the system finds it
suffices to show :

{a*[0],...,a¥[i-1])<{a*[1]]}

‘for any a¥* satisfying the antecedent of the
implication. Failing to establish this directly,
it applies induction again; this time it uses
"going-up" induction with the hypothesis

(Fe*)[fax[0], ...,a*{i-1]}<{e*[i],...,a%[n]]
A 8% == a A Ordered(a*,i-1,n)
A [a*[0],...,8%[3-1)1<la*[j11]

vwhere j, J <1, is the induction variable.

In applying the principle we derive two more lemmas
to be proved: the proof of the first is trivial,
but the proof of the second requires case analysis
and gives rise toc the program segment illustrated
in Figure 2.

Tes

No

& « exchange(a, j, j+1}

'

Figure 2.

Then from the induction principles used, and the above:

“segment, theé synthesizer will construct the program
ilTustrated in Figure 1.

A segment of the bubble sort program

-CONCLUUSION

The parallel between the analysis and synthesis
methods is striking. The well-ordering used in
proving termination corresponds precisely to the
induction principles used in the synthesis proof.
Furthermore, the two assertions associated with
arcs ¢ and B respectively in the correctness
proof are essentially the same as the two induc-
tion hypotheses used in the synthesis proof. In
fact, if the proofs are examined in detail, one
finds that the same axioms and rules of inference
are used in each proof. However, the synthesis
proof reguires much more ingenuity from the
tlhecram-prover, as is to be expected.

References

[1] R. W. Floyd, "Assigning Meaning to Programs,"
in Proceedings of Symposia in Applied
Mathematics, American Mathematical Society,
Vol. 19, pp. 19-32.

[2] Z. Manns and R. J. Waldinger, "Towards
Automatic Programming. Synthesis," C.ACM.
To appear.

Acknowledgment

. The research reported herein was sponsored

~in part by the Air Force Systems Command,

- USAF, Department of Defense through the Air

{ Force Cambridge Research ILaboratories, Office

. of Aerospace Research, under Contract No.

! F19628-70-C-0246, and by the Advanced Researck

! Projects Agency of the Department of Defense and

the Netional Aeronautics and Space Administration
under Ceontract No. RASW-2086 (at Stanford Research
Institute). }

