April 1971

A LANGUAGE FOR WRITING PROELEM-SOLVING PROGRAMS

by

Johns F. Rulifson
Richard J. Waldinger
Jan A. Derksen

.- Paper accepted for présentation’et IFIP Congress '71,
.Ljubljana,” Yugoslavia, August 23-28, 1871

Artificial Intelligence Group
'..Technieal Note 48
SRI Projects 8259, 8721, 8550

The research reported-herein was sponsored by the Advanced
i Research Projects Agency and the National Aeronautics and
.._:Space-Administration under Contracts NAS12-2221, and
NASW~2086, and by Air. Force Cambrldge Regearch Laboratories
; } i 9628~70—C 2046

A LANGUAGE FOR WRITI1ING

PROBLEM-SCOLVI1ING

PROGRAMS

JOHNS F, RUL1FSON
RICHARD J, WALDINGER
JAN A, DERKSEN
Stanford Research Institute,
Menlo Park, California

This paper describes a language for constructing problem-solving programs.
including ordered and unordered sets.

facilities may be used in various ways, including the binding of variables.
ing facilitates the compact representation of search procedures.
A "context"” device 1s used to implement variable bindings, to effect

manipulate several data structures,

gously to atoms 1n LISP.

The language can

Pattern matching
1mplicit backtrack-

Expressions are treagted anale-

conditional proofs, and to solve the "frame" problem in robot planning.

I BACKGROUND

In order to design a deductive problem-solving
program, we are constructing a new formal language
that can express complex inferential mechanisms
conclsely. This language, called the QA4 langusge,
1s being used to build a proposed intelligent sys-
tem, that will be able to organize and use a large
body of speclalized knowledge. The selection of
three specific applications--auteomatic program syn-
thesis, automaton planning, and thecrem proving--
permits a concentration of effort within a frame-
work of generality. All three applications, however,
share a common basis that encompasses natural lan-
guage dlalogue, question answering, and inference,
as well as many other areas of Artificial Intelli-
gence.,

There 1s strong motivation for the development
of a new language for preblem-solving programs.
Earlier systems have been constrained by fixed
inference mechanisms, bullt-in strategies, awkward
languages for problem statement, and rigid overall
structure. They relied on one or two rules of
inference that could not be changed, To modify a
strategy required a complete reprogramming of the
system., It was sometimes harder to express a pro-
gram-synthesis problem in a language the system
could understand than it was to write the program
oneself. Systems were limited to the use of a
single paradigm that might be applicable to some
types of problems and inappropriate for others.
Theorem—-proving strategies have used syntactic
properties of the expressions being manipulated,
but have been unable to use semantic kﬁowledge or
pragmatic, intuitive information., They have heen
unable to employ the sort of pattern recegnition
the human problem solver relies on so heavily,.

The basic¢ approach of the QA4 project is to
develop natural, intuitive representations of
problems and problem-solving programs. The
specifieation for a computer program to be syn=-
thesized, for example, is a blend of procedural

and declarative information that includes explicit
instructions, intuitive advice, and semantic defi-
nitions. The problem-solving prograns are a
similar blend of many speclal purpeose inference
mechanisms and heuristic strategles. A QAd inter-
preter will execute programs in the transparent
but precise language we have chosen for these
representations; and the interpreter, together
with an initial collection of QA4 "bootstrapping”
programs, willl constitute the basic QAd system.
The system will attempt to nssimilate new advige
facts and attempt to solve problems with contiln-
ually increasing sgllity.

The project has revolved around the construc-
tion and reworking of hand simulations of a pro-
posed final QAd system. Each simulation includes
a problem statement, relevant definitions and ad-
vice, and a protocol for the solution. These
simulations have provided a fogus for the language
development and promoted explorations into theo-
retical foundations of the problem areas [1].
Table 1 summarizes the scope of the simulations
and indicates the problem areas attacked,

The QA4 language is derived from more conven-
tional progroamming languages and mathematical
leanguages, and yet differs from both in many ways.
The basiec data structures include sets, sets with
repeated elements (“bags™), ordered bags { "tuples'”,
and lambda expressions. Data may also be repre-
sented implicitly; for example, the set of even
integers, although infinite, may still be described
and manipulated in the system. Every expression
in the language mey have a varilety of properties
associated with it. This feature serves as the
basis for describing the role of each expression
and thus directing the processes that operate on
the expression. WHEN and GOAL statements, using
pattern matching, may direct program control.
Various strategies, for example, might be selected
for use by matching the pattern of their formal
argument to the expression under consideration,

J. F. RULIFSON, et al,

rather than by the conventional method of activa—
ting a subroutine by menticning its name. Ambig-
uous patterns lead to nondeterministic programs
and the need for automatic backtracking [3].
Other control features include parallel search
and iteration through sets. 5Space does not per-
mit a full presentation of our current, prelimi-
nary version of the QA4 syntax. Table 2 lists
some features of the language.

Table 1
PROBLEM AREAS

Program Synthesis

* (Generate recursive and iterative programs
from declarative axiomatic specifications
{problems taken from a LISP primer).

* Generate an iterative program from a re-
cursive procedural definition (see
Fibonaccl example in [2]).

* Verify the correctness of programs with
respect to input/output relations. These
relations may be defined in terms of
executable programs, as well as in terms
of declarative axioms,

Automaton Planning

* Generate plans for simple robot problems.

Theorem Proving

* Prove simple nlgebraic identities over

the integers.

Derive simple algebraic laws from Peano's
axioms.

®* FProve properties of axlomatically defined
Eroups.

®* Accommodate general rules of interference,
applicable to any loglcal system.

The system changes continucously as it is used.
The programmer types commands in the form of QAd
expressions to a top-level function., The commands
may input or medify expressions or properties of
expressions; definc, modify, or execute programs;
or perform debugging tasks,

The input system of QA4 is a parser that trans-
forms QA4 infix expressions into internal prefix
format. The parser uses the input translater
BIP[4], and has the advantage of being rcadily

modified. Similarly, an output function takes
the internal expression form and produces a cor-
responding infix output stream, Thus the user
always communicates with QA4 in an infix mathema-
tical-style notation.

Table 2

SOME LANGUAGE FEATURES

Data Manipulation

* Arithmetic and Boolean operations
* Set, bag and tuple cperations

* Expression decomposition and construction

-

Pattern Matching

* Actual argument decompesition
® Data base queries
* Monitoring expression properties

® Invoking of strategies and inference
rules

Control

* Stendard serial and ceonditional statements
{prog's, labels, go's and if's)

¢ Tterative forms for sets, bags, and tuples
* Automatic backtracking

* Strategy controlled parallel interpretation

The QA4 interpreter 1s a function resembling
LISP EVAL [5}. It anccepts QA4 expressions and,
with the ald of an extensive library of primitive
functions, executes them. Unlike LISP programs,
QAd expressions may succecd or fall and do not
necessarily have values. The interpreter performs
its task in small steps, and may, between any two
steps, redirect its attention to other parallel
processes or search programs.

II DATA CONTROL STRUCTURES

Every operator in QA4 hes a single operand.

The data type of each primitive operator has been
chosen to eliminate a preoliferation or rules gov-
erning algebralc properties, such as associativity,
commutativity, and transitivity. The Boelean con-
nective "and," for example, has a set as its oper-
and, The infix expression A & B & C is translated
into the internal representation AND{A, B, C]

J. F. RULIFSON, et al.

(where braces denote the datas type "set"). Since
sets are independent of the order of their ele-
ments, this representation makes the statement of
the commutativity law unnecessary.

Bags in QA4 are unordered tuples or, eguiva-~
lently, sets with repeated elements. They play
an important role in the defintition of arithmetic
operators, such as addition. The operand of PLUS
cannot be a set, because the set {1, 1} is equal
to {1}, but we would not want PLUS[1, 1} to equal
pPLUS{1}. Instend, the infix expression X+Y+3Z
becomes PLUS[X, ¥, Z] internally, where [X, ¥, Z}
1s a bag. Bogs are evaluated by first evaluating
their members., The resulting values are collected
together into a bag. Thus, if X, Y and Z all had
value 1, our expression would equal PLUS[1, 1, 1],
and its value would be 3.

. Some expressions, infinite sets, for example,
cannot always be explicitly evaluated., Finite
sets may also be inconvenient to evaluate: A
Program may wish to search the Cartesian product
of two sets, even when the entire set is too
large to generate. The interpreter can perform
the search by indexing through the original two
sets. In coses such as this expressions are said
to have implicit values,

QA4 has iterative, parallel, and backtracking
control structures. The iterative statement forms
of the language operate over sets, bags, and tuples.
With each iteration statement may be associgsted an
independent preference strategy that controls the
order of iteration, During resolution theorem
proving experiments, for example, pairs of logical
expressions are analyzed in an order specified
both in terms of syntactic properties, such as
length, and of pragmatic properties, such as fre-
quency of use, Parallel structures, in the form
of coroutines and WHEN statements, are used in
the construction of problem solving strategies.
For example, in order to prove a thcorem of the
form A v B, we may wish to establish two processes,
one to prove A and the other to prove B, If
either terminates successfully, the proof is com-
plete. Nondeterministic programs give rise to
backtracking. If a point of indeterminacy occurs,
a choice determined by a prespecificd strategy
is made. 1¥ the program later fails, control is
regstablished at the choice point, and a differ-
ent selection is made,

. Without explaining all the notations we use,
we illustrate the power of the QA4 language with
a program that sorts bngs:

SORT = CASES
L L)

A X+B 1 MIN(X,B), X*SORT(B)); .

¥hen this function is applied to a bag, say B,
it first checks to see whether B’ is empty ([]};
if so, it returns the empty tuple ({)}. 1If the
bag is not empty, it finds an element X of B’

such that X is less than or equal to all the
elements of B, the bag remaining when X is
deleted from B’. Then it sorts B (recursively)
and adjoins X to the front of the resulting
tuple. Thus the bound variables of a lambda
expression may be patterns, and variable binding
must then be done by pattern matching. With
each iteration statement may be mssociated an
independent preference strategy that controls the
order of iteration.

III EXPRESSIONS

The data base for QA4 1s made up of QA4 ex-
pressions, An expression is represented inter-
nally by a list of properties, one of which is
the syntactic component that uniquely distin-
guishes 1§ from all othcr QA4 expressions. This
list stores arbitrary properties, and each prop-
erty is, in turn, a QA4 expression, These prop-
erties fall into three categories: syntactic,
semantic, and pragmatic. Table 3 is a brief
example of an expression. Table 4 lists commonly
used properties.

Table 3

A SAMPLE EXPRESSION

Syntactic component (X, v
Value (3, 4)
Length 2
Result when the function

F is applied to the

expression 27

Expression manipulation is accomplished by
decomposition and construction. In QA4 decom-
position means naming parts or components of an
expression, The naming is done by the pattern
matcher. Patterns may occcur at many points in
the language: in formal arguments of functions,
in assignment statements, and in conditional
tests, Table 5 illustrates some of the more
useful facets of the pattern matching notation.
Transformation of expressions is done through a
complete set of constructors [77], such as: add
an elemcnt to 3 set, add onto tuples, or con-
struct a lambda expression.

Given the syntactic component for an expres-—
sion, a fundamental operation is to retrieve
the entire expression so as to find the proper-
ties already assigned or known about it. 1In
this way, LISP’s atom property feature is extended
to exprcssions in general, When an expression is
stored, whether the expression has been stored
before is determined. 1If it has been, the old
expression is returned; if not, the ncw expression
is retained by the system,

J. F. RULIFSOR, et al.

the elements are first ordered by their index
numbers and then discriminated upon syntactically.
If a user types in the set {A, B, C], the elements
might be assigned indices A-1, B-2, C-3. 1If the
EXPRESSION PROPERTIES set {C, B, A} is entered, it is sorted into

{a, B, c} and then found to occur already. The
Syntactic storzge and retrieval functions also maintain

extensive statistics concerning the number of
references made to each expression for use in
future optimization,

Table 4

s R v

®* The form

* The logical type (e.g., a function mapping
numbers into truth values) Table 5

* The data type {e.g., a set of 3-tuples) SOME PATTERN MATCHER FEATURES

* Frequently used information (e.g., the

* Transparent template notation

length)
. {X,4,3) matches {5,4,3) o
Semantic with X =5 %
. %
®* The value * Matching of intermal or external notation %

{X,4} matches (TUPLE 3 4)

* An implicit value (e.g., a coroutine®
with X = 3

that generates the value)}

* A set of expressions equal to this one ¢ Fragment variables

{2, *¥) matches (2,3,4,5)
* Constraints {e.g., a range or interval with Y = (3,4’5)

for the value)
* Type constraints on variables

Praggatic
X/IRTEGER matches 3
with X = 3

FRBE R S

* Historical information

® Intuitive evaluation advice ¢ Predicate constraints

‘ (X t X 24, 5, 6) does not match
* Success/fallure indicators {2,5,8)

R

¢ "Occurs in" matching

The storage mechanism is a discrimination net.
Each node of the net consists of a feature selec-
tor and a set of labeled branches. A syntactic
component is retrieved by applying the topmost
selector, choosing a branch hased on the outcome
of the selector, and repeating the process until
either a terminal node is reached or there is no
appropriate branch. When conflicts occur at a

-+ + «+ matches 3 ¥ 2 + 5

Variable bindings are implemented in the QA4
interpreter with a "context' mechanism—-~a methed
of storing all the changeable properties of expres-—
sions which simplifies backtracking and the execu-
terminal node, a new selector is automatically tion of parallel processes. The same facilities, more-
generated and installed at the new node. The over, are made avallable to users and are espec-
next time the same syntactic component is retrieved, ially useful in programs dealing with conditional
the expresgion that has just been added will be proofs or robot planning programs confronted with
returned. The net also serves as a pruning device the “frame” problem [83.
for the pattern matcher.

BT TR

IV CONCLUSION

It two QA4 expressions are identical except
for the names of their bound variables, they have
the same internal representation. Thus bound
variables are not used as discrimination features.
Moreover, in order to store sets and bags in the notations.
net, an index is assigned to each element of a desirable consequences:
set or bag expression the first time the expres-
sion is stored. 1If the same set is then stored
a second time (perhaps with some elements permuted),

Certain structures and mechanisms have found
repeated applieation in deductive problem solvers.
It is our goal to give these concepts concise
We expect this effort to have several

® Existing problem-solving technigques should
become more easily representable and modi-
fiable.

J. F. RULIFSON, et al.

® A larpe store of special-purpose knowledge
could be embedied in a program.

Systems would be more likely to rely on
strategies than on blind search 1f such
strotegles were easily expressed and
incorporated.

A preliminary version of QA4 has been implemented.
Extensions of this system will include enhanced
pattern longuage and strategy operntions, and
more efficient evaluation.

V ACKNOWLEDGEMENT -

The idens presented in this paper were devel=-
oped in collaboration with C, Cordell Green and
Robert A. Yates. The development and use of the
QA4 system has been supported at Stanford Research
Ingtitute by the Advanced Projects Agency aond the
National Aeronautics and Space Administration
{NASA) unden Contract NAS12-2221, by NASA under
Contract NASW-2086, and by Ailr Force Cambridge
Research Laboratories under Contract F19628-70-
Cc-0245.,

REFERENCES

(1] Z. Monna and R, J, Waldinger, Towards Auto-
matic Program Synthesis, CACM, Vel. 14, No.
3, (March 1971) pp. 151-165,

l2] J. F. Rulifson, R. J, Waldinger, and J,
Derksen, QA4 Working Paper, Artificial Intel-
ligence Group Technical Note No. 42, Stanford
Research Institute, Menlo Park, California
(Cctober 1970).

[3] L. Golomb and L. Baumert, Bncktrack Program-
ming, JACM, Vol, 12, No. 4 (October 1963)
PpP. 316-524,

[4] R. E. Fikes, A LISP Implementation of BIP,
Artificial Intelligence Group Technical Note
No. 22, Stanford Research Ilnstitute, Menlo
Park, California (February 1970},

[57 J. McCarthy, et al., LISP 1.5 Programmer's
Manual (M.I.T. Press, Cesmbridge, Massachu-
setts 1962).

[6} M. E. Conway, Design of a Separable Transi-
tion-Diagram Compiler, CACM, Vol, 6 {1963)
pp. 396~408.

[|
=
Lod

i P, J. Landin, The Mechanical Evaluation of
Expressions, Computer J., Vol. 6, {(1963/64)
pp. 308-320.

[8] J. McCarthy and P. Hayes, Some Philosophical
Problems from the Standpoint of AI, in
Machine Intelligence 4, B. Meltzer and D.
Michie, eds. (Edinburgh University Press,
Edinburgh, Scotland 1969).

