STANFORD RE'SEABCH INSTITUTE

.Menlo Park Ca.hfornxa 94025 U, s A

February 1970

A LISP IMPLEMENTATION OF BIP

by

Richard E. Fikes

Arytificial Intelligence Group

Technical Note 22

INTRODUCTION
This document describes a LISP implementation of BIP (Basic Inter-
face Package) on the PDP-10 computer. BIP is a set of programs designed
by Allen Newell gt Carnegie-Mellon University which provides the builder
of large programming systems a capability for easily defining notational
conventions to be used for interacting with a system.* The central
routine in BIP is a translator which provides a symbol table and
precedence-parsing facility. The entire package provides the follow-
ing capabilities:
(1) Sepmentation of an input stream of characters into "words "
(2) Association of a word to a particular internal symbol
{3) Recognition that some program (action) should be executed
upon encountering a particular word in the input
{4) TRetention of several symbols and their order of appearance
as a context for an action
{(5) Declarétion of new words and the symbols associated with them;
also, declaration of the associated actions, if any
(6) Delay of actions from the time at which their words appear
in the input stream until some later time
(7) Association of an internal symbol to an external word
{8) Variation of the symbols and actions associated with a word

as a Tunction of context.

*
I am indebted to Allen Newell and Peter Freoeman for introducing and

familiarizing me with BIP., Also, 1 wish to thank Robert Yates for
assisting me with the LISP implementation.

This list of capabilities is taken from a working paper cntitled "BIP:
Basic Interflace Package" by Allen Newell and Peter Freeman.

BIP was designed to be a skeleton which can be fleshed ocut in
whatever way is useful for the user. The skeleton itself is completely
accessible and is meant to be changed to meet the needs of the indi-

vidual user.

OVERVIEW

Iﬁ ﬁbrmal usage the BIP translator will rcmain in top—level control
of the user's system throughout a run. The translator uses an EPAM-
type discerimination {ree to nssociate actions and internal symbols with
strings of characters from the input strcecam. Thesc associations are
made relative to a syntactic and semantic context. The use of contexts
provides an extra dimension of flexibility since the user can easily
create new contexts, and change contexts during input to allow the
interpretation of any given character string to vary depending upon
the environment in-which it occurs,

The following definitions will help establish a terminology for our
further descriptions:

Character—--any character which can be inpul from a teletype.

Word--a string of characters.

Symbol--the internal data structure associated with a particular

word. In the SRI BIP the translator calls the function
BIP:CRSYM to create a symbol for a new word. At the time of
the call, CHARSK is a list (in reverse order) of the charac-
ters which make up the word. The symbol created by the
BIP:CRSYM function provided with the package is the atom

whose name is the same as REVERSE of CHIARSK,

b

Context--a data structure consisting of any or all of the follow-
ing: a recognition tree, context mark, action list, and
houndary character list. In the SRI BIP a context is a list
whose first element is the identifier CONTEXT; the recognition
tree is an element of the list whose CAR is the identifier
TREE; the context mark is the CDR of an element whose CAR is
the identifier CM; the action list is an clement whose CAR is
the identifier ACTIONS; and the boundary character list is an
element whose CAR is the identifier BC,

Boundary character-—-any character used by BIP in determining the

boundaries of a word.

Boundary list--part of a BIP context; it is a list of all boundary

characters for a particular context.

Action~—a BIP data structure which is associated with a symbol and
consists of a priority number, an immediate action, and
a delayed action. In the SRI BIP an action is a list whose
first element is an integer (i.e. the priority number),
optional second element is the immediate action, and optional
third element is the delayed action. The immediéte and de-
layed actions may be arbitrary evaluable LISP s-expressions.

Action list--part of a BIP context; it is a set of property-value
pairs in which the properties are symbols and the values are
the actions associated with them. In the SRI BIP an action
list is a list whose first element is the identifier ACTIONS
and each succeeding element is a list whose CAR is the symbol

and whose CDR is the action associated with the symbol.

Context mark--part of a BIP context; it is used to link BIP symbols
with nodes of thce recognition itrce,

Recopnition tree——part of a BIP context; it is a discrimination

tree used by the translator for the storage of symbol-
definition informaticn. In the SRI BIP each node of a recog-
nitiop tree is a list whose first element is a one—character
identifier (except for the top node which has the identifier
TREE as its first element) and whose succeeding elements
include the nodes which branch from the node and‘elements
whose CAR is the context mark of some context and whose CDR
is a BIP symbol.

Data stack--a push—-down stack on which o symbol without an action
is pushed after its associated word is recognized in the
input stream by the translator. In the SRI BIP the data
stack is the list DATASK; CAR of DATASK is considered the top
element in the stack, CADR of DATASK is the second element,
etc.

Operator stack--a push-down stack on which actions containing de-

layed actions are pushed to await execution of the delayed
actions. In the SRI BIP the operator stack is the list
OPERSK; CAR of OPERSK is considered the top element in the
stack, CADR of OPERSK is the second element, elc.

Context stack--a stack containing pointers to contexts whose top

element is the current context. When the translator enters
a context it does so by pushing the context being entered

onto the context stack. When the translatoxr returns to a

previous context it does so by popping the context stack
until the desired context is the top element., In the SRI
BIP the context stack is the list CONTEXTSK; CAR of CONTEXTSK
is considered the top element in the stack, CADR of CONTEXTSK

igs the second element, etc.

THE TRANSILIATOR

The translator's flow of control is shown in Figure 1. The input
to BIP is a string of characters from some source such as a teletype,
external lile, or an internal generator. The translator always calls
B1P:GETCHAR 1o get the next character so that it is independent of the
source of these characters and the source can be simply switched. The
translator leaves to the user the responsibility of selecting the input
source,

The recognition philosophy of BIP is to always recognize the long-
est possible word, Thus, starting at the top of the tree just after a
word has been recognized, BIP will work its way down the branches of the
iree as long as possible without checking if the character it has just
received is a boundnry character or not. When it falls out of the tree,
that is, cannot find a branch from the current node labeled with the
character ithat it has just received, it checlis to see if the current
node contains n context marlk identical to that of the current context.
If not, or if the-current character is mot a boundary character, it
assumes a new word is being defined and proceeds to extend the tree S0
that it c¢an now recognize it. If there is a context mark and the cur-

rent character is a boundary charactler or the previous character was

one, then it knows it has recognized a word and obtains its symbol.

If the symbol has an associated syntax action in the current context,
it is perlformed as described below, 11 it does nol have an action,
the symbol is pushed onto the data stack. In either case, BIP then
begins trying Lo recognize another word at the point ot which the pre-
vious word Lerminates.

In extending the tree to recognize a new word, BIP simply continuecs
to accept new characters until it receives a boundary character. For
each new character it adds a new node as a branch from the previoﬁs node.
When a boundary character is reached, a new data structure (the symhol)
is created to associate with the word and a pointer to this structure is
stored alt the Lerminhl node along wilth the current context mark,; the
pointer ts stacked on Lhe data stack; nnd BIP begins (rying to recopnixoe
another word starting with the boundary character thalt terminated the
new word.

Note that because of thie recognition philosophy of BIP it is neces-
sary to have a "quotes context' available to permit the definition of
symbols that contain substrings that are symbols and that include a
boundary character {(once defined, the recognition philosophy permits
them to be recognized without any special considerations). For example,
we may wish to deline the symbols * and *A where % is o boundary symbol.
Such o conlext is supplied as part of the SRI BTP; it has only onc boundary
character, namely ", and only one syntax action (which is associated with
the quote symbol and returns BIP to the previous: context). In the ahove
example, suppose we have previously defined * and A as symbols so that
they are also boundary characters, and that the action for " in the cur-

rent context causes the quotes context to be entered.

Then we would write *A" to define the new word ; theréafter;z*,‘A,.énd
*A would be recognized as distinet words,

The recognition and definition of words are lexical actions that
are performed by BIP. " A user may specify that within any particular
context every time a designated word has been recopgnized a certain syn-
tax action should be tnken. This synlax action can he evaluation of an
arbitrary function that has been supplied by the user and delfined as an
action associated with the symbol in the current context. The execution
of the action is based on a priority scheme as shown in the flow chart
and consisils of the execution of ;n immediate action and possibly an
arbitrary number ol delayed actious from the operator stack or from the
current action (in the order indicated in the flow chart): Since any
action (immediate or delayed) is a program, it may do any_amount of
processing desired; it may work on any of its own data structures or
any of B1P's structures (ihus effecting BIP's operation) and call any
routines whatsoever as subroutines, including the BIP translafor itselfl.
In particular, an action may access and alter the data stack (i.e.
DATASK) so that the translator acts like a one-stack precedence parser.
When the action program is finished, it returns control to BIP which
then continues recognizing words in the input stream.

The SRI BIP trénslator can operate in or out of definition mode.
When definition mode is on, all new words are entered intc the recog-
nitioh tree. When it is off, new words are not entered into the

recognition tree. A typical use of the mode switch

would be to have it on when actions are heing defined for key ﬁords
(¢.r. beprin, oend, if, then) and then turn the switch off when the only
new words heing encountered are identifiers and numbers. Since the
standard B1P:CRSYM will always relturn the same symbol name for a given
word (i.e. the atom whose name is the same as the word), then it is
unnecessary and wasteful to have these words in fhe recognition tree.
Definition mode is defined by the value of identifier DEFSWITCH; T
denotes definition mode cn, NIL denctes off. The translator initializes
DEFSWITCH to T.

Note that any one character word which is entered into the tree is
also added to the boundary-character list. This is the only built-in
mechanism for defining new boundary characters.

If evaluation of an immediafe or delayed action causes the value of
BIP:RETURN to be set to T, then the translator will return to LISP with
a value of NIL immediately following evaluation of the action. This is

the only exit mechanism provided in BIP,

INITIAL CONTEXTS

A base context is provided in SRI BIP which includes the necessary
facilities for the user Lo define the lanpguage he wishes BIP to read.
When the translator is called, this base context (called BIP:RBASECON)
is made the current context. In normal BIP usage new contexts are
created as copies of existing contexts and then built up incrementally;
hence all of a user's contexts can have the Tacilities included in the

base context., DBIP:BASECON is defined as follows:

Context mark: MARK

Boundary characters: {blank){carriage return)(line feed)

II‘,;.T

Actions:

(blank> Read to the next character which is not
{carriage return) Y {blank), {carriage return), or {line feed).
(line feed)

3 Read to the character following the next
line feed. Note, this allows comments to
be placed on an input line following a
semicolon.

" Enter the quotes context. The quotes con-

text allows the definition of words contain-
ing boundary characters (see the discussion
above in the section describing the trans-
lator and the description below of the guotes
context) .

! Use the READ function to read a LISP s-
expression and push a pointer to the
expression onto the data stack.

The LISP s—-expression named in the top of
the data stack is popped off the stack and
then evaluated using EVAL.

1 Exit from BIP with the value NIL.,

The quote context (named BIP:QUOCON) referred to above -in the
description of the translator and in the base context's action for

double quote is defined as follows:

Boundary characters:

Actions: " - return to the previous context.

AUXILIARY FUNCTIONS

The following functions are currently defined in SRI BIP:

BIP:ENCON-—-a MACRO whiclt takes a context pointer as an argument. The
context is pushed onto the translator's context stack and
made the current context.
BIP:DEFACT--an EXPR taking no arguments which defines the second
element in the data stack as the action for the symbol which
is pointed to by the top element in the data stack and does
two pop operations on the data stack. The definition is
made for the current context. TFor example, the action for
the character ' in the context BIP:BASECON could be defined

as follows:

'(100 (SETQ BIP:RETURN T)) 1t '(BIP:DEFACT)..

BIP :CRECON--an EXPR taking no arguments whose value is a newly
created context which has the same recognition tree and con-
text mark as the current context and a boundary-character
list and actions list which are copies of those of the éurrent
context. The user may wish to write other context-creating
functions which give the new context a different context
mark, a copy of the current context's recognition tree, etc.

. BIP:CRECON is the only context-creating function provided in SRI BIP.

BIP:DEFCURCON--an EXPR taking no arguments which makes the top
contexf in the context stack the current context.

BIP :RETCON-—an EXPR which takes either a positive integer or a

context name as an argument. If the argument is an integer

10

k, then the context stack is popped k times; if the argument
is a context name, then the context stack is popped until the
named context becomes the top element of the stack. After the
popping operations are completed, the top element in the con-
text stack is made the current context.

BIP:SKTOP——a MACRO taking the name of a stack as its argument and
returning as its value the top element in that stack.

BIP:SKPOP--an FEXPR taking the name of a stack as its argument
which pops the stack and returns as its value the element
which was popped ofi the stack.

BIP:SKPUSH-~-a MACRO which takes a pointer and a stack name as
arguments and adds the pointer to the top of the stack. The

value of BIP:SKPUSI is a pointer to the resulting stack.

EXAMPLE

To illustrate the use of BIP we present a set of action definitions
which will transform algebraic infix expressions into équivalent LIsSP
s—expressions; e.g. A + B will be transformed into (*PLUS A B). The
following are examples from the class of expressions to be translated:

A+B+C
{A+B) *C
A+B/-C .

Assuming that LISP has been entered and that the BIP functions have hecn
loaded, the following input sequence will make the desired definitions

in a newly created context named INFIX,

11

A (DF DEFBINEXP (1) (BIP:SKPUSH (CONS (CAR L) (REVERSLE (LIST (BIP:SKPOP
* DATASK) (BIP:SKPOP DATASK)))) DATASK))

(DEFBINEXP)
* (BIP)
* " (BIP:ENCON (SETQ INFIX (BIP:CRECON)))..; DEFINE AND ENTER CONTEXT INFIX
*'(6 NIL (DEFBINEXP *PLUS)) + '(BIP:DEFACT)..; DEFINE THE ACTION FOR +
*1(4 NIL (DEFBINEXP *TIMES)) # ' (BIP:DEFACT)..; DEFINE THE ACTION FOR *
*' (4 NIL (DEFBINEXP *QUO)) / '"(BIP:DEFACT)..; DEFINE THE ACTION FOR /
*' (2 NIL (BIP:SKPUSH (LIST @MINUS (BIP:SKPOP DATASK)) DATASK)) -
*' (BIP:DEFACT)..; DEFINE THE ACTION FOR -
*' (0 (BIP:SKPUSH @(8) OPERSK)) ('(BIP:DEFACT)..; DEFINE THE ACTION FOR (
*7(8)) '(BIP:DEFACT)..; DEFINE THE ACTION FOR)
*' (SETQ DEFSWITCH NIL)..; TURN OFF DEFINITION MODE

The function DEFBINEXP creates an s-expression to represent a
binary algebraic expression. The argument to DEFBINEXP specifies the
first element of the created s-expression (the operator), and the top
two elements on the data stack specify the second and third elements of
the s—expression (the operands). The resulting s—expression is pushed
onto the data stack.

The priorities associated with each action provide the desired
operator hierarchy. The immediate action for '(' pushes onto the opera-
tor stack an action with a lower priority than for any of the coperators;
the action for ")' is NIL, but its low priority will cause the execution

of all delayed actions up teo and including the one pul into the operator

stack by the most recent '('.

Any problems or questions should be directed to Richard Fikes,

Room K2090, Extension 4620,

12

set BIP:BASECON as the current context

sei BIP:RETURN to NIL

onter definition mode

get next

character

i >
s¢1 10p node of
as the cur

find node bronch
corresponding o

recognition tree
rent node

ing from top node

curreii characier +

test il current character
is a boundary character

+

creale a symbol
from the word

il in definition
mode, then create
a new node for the
current character
and add it to the

current node

make the new node
the cuerent node

make the found node the
the current node

get nex1 character

bt {ingd nodde branching from current
+ nade corresponding 10 the
current characier

bt finid the symbol a1 the
b
aurrent node

+

test if in defini-
tion mode
- ‘ +
outh name ot it word has only one
i sy Mol OR Lhe e character, then add the
1 data stack character to the boundary
character list

uel nexe character

add the symbol to the
current node

test if either the current or
the previcus character is a
boundary character

l—

+

tind the syntax action
for the symbol and make

— V 4 L
[l N 1he frmediate oclion cvaluate the delayed action of the
of the cuirent oction top action on the oporator stack
+

evaluate the
immediato action

it the turrent action
+ 'lf.-

1est il priority {currem action} >
priority {1op action in oporalor steck)

2l

1051 if BIP:RETURN is sot

+ —
exit pap the opera~
1ost if BIP:RETURN is set tor stack
A ol
test if current oxit test if priority [currens
F action has & action} = prierity [action
delayed sction just popped}
+ + (\ -
push the current)
i action onto the
Operator stack
TB-N0G522-150
Figure 1 The BIP Translator

