August 1571

QA4 PROGRAMMING CONCEPTS

by
Johns F, Rulifson

Artificial Intelligence Group
Technical Note 60

SRI Project 8721

The research reported herein was sponsored by the National
Aeronautics and Space Administration under Contract NASW-2086.

ABSTRACT

The QA4 programming language 1s designed for the writing of
theorem-provers, robot planners, and problem solvers. The language
permits the specification of ambiguous, unorganized programs that
solve problems mainly through the use of expression transformation
programs that are guided by semantic and pragmatic informatiom.
This note presents an informal introduction to the unusual program—
ming concepts used in the construction of such problem~sclving

programs.

ii

I INTRODUCTION

A, Project Origin

QA4 was started by Cordell Green and Robert Yates at SRI just
after Green finished his Ph.D. thesis at Stanford in 1962. His
thesis was on the use of resclution based theorem-proving systems
as a means to automatic question answering. Their system was
named QA31. i1t did, and still does, prove theorems in the first-
order predicate calculus using resolution. This system, in fact,
is the basis of the ZORBA2 and STRIPS3 projects currently under
way at SRI.

Green was bothered, however, by the difficulty of trying to
use problem-oriented semantic and pragmatic information to guide
the theorem prover. Resolution theorem—-proving systems are well
adapted to syntactic heuristics such as unit preference. They may
also be adapted to heuristics that are tied to the deduction
mechanism, such as ancestry filter. It was very hard, and sometimes

impossible, to usé the semantics of the actual problem at hand.

B. The Language

Thus the original goal of the QA4 project was to write a
theorem prover for automatic gquestion answering. The formal language

was to be far more natural than first-order predicate calculus.

This theorem prover was to perform expression transformations on
concise expressions in such a way that it produced proofs with
a natural style--the kind that we would accept as being intuitive
and obviously dominated by the semantics of the problem. As we
began to write such a theorem prover, however, we were continually
confronted with the restrictions of LISP. We wanted our program
to plan and reason in a common-sense way. Thus we felt that the
first step was to producelsome theorem-proving protocols that
locked intuitive, and toc be sure that these protocols could be guided
by natural strategies--the kind of advice you would give students.
Then we should design a system that could take such strategies and
attempt to execute them. When the strategies fail, we want easy,
accessible methods of adding more advice and program reorganization.
We felt that the project would proceed iteratively--we would start
a language and a theorem—-prover simultanecusly, and let each guide
the development of the other.

This paper explains the attitudes that have evolved about the
process of program construction. We will discuss the facets of
the QA4 language that permit us to specify our problem—-solver in
the vagueness in which it is conceived and to refine it into an
intelligent program. But most importantly, we want to program
without losing our way simply because we had to express our thoughts
in a language with strict rules about evaluation such as ALGOL

or LISP.

cC. The Problem Domain

Both the search space and the solutions for the preblems we
are concerned with are small. Consider an example program veri-
fication problem, Using a resolution proof method, there gre over
200 individual, necessary steps in the proof of the program's
correctness. By using extended omega-order logic and simplifi-
cation methods the proof can be reduced to about 20 steps. Of
these, 15 are obviocus deductions (e.g., from A&B deduce both A and
B). The remagining five steps reguire ingenious instantiations and
use of induction. We expect a QA4 program verifier to have many
special rules and detaijiled advice on their use. It should produce
the 20-step proof with little or nc wasted effort. Thus the
emphasis in our language design is to permit the specification of
many high level rules and strategies. We anticipate that indivi-
dual strategy steps may be time-consuming, but that each step is

valuable.

I1 EXPRESSIONS

A, Motivation

Remember that our original gozl was to write a theorem
prover that proceeded according to pragmatic, intuitive protocols.
Seemingly simply axioms and inference rules normally presented
in a mixed English-logic language in textbooks often become
lengthy, complex formulas when converted to the notation of
either first-order predicate calculus or standard programming
languages. To even describe our protocols, we needed a concise,
natural syntax for algebraic expressions. At the same time, the
definitions should mirror the semantics of the primitive operators.
Most formal language definitions are guided more by the syntactic
properties of the symbols than the semantics of the operators they
stand for. Because of this, these definitions lead to endless
applications of transitivity, associativity, and equality infer-
ence rules. To prove that X+Y = Y+X, for example, should not
require any substeps——it should be immediately obvious to even

the simplest thecrem—-proving programs.

B. Data Structures

1. Overview
Declarative statements in the language have the conven-
ience of infix—-style notation coupled with such useful exten-—

sions of omega—order calculus as sets, special quantifiers, and

extended primitive operators. The three basic data structures are:
tuples, bags, and sets.
2. Tuples
Tuples are ordered lists; our notation is <1, 2, 3.
3. Bags
Bags are unordered tuples. That is, a bag is a collection
of unordered elements, and the elements may be duplicated. Our nota-
tion is 3, 1, 2, 11].
4. Sets
Sets are unordered collections of elements, and without dupli-
cation. Our notation is {2, 3, 1}. During the construction of sets,
either during input or while a program is rumning and building a set,
duplicate elements are automatically removed. Even during user input,

multiple occurrences of a variable are reduced to a single occurrence.

C. Example

1. PLUS
Our definition of PLUS illustrates the use of these structures.
PLUS is associative and commutative, so it may take a bag as its argu-
ment. QA4 always communicates with users in an infix-~language. Thus
a user may type 1+2+1 as a line of a program. Internally, QA4 uses a
prefix representation; thus that line means +[1, 1, 2]1. PLUS may not
take a set as an argument, for then we would have 1 + 1 = +{1} = 1.
2. EQUAL
Our definition of EQUAL is another example of the use of these

structures. EQUAL is not m&rely assoéiative and commutative,-but it is

also an equivalence relation. Therefore, it may take a set as an argu-
ment. X=Y=Z7Z means ={X, Y. Z}. During the evaluation of this expression,
the set is evaluated by first evaluating the members and then collecting
the resulting values into a set. The function EQUAL is then applied to
that set, EQUAL is TRUE if and only if the value of its argument has
a single member. Thus if X and Y were TRUE, énd Z was FALSE, then the
value of (X, Y, Z} would be the two—element set {TRUE, FALSE}, and
therefore the value of =[X, Y, Z} would be FALSE.

3. X+Y = Y+X

Within QA4, the example we considered earlier--X+Y = Y+X--

means, by definition, EQUAL applied to a set. That set has the single

member +[X, Y.

infix X+Y = Y+X

initial parse ={+[x, v1, +[Y, X1}
reduced standard ={+[x, Y1}

form

Thus either during program interpretation or expression simplification

within a theorem-prover, the value of the expression is obviously TRUE.

D. Composition

1. Canonical Forms
As expressions are composed, they are converted to a canon-—
ical form so that semantic and pragmatic properties attached to them
can be associated automatically with all equivalent expressions. Compo-
sition takes place whenever a particular data structure is constructed

by a program.

2. Example
For example, the process of interpreting the statement
X ~ {RED, BLUE, GREEN}
not only assigns X to be a set, but alsc composes a canonical represen-
tation of the set. The composition process ensures that if the datum
described by the expression (in this case, a set) has ever been previ-
ously constructed, the original value is used and no new egual but
different structure is constructed.
3. Bound Variables.
This jidentification of eguivalence is even made bstween expres-
sions that include bound variables. Thus the functions
(LAMBDA <X, ¥, (X+Y)*(Y+1))
and
(LAMBDA <U, V>, (L+V)*(V+10))
will both be converted to the same internal canonical form, and infor-
mation known abocut one is always available to strategies that may desl

with the other.

E. Pattern Matchinpg

1. How It Integrates
The use of canonical representation together with definitions
that reflect the semantics of functions not only makes manipulation
swifter, but permits rapid, natural access to previously developed infor-
mation., This retrieval and decomposition of expressions is accomplished

by template pattern matching.

2. Decomposition
Deconposition occurs dgring the process of assigning arguments
to functions or interpreting assignment statements. In the assignment
statement, the expreséion on the left of the arrow must match (be an
instance of) the expression on the right. For example, the interpre-
tation of the statement
{?x, ?Y, ...} -« {RED, BLUE, GREEN, YELLOW}

assigns one of the four color words to both X and to Y. The triple dots
denote a fragment, and permit the sets on opposite sides of the arrow
to be of different cardinality. Since sets are involved, X and Y may
be assigned the same word or different words,

3. Retrieval

The statement
EXISTS {~X, RED, ...}

will retrieve from the data base all sets that contain the word RED;
X is then assigned some element from one of the retrieved sets, This
form of pattern matching permits programs to be nondeterministic. The
program may signal that an incorrect choice was made by executing a FAIL.
The interpreter is then required to make an alternative assignment. The
backtracking necessary to interpret the programs is handled automatically

by the interpreter.

IIZ CONTROL

A, Motivation

Next we would like to discuss some problems of program control.
By control we mean local decisions and tactics such as variable bindings,
the scope and retention of the bindings, the use of multiple process,

and the notion of indecision in program formulation.

B. Context
1. Motivation
To establish an implication, a natural method is to assume
the antecedent and attempt to establish the consequent. The task may
be to prove a logical implication such as:
If X is a prime, then X is odd.
Or the task may be to establish a causal implication, such as:

If the A-register is incremented by 1, then its

value is changed.
In either case a problem—solving strategy must create a "context", make
hypothetical assumpticns, and derive conclugions. When it is finished,
however, it must erase intermediate results, for they depend on the
truth of the antecedent, which may not be true even though the impli-
cation has been established.
2, Example

This ability of programs to manipulate contexts independently

of their own dynamic variable bindings is illustrated by the following
program sketch:

TO PROVE X=Y where X and Y are any expressions

with respect to context C

ESTABLISH A NEW CONTEXT C’

ASSERT X wrt C’

GOAL, PROVE Y wrt C’

ERASE C’

ASSERT XY wrt C
Here X is TRUE only in context c’. All changes in the global data base,
including any side effects made during the proof of Y, are erased when
¢’ is erased. Thus if the user wishes, he may manipulate properties
of expressions with a binding mechanism that operates without regard
to the bindings of his program variables.

3. QA4 Contexts
As strategies such as these are invoked in a QA4 program, they

are assigned a context” in which they operate. All the properties asso-
ciated with an expression are stored and retrieved with respect to some
context. These running strategies may operate independently in parallel,
or may cooperate in a high degree of synchronization. The backtracking,
side-~effects, and communication paths of these processes are highly
controllable. Moreover, the control may be handled either automatically
by the interpreter, or manipulated by the strategies themselves. Thus
the combination of canonical expressions and a context mechanism permits

the programmer new freedoms in strategy communication and data retention.

10

C. Processes
1. Motivation
The effective use of parallel programs is another imporfant
aspect of QA4 programming techniques. These parallel processing structures
simplify the programming task, and that is the object of our language.
Two instances of the use of parallel processes might illustrate their
intended use,
2. OR Example
Given the thecorem—-proving problem
PROVE A OR B
one could begin to prove both A and B in parallel and terminate as soon
as one proof finished. Even if hoth proofs are not physically running
at the same time. the decomposition of the problem into comceptually
parallel processes has simplified the programming task. For the two
processes to be effective, however, they must work together. Suppose
we use the folleowing strategy:
Find the best part to work on, say B.
Start proving it.
If it progresses rapidly, keep working.

If not (we may have made a mistake), save the
state of this theorem—-proving process, and start

out on A.

If A hegins to look harder than B, go back to B.
But now incorporate the information you have

learned from working on A.

We feel concrete realizations of strategies of this type are necessary

11

for the construction of problem solvers, and that, by using QA4, we can
develop such strategies.
3. Exists Example
Another especially relevant problem is to prove
(EX(X), P(X) AND Q(X)),
for some expressions P and Q. In this case, we first find an X that satis-
fies P. Then we see if it satisfies Q. If not, maybe we should search
for an X for @, and then see if it satisfies P. Each time we redirect
our attention, we want to save the state of the current process, and
begin where we left off.
4. Summary
What we seek for QA4 programs is not any magical speedup in
eXxecution time, but a useful conceptualization of parallel processes
for the programmer. We want to encourage the writing of programs that
try this, then try that, then try this again, and at each step use both
their o0ld information and newly gained information as best they can,
But the main advantage comes from subdividing the problem, so the

programmer is only concerned with a small problem at a time.

D. Indecision
1. Valueless Variables
Many times, in even a simple problem, procrastination is a
good heuristic. For example, in the command
Move a block down the hall,
choosing a block before you plan your path may be a poor approach. First,

one should plan a route, then look for an appropriate block--maybe one

12

close to the route. However, during the planning, one should keep in
mind that eventuslly a block will be involved. To ease the task of
writing programs that must operate this way, QA4 has unbound but usable
variables.

Suppose a program has X as a variable. X can be assigned
properties——in our case, it might be restricted to being a block. Since
X is a QA4 expression, it can have many properties besides its value.

X can also be used as an argument to a2 subroutine. Even if X appears
in an expression, say
AT <ROBOT, ?7X>

X need not have a value. The expression will be bound to the actual
argument of the subroutine. Thé subroutine can examine X and discover
that it does not have a value., It may alsoc examine the properties of
X and plan accordingly. It may even pass X on to other subroutines or
attach more properties to it.

2, Backtracking

Automatic backtracking provides another mechanism for delaying
decisions. When a strategy determines that a variable should take its
value from a set, but is not certain which element, it can merely make
one of the possible assignments and go on. If a later strategy discovers
that the choice was incorrect it may FAIL, and the interpreter will back-
track automatically. While this mechanism can be used as a complete depth
first search mechanism, that is not its intended use. The choice of
elements should not be arbitrary. There should be a good first decision,
with the hope that the system will not backtrack. If it does, the second

should surely work.

13

E. Iteration

Backtracking also plays an important role in iteration. In our
problems, iteration is not naturally expressed as a subscript range.
Sometimes it is inconvenient to express it as a logical condition. A
more natural way to express the iteration might be to say:

"Do something for all X's such that X is the first argument

- . Tt
to a certain predicate.
or

"Do it for all X's such that X is in this set and X satis-

fies a predicate."
The REPEAT statement of QA4 provides such a mechanism. With it the
programmer can specify the executions of the body of the statement for
all possible ways of doing a particular pattern match, or for all possi-
ble expressions in the data base that match a pattern. During each
iteration cycle he may also specify which side effects are to accumu-
late and which are to be removed. Thus the programmer does not have
to construct irrelevant data structures. As we have seen, everything
in QA4 is geared toward natural, concise expression tfansformation,

even the iteration statements.

14

IV ORGANIZATION

A. Review of Goals

Remember, the purpose of the QA4 language is to provide a method
whereby one can construct programs without having to understand the whole
problem or even to have worked ocut a global structure to the scolution
process. We expect the programs to grow interactively and to be contin-
ually refined and improved. We feel that the programmer has a notion
of how the program is to work, but does not understand enocugh of the
notion to write algorithms. If he must express his ideas in standard
formal languages the strict formality inhibits his intuition and the
ideas are lost. By using QA4, he can express these ideas, ambiguous
though they may be. He can write small, individual strategy programs.

He may even try out some of the ideas, relying on the interpreter to
handle all the ambituity and make many irrelevant decisions automatically,
Then, as he works with the system, the problem-solver grows until it
handles many cases and appears to have some generality.

Let us know look at some common problem analysis techniques and how

they are expressed in QA4.

B. Goals
1. Motivation
One of the most important problem-solving technigues is the

method of using subgoals. The strategy goes like this:

15

Given a certain goal to satisfy, see if you know the

answer. If so, retrieve it and quit.

1f not, try to break the problem down into subgoals, and

try each one separately.
To encourage this kind of program organization, QA4 provides GOAL state-
ments. To use them, we first write programs that accomplish specific
subgoals. The goals may be divided into classes. In our automatic
program synthesizer, for example, we will have both PROVE goals and
SIMPLIFY goals. When our strategies discover new goals, they will say
GOAL PROVE, some exp;
or
GOAL SIMPLIFY, some exp; .
2. How They Work

We first write programs to work on special cases, For example,
we write a program that can prove implications by using the conditional
derivation method discussed earlier. We identify the structure of the
goai the program works on in the pattern that makes up the bound variable
of the strategy. Thus our strategy program starts ocut:

(LAMBDA ?X =>7?Y, ...) .
The program also has a name, say CONDER. Now to inform the interpreter
that CONDER will solve goals, we state:
TO PROVE USE CONDER; .

The interpreter now knows that if it is presented with a goal of class
PROVE, and if the goal matches the bound variable of CONDER, that CONDER
can be used to solve that goal. Later, when we write a program to PROVE

conjuncts, it may look like:

16

(LAMBDA X: A&B .., ...)
and be named CONJ. When we state
TO PROVE USE CONJ,;
this program also becomes available for working on goals of class PROVE.
Since its pattern is different from CONDER, however, it will work on
different goals.
3. No Names

During this time, we may have written many programs that have
goal statements, and there may or may not be programs available to solve
the goals. The main point is that the program may be tried out and
tested. If more than one goal solution program is available, the inter-
preter will try them in turn and backtrack properly if they fail. The
goal programs are not organized in the fashion of standard programming
languages. The technique of invoking subroutines is the key. The
subroutines are not referenced by their name. Instead, they are called
because they accept arguments with a certain structure, and because the
programmer claimed that they will solve goals of a certain class.

4, Satisfied Goals

Sometimes a goal may be satisfied because an expression already
exists in the data base under the current context and with appropriate
properties. This corresponds to the case of

"Do I already know the solution?"

If this might be so, we can give the interpreter other programs that will
test already existing expressions to see if they satisfy the goal., For

example, the program named TESTIT,

17

(LAMBDA $X, (EVAL $X) = TRUE);
will be true only if X already has the value TRUE., We would say
SATISFIED PROVE USE TESTIT .
And now, for a PROVE goal, the interpreter first interrogates the data
base to see if expressions exists that can match the goal. If some do,

they will be tested by TESTIT before any solution programs are tried.

C. Pattern Predicates and Advice

It is not enough, however, to use only this single organization
technique. Many sclution programs may apply, and they must be ordered
and selected. Suppose, for example, that the protocol of the problem
is to read as though means—-ends analysis had been used. Instead of
using an executive to perform the analysis, we wish to make every deci-
sion on a local level, using pragmatic information. There are many
ways of doing this in QA4 programs,

1. Header Tests

The most obvious trick is to put tests at the front of each
GOAL program so that it attempts to eliminate itself as soon as possi-
ble, For example:

(LAMBDA 7X = 7Y,
(IF $X = FALSE THEN FAIL) ...)

would make this strategy program fail when it is given conditionals with
false antecedents. But we would like to avoid initializing and running
the program in the first place.

2. Pattern Predicates

In order to make this initizl test easy for the programmer,

18

each pattern may have an asscciated predicate that must be true if the
pattern match is to succeed. This initial test must be isolated and moved
into the binding, instead of residing at the start of the program. For
example, |
(LAMBDA ?X = ?Y t $X = FALSE, TRUE)
might be a strategy for simplifying implications. Since these predi-
cates can examine and test any property of the variables that would be
bound if the funcfion is entered, we ;an now have many goal solution
programs that work on the same basic structure, but eliminate themselves
from possible execution.
3. Advice

As a final method of giving advice to the system, we may specify
that a strategy program is to have control over the order and execution
of possible goal solution programs. When these options are used, the
strategy program is given the set of choices along with other necessary
information. In a manner similar to co-routine execution, this strategy
program works with the QA4 interpreter to order and control further
executions. The strategy program may even try the solutions in parallel.
This permits omne to work for a while, examine the data base, shift its

attention to another, and later resume the former.

D, Models and WHENs

1. Models
We have saved for last a most serious problem, How should a
robot planner or theorem~prover model the environment it attempts to

deal with? To begin, let us consider the two general types of models

19

discussed by Piaget—--figurative and operative. Figurative models are
those in which the objects under consideration—-—-say the blocks in the
room--are described by a set of logical statements and general infer-
ence rules, That is, what we know about the objects is simply the
logical facts immediately at hand and those we could derive with a
thecrem~-prover. Operative models, on the other hand, are those in which
the objects are modeled through the use of programs. In the case of
our blocks, we might have a program for each block. This program could
accept messages and give responses. The object is then modeled by its
reactions to input. Within this framework, the structure of the object
can be directly reflected by the structure of the program. We do not
have to go through the intermediate and most often irrelevant semantics
of logic or artificial data structures.

We may even have a set of programs that model a block: one
for when it is pushed, one for when ancther block is placed on it, and
vet another for when it is viewed. These programs will no doubt use
data gtructures, and in that sense have figurative data. But the empha-
sis is now on the program and its current interpretation of the data.
The PUSH program may answer many questions, such as:

"Where are you?"
or
"How long have you been there?"
It may also answer questions like "Where will you be if I shove you this
way?" The information may be readily available in the program-model

data base or it may require computation. Thus the position might, at

20

one time, be kept in the coordinates of a room; and at another time,
with respect to another block. The answer to the shove question may
even be, "I will fall over, and the derivation of this answer may exceed
our capacity to model blocks in logical statements. The model is now
one of action and reaction--using the full power of the QA4 language.
2, WHEN Statements

The GOAL mechanism is a help in implementing a problem-solver
that uses operative models. But the WHEN statement is the basis of the
solution, This QA4 command permits us to create a "demon.” The demon
is assigned a set of watching posts. For example, it is assigned to
watch all expressions that match a certain pattern. When information
goes past its post that matches a second pattern, and satisfies that
pattern’'s predicate, it may take control and execute programs. In our
example, we may have programs that watch operations on boxes, When
things are done to the hoxes, these programs modify local data, or invoke
yet other demons. In this way, the main method of keeping the model up
to date while taking into account complex interactions hetween the

objects 1is through the use of WHEN programs.

21

v SUMMARY

A, Status——August 1971

Most of the statements of the QA4 language work properly. This
first implementation of the languasge is extraordinarily general. Every
pcssible step has been taken to be sure that, if we wish, statement
cperation can be easily modified. Thig results in slow execution time,
but we feel it is worth the price. We will not know just how GOALSs,
WHENs, and control structures should operate until we have successfully
written some major problem-sclvers. So we look at the project as a
design process that should converge. We will make a first pass at the
language. This will permit us to try some of the concepts and discover
more precisely what the language should be. As we learn, we will change
the language. And hopefully, we will uncover aspects of designing and
building problem-solvers at the same time that we discover more about

theorem—-proving, program synthesis, and robot planning.

B. Future Work

We expect to be writing QA4 programs by October 1971, While we will
undoubtedly try many small exsmples, the main emphasis will be on two
large problem-sclving programs. One is a theorem-prover that is oriented
toward program synthesis and program verification. The other is a robhot
planner for Shakeys. We will spend the entire next year on these two

projects, together with the continual modification of the language.

22

C. PEANNER

QA4'is very much like Carl Hewitt's PLANNER at M.I.T. Both projects
started independently, and historically, PLANNER has had far more influ-
ence on QA4 than vice versa. It is interesting, however, that while we
knew of each other's work, it was only in September of 1970 that we
came to realize the remarkable similarity between our goals. On the
highest level, our goals are now the same—-—we want to build a formal
language that permits the programmer to express his intuition without
destroying it in the rigor of ALGOL or LISP. On the implementation level,
however, the projects diverge. A full-gcale FLANNER system is being coded
in machine language for the MAC-AI PDP-10, This system will eventually
replace LISP as the main language for expression manipulation AI programs
at MAC, Thus PLANNER is well specified, and relatively frozen when
compared to QA4. Our interpreter is being coded in LISP, and our
emphasis is on a flexible language that can change its form as we gain
experience with it. QA4 also has a somewhat greater emphasis on the
use of high—-level data structures to achieve a semantic compression of

the problem-solving search space.

23

REFERENCES

C. Cordell Green, 'Applications of Theorem Proving fo Problem
Solving," International Joint Conference on Artificial Intelligence,
Washington, D.C. (May 1969) .

R. E. Kling, s Paradigm for Reasoning by Analogy," Second Inter-
national Joint Conference on Artificial Intelligence, London,
England (September 1-3, 1971).

R. E. Fikes and N. J. Nilsson, STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving, Second Inter-
national Joint Conference on Artificial Intelligence, London,
England (September 1-3, 1971).

J. Piaget, Genetic Epistemology, Columbia University Press, New York,

New York (1960), p. 14.

B. Raphael, "Programming a Robot," Information Processing 68,
North~Holland Publishing Company, Amsterdam (1969), pp. 1575-1581.

C. Hewitt, "PLANNER: A Language for Manipulating Models and Proving
Theorems in a Robot, Massachusetts Institute of Technology, Project

MAC, Artificial Intelligence Memo 168 (August 1970).

24

