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ABSTRACT

Calculations involving points and lines in Euclidean spaces are
often subject to annoying anomalies when the trigonometric functions
are invoked. This paper illustrates a method by which use of these
functions may often be avoided, and presents explicit formulas for

four basic calculations involving points and lines in two dimensions.
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INTRODUCTION

In a variety of disciplines embracing the physical sciences and
engineering, it is commonly necessary to perform calculations dezling
with peoints and straight lines in two- or higher-dimensional Euclidean
space. The points and lines may be nuclear events and tracks recorded
on f£ilm, targef points and paths of moving vehicles or eguipment, crystal
loci and lattice vectors, and so on. In each case, certain generic calcu-
lations are often required, such as the shortest (or perpendicular)
distance between a point and a line, or the angle between two lines.

For example, how does one calculate the angle € between two lines
in the {x,y) Euclidean plane, assuming that the lines are specified by
two points each: {A,B}-and {C,D}? The most common or obvious pre-

scription is probably:

81 = arctan ({YB-YA)/(XB-XA))
82 = arctan ({YD-YC)/(XD-XC))
9 =9 -9 »
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where XA is the x coordinate of point A, zand so on.

This prescription may be criticized on two grounds. First, it
entails two calls to a relatively time-consuming trigonometric function
evaluation. Secondly, and more important, the triponometric functions
bring with them certain well-known difficulties: infinite slopes (or
tangents), ambiguities of sign, and ambiguities modulo 180° and 360°.
The author has seen programs in which a calculation has been preceded
by a tedious case analysis and a complete interchanpge of x and ¥y values

in order to combat such difficulties.



This paper illustrates a method for performing this and related
calculations, which can be used in many cases to aveid the unnecessary
introduction of explicit trigoncmetric functions. The method involves
the direct use of vector products. The resulting programs are generally
more compact and thus easier to code, debug, and interpret.

We exhibit the solutions to four basic problems in the two-dimensional
(x,¥) plane. The solutions can readily be translated by inspection into
computer codes suitable for individual needs. Although analogous formulas
can be derived in three (and higher) dimensions, they are more cumbersome

and probably of less general interest.

THE DISTANCE FROM A POINT TO A LINE
AND ALONG THE LINE
Let points A and B define a directed line segment in the (x,y) plane;

i.e., a vector with its tail at A and its head at B (Figure 1). Given a
third point, C, we desire the distance W of the perpendicular projection
of C onto AB; we also find the distance V of the projection along the
line AB, The formulas are:

DOT = (XC-XA) (XB-XA) + (YC-YA) (YB-YA)

CROSS = (YC~YA) (XB-XA) - (XC-XA) (YB-YA)

2 2.5
DISTAB = ((XB-XA)" + (YB-YA)")

Vv DOT/DISTAB

"

W CROSS/DISTAB .

We shall not prove the correctness of the formulas. The reader

versed in vector mathematics will recognize DOT and CROSS, respectively,



as the dot (or inner) product and the (z component of the) cross product
of the vectors AB and AC. The formulas are valid in all cases, assuming
cnly that A and B are distinct points. V and W are both positive in the
illustration (Figure 1). V will be negative if the projection onto AB
(extended) falls behind A; W will be negative if C lies on the other side
of AB.

Another interpretation of the formulas is that they transform point
C to a new (v,w) coordinate system in which vector AB defines the primary
axis. The formulas have been used, for example, to transform points on
randomly oriented shallow curves (bubble-chamber tracks) to axes grossly
aligned with the curves so that they may then be fitted by pclynomial
approximations.

In this and the examples that follow, the common element is the use
of the dot and cross products of vectors with a given vector in the
problem (always denoted AB). This method allows all distances and
positions to be expressed in terms of components along, and perpendicular
to, AB, thus avoiding explicit reference to angles in the (x,y) coordinate

system.

THE REFLECTION OF A POINT ACROSS A LINE

In Figure 2, point R is the reflection of point C across the line
AB (in the sense of a mirror image)., Using the terminology of the pre-
ceding problem,; R satisfies the conditions that its v coordinate is equal

to that of C, and its w coordinate is the negative of C's. Setting up



the equations for these conditions, and solving for the x and vy coordi-
nates of R, we obtain

XR = XA + ((XB-XA) DOT + (YB-YA) cnoss)/(DISTAB)2

YR = YA + ((YB-YA) DOT - (XB-XA) CRoss)/(DISTAB)2 )

where DOT, CROSS, and DISTAB are as defined previously.

THE ANGLE BETWEEN TWO LINES

In Figure 3, points A and B specify one directed line segment,
points C and D, another. It is desired to find the angle 6 measured
counterclockwise from vector AB to vector CD or, in many cases, to find
sin 8 and cos 6.

We define three intermediate quantities, analogous to the foregoing
ones, which are (respectively) the dot product, cross product, and product

of lengths of the two vectors:

DOT2 = (XD-XC) (XB-XA) + (YD-YC) (YB-YA)
CROSS2 = (YD-YC) (XB-XA) - (XD-XC) (YB-YA)
1
PROD = ((D0T2)2 + (CROSS2)HE

Then, from well-known vector relations,

cos B DOTZ2/PROD

CROSS2/PROD .

sin ©
8 itself may be determined from these values. If sin 6 and/or cos 6
are the desired quantities, as is often the case, three or four trigono-
metric function evaluations are saved relative to the procedure outlined
in the Introduction. The formulas work in all instances, assuming that A

and B are distinct and that € and D are distinct.



THE INTERSECTION OF TWO LINES

It is desired to find the point E at which two vectors AB and CD,
possibly extended, meet (Figure 4). We consider vectors AC, AD, and AE

(not shown). Taking the dot and cross products of AC and AD with AB,

DOTC =  (XC-XA) (XB-XA) + (YC-YA) (YB-YA)
cﬁossc = (YC-YA) (XB-XA) - (XC-XA) (YB-YA)
DOTD =  (XD-XA) (XB-XA) + (YD-YA) (YB-YA)
CROSSD = (YD-YA) (XB-XA) - (XD-XA) (YB-YA) .

Now, since E is collinear with C and I, vector AE is a linear combination
of AC and AD. Thus, the various vector products with AB are linearly
related:

DOTE-DOTC _ CROSSE-CROSSC
DOTD-DOTC ~  CROSSD-CROSSC

H

where DOTE and CROSSE are, respectively, the dot and cross products of
AE with AB., But CROSSE = 0, since point E lines on vector AB. Thus,

DOTE = DOTC - CROSSC(DOTD-DOTC)/{(CROSSD-CROSSC) .
Furthermore, we observe that

ABSQUARE = (X:B-}{A)2 + (YB—YA)2

is the dot product of AB with itself. Since AE is collinear with AB,
AE's x and y components must bear the same proportion to those of AB as
do the dot products, DOTE to ABSQUARE. Solving the resulting equations,

XE

XA + DOTE(XB-XA) /ABSQUARE

YE = YA + DOTE(YB-YA) /ABSQUARE 3

which give the coordinates of E in terms of previously calculated guanti-

ties.



This solution works in all instances except those in which AB and
CD are parallel and have no intersection, in which case (CROSSD-CROSSC)

equals =zero.
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