April 1973

A HIERARCHICAL ROBOT PLANNING AND EXECUTION SYSTEM

by

Nils J. Nilsson

Artificial Intelligence Center
Technical Note 76

SRI Project 1187

The research reported herein was sponsored hy the Office of Naval
Research under Contract N00014-71-C-0254., This work was done in
conjunction with another project supperted in part by the Advanced
Research Projects Agency through Contract DAHCO4-T72-C-0008,

ABSTRACT

This report describes a robot control program consisting of a
hierarchically organized plan generation and execution system. The
program is written in QA4 and makes use of several features of that
language. The usually sharp distinction between robot plan generation
and execution is intentionally blurred in this system in that planning
and execution phases occur intermixed at various levels of the hierarchy.
The system currently exists as a running program that clearly illustrates
the concepts involved; major additions and refinements would be necessary

if the system were to be used to control an actual robot device.

ii

ABSTRACT

I INTRODUCTION .

II SYSTEM DESCRIPTION:

A, ACTIONS .
B. EXECUTIVES

C. An Example

CONTENTS

. . . « = & . + » -

» . LY . « % @ . »

. . « + . - - . .
- + e - « e . o .

.« a . - . . & & a

MAJOR COMPONENTS .

IIT SYSTEM DESCRIPTION: FAILURES AND SURPRISES . . .

A, Failures .

B. Surprises

IV DISCUSSION . .
ACKNOWLEDGEMENT

REFERENCES

DD FORM 1473

1 Simplified Flow

e L) .

ILLUSTRATIONS

Chart for FPERFORM .

2 Initial World and WORLD-MODEL for Example

3 Hierarchy of ACTIONs Run in the Example .

iii

ii

11

11

17
17

19

23

25

26

12
13-

15

I INTRODUCTION

This report describes a model system that generates and executes
robot plans, There have been several systems of programs that control
1* .

robot hardware (see, for example, Paul~); these typically have had
limited, if any, general planning ability. Similarly, there have been
several systems that generate robot plans (see, for example, Sussmana,
Winograda, and Derkson, et al.é), but these were not connected to systems
that actually executed these plans. The major instance of a system that

both generated and executed plans was the STRIPS-PLANEX system?’s

that
controlled the SRI mobile robot SHAKEY,

Several important issues arise in the design of planning-execution
systems for robots. The STRIPS-PLANEX system faced some of these, most
notably those having to do with intelligent monitoring of the plan as it
is executed. Several additibnal pProblems not adegquately handled by STRIPS-
PLANEX are described in some detail in Reference 7. 1In this study, we have
focused in particular on the problem of hierarchical planning and execution.
What we desire is a system that can generate plans at various levels of

detail and monitor the execution of these plans in a2 manner well integrated

with the planner.

*
References are listed at the end of this report.

The system we will be describing has the following general character-
istics. When given a task, it generates a plan to perform this task.

The plan is in terms of rather high-level actions, and typically the
execution of any of these actions will involve the generation of a plan
at a slightly more detailed level, The execution of the more detailed
plan may involve the generation of a still more detailed plan, and so on,
recursively down a hierarchy of detail levels.

Such a strategy for plan generation has the obvious advantage of
limiting the search for plans at each level to short plans (say those
with no more than about five steps,) Perhaps less obviously, a hierarchical
plan-generating system seems to be required if the system is to learn auto-
matically new ''macro’ actions composed of a sequence of more basic actions.
The problems involved in learning, generating, and executing plans composed
of macro-actions depend for their solution on the development of an appro-
riate hierarchical system. Furthermore, we should seek a certain uniformity
of planning and execution strategy at each level of the system in order to
simplify the task of adding new levels to the top.

Some of these same issues have been faced in other hierarchical systems
such as ABSTRIPS by Sacerdoti® and LAWALY by Siklossy and Dreussi®. The
present system differs somewhat from these, both in the way plans are gen-
erated and in the way they are executed and monitored.

Our system is designed to work on absclutely trivial robot problems
rather than on difficult ones, and a word or two seems appropriate about

this choice. At the moment we are not concerned with a 'performance system”;

rather we are concerned about understanding with some clarity the
fundamental issues involved in building a hierarchical system. Admit-

tedly our design might have to be changed drastically before it will

solve more difficult robot problems, but we regard the development of

a model system to be a worthwhile first step. Too often when one approaches
a large problem with the "let's-just—program—it—up” attitude, one gets very
little understanding of why the system works as it does, We take it to be

a primary goal of this work to dévelop a methodology or at least a point of
view about how such robot systems ought to be corganized, The best way to
explicate our present point of view is to describe a simple model,

Our system operates in a simple simulated environment. (It would
probably not be too difficult to have it actually control the SHAKEY hard-
ware, but for simplicity we have decided, for the present, to simulate
execution.) The program is written in QA41° and makes use of several of
the features of that language. In particular, we rely heavily on pattern-—
directed function invocation; automatic backtracking; processes; retrieval
and storage of expressions in the QA4 net; associational property lists
with expressions; and demons, We assume the reader has some familiarity
with these ideas,

The world for our robot is a simple, infinite x-y coordinate system.
Besides the robot, there exists an immovable BOX that is an obstacle to
navigation, There may be other, pushable objects in the world; for example
an object named THING is one such, The primitive actions of the robot are:
rolling forward a certain number of units and turning (rotating) a certain

3

number of degrees in either direction. Combining these, it can travel
around its world and it can push objects. Even with such a trivial world,
we can design and test quite complex hierarchical systems.

Our robot system models its world in a structure we shall call the
WORLD-MODEL. (In QA4, we store assertions about the WORLD~MODEL in the
ETERNITY context.) The WORLD-MODEL contains assertions about the location
of various objects in the world. For example, the WORLD-MODEL to be used

in a later example contains the following assertions (shown later in Figure 2):

(AT ROBOT 0 0)
(HEADING ROBOT 0)
(AT BOX 7 1)
(AT THING -4 ~12)

Assertions in the WORLD-MODEL are customarily made or deleted by those robot
actions that simulate moving in the world. (They are not subject to removal
by QA4 backtracking, for example.)

When the system is generating a plan, it does so with reference to a
PIANNING-MODEL. When it is set up, the PLANNING-MODEL is a copy of the present
WORLD-MODEL. (In QA4, we create and use an immediate descendant of the GLOBAL
context for this.) All proposed actions are allowed to have their effect on
the PLANNING-MODEL, These effects can be backtracked if an alternative plan
needs to be considered,

Our description of the system will consist of two main parts, First we
shall describe how the system works in the ideal case, that is in a case un-

complicated by failures in planning, surprises in the world, or errors of execution.

4

Second we shall describe what we have done to deal with failures and
surprises.

The system currently exists as a running program although some of
the error-handling mechanisms are still incomplete and awaiting further

refinements to the QA4 language.

IT SYSTEM DESCRIPTION: MAJOR COMPONENTS

A, ACT}ONS

The fundamental building unit of our hierarchical robot system is
the ACTION. Each ACTION is a piece of program, together with its argu-
ments; when it is run it produces some or all of three important effects.

The first is simply an effect on the world, such as a robot motion,

Secondly, an ACTION may produce or add to a PLAN, A PLAN is an ordered

list of ACTIONS., An ACTION may call another ACTION as a subroutine, In
such a case the subordinate ACTION may add components to some PLAN that

the main ACTION is producing. Thirdly, an ACTION may make changes to various
MODELS of the world that the robot system maintains. If the ACTION has an
effect on the world, it records this effect in the WORLD-~MODEL. If the
ACTION produces a PLAN, the predicted effects of running this plan are
recorded in a PLANNING-MODEL that has heen specially set up prior to running
the ACTION routine,

The interesting thing about the ACTION programs is that they combine
both planning and execution functions in one program structure and thus blur
the usual distinction between planning and execution., Some ACTIONs may pro-
duce PLANs but have no effects on the world. Others may produce only effects
on the world but no PLANs, ACTIONs might produce PLANs and effects on the

world. Indeed the same ACTION might in some situations produce PLANS but no

world effects and in other situations just the opposite! In any case all

planning and execution are diffused throughout the entire system in such

A

ACTION programs; there is no special top-level planning program that pro-

duces plans to be executed by a top level executive as was the case in

STRIPS-PLANEX,

Discussing some examples will give a clearer understanding of the

role of ACTION programs, For the simple robot world we discussed earlier,

we have so far implemented the following ACTION programs:

GOTHERE PUSHTHERE
GOTO PUSHTO
ROLLTO PUSH
POINTAT PUSHING

These can be described as follows:

1

GOTHERE is a QA4 program that takes as an argument the pattern

(AT ROBOT GX GY). It can be called by pattern-directed invocation;
that is, it is subject to call whenever the QA4 interpreter meets

a GOAL statement of the form (GOAL (AT ROBOT GX GY)). (Presently
GOTHERE is the only ACTION that we have implemented that would be
called by this GOAL statement, but in principle we could have
others also, The QA4 backtracking system would then ultimately
select the appropriate ACTION,) When GOTHERE is invoked, it checks
a PLANNING-MODEL to see if the (immovable) BOX overlaps the goal
location, GX GY. If the BOX obstructs the goal, GOTHERE fails.

(We will discuss the implications of such failures later.)

Otherwise GOTHERE adds the ACTION GOTO(GX GY)} to whatever
PLAN is being constructed at the time. GOTHERE itself produces
no effect on the world or WORLD-MODEL, but it does update a
PLANNING-MODEL,
(2) GOTO(GX GY) checks a PLANNING-MODEL to see if there is a clear
path (avoiding BOX) from the robot's position to (GX GY). If
" there is, it adds ROLLTO(GX GY) to the PLAN that it is con-
structing, Otherwise it computes a subgoal location, (GGX GGY)
well removed from BOX and executes the pair of GOAL statements:
(GOAL (AT ROBOT GGX GGY)), GOAL (AT ROBOT GX GY)). When these
GOAL statements are executed, any effects they might have on a
MODEL are effects on the PLANNING-MODEL other than on the WORLD-
MODEL. The GOAL statements invoke calls upon GOTHERE, and the
end result is to produce the PLAN {GOTO(GGX GGY), GOTO(GX GY)}.

(3) ROLLTO(GX GY) first computes the angular direction from the

robot's position to (GX GY). It calls the ACTION POINTAT to
point the robot in that direction., It then computes the distance
the robot must roll to reach (GX GY) and causes the robot to roll
that far, 1If, after this, the robot does not think it is suffi-
ciently close to (GX GY), ROLLTO fails. (We will discuss this
type of failure later.) ROLLTO and POINTAT do not generate PLANs
but they do update the robot's WORLD-MODEL with its new location

and orientation,

(4

(5)

PUSHTHERE acts in a manner parallel to GOTHERE, It too can be
called by pattern—-directed invocation. Its argument is the

pattern (AT OBJECT GX GY), so it can be called whenever the QA4
interpreter meets a GOAL statement of the form (GOAL (AT OBJECT GX GY)).
(PUSHTHERE is the only ACTION implemented so far that can be called
by this GOAL statement,)

When PUSHTHERE is invoked, it first checks to see if the OBJECT

is either the ROBOT or the BOX, If it is either, it fails. Next
it checks the PLANNING-MODEL to see if the BOX overlaps the goal;
if it does, PUSHTHERE fails. Otherwise PUSHTHERE adds the ACTION
PUSHTO(OBJECT GX GY) to whatever PLAN is being constructed at the
time, PUSHTHERE itself produces no effects on the world or WORLD-
MODEL, It updates a PLANNING-MODEL.,

PUSHTO(OBJECT GX GY) checks a PLANNING-MODEL to see if there is a

clear path (avoiding BOX) from the OBJECT's position to the goal
(GX GY). If there is, it adds PUSH(OBJECT GX GY) -to the PEAN..
Otherwise it computes a subgoal location (GGX GGY) and uses the
GOAL mechanism to compute a PLAN for moving OBJECT first to the
subgoal and then to the goal (avoiding the BOX). The PLAN is
computed by calls to PUSHTHERE and would presently consist of

{ PUSHTO(OBJECT GGX GGY), PUSHTO(OBJECT GX GY)}. PUSHTO updates

a PLANNING-~MODEL.,

(6) PUSH(OBJECT GX GY) calculates a place (PX PY) to which the

robot should move to begin pushing the object. Through a
pattern—-directed call to GOTHERE, it then adds GOTO(PX PY)
to the PLAN being constructed. Next it calculates a place
(X Y) to which the robot should roll so that the OBJECT
will result in being pushed to (GX GY). Then it adds
ROLLTO(X YY) and PUSHING(OBJECT GX GY) to the PLAN,

(7) PUSHING(OBJECT GX GY) merely updates the robot's WORLD-MODEL

with the OBJECT's new location., It neither generates a PLAN
nor has any effect on the world,

We note that all of the planning is done in a hierarchical fashion
under the control of the various ACTION programs, Through the use of the
QA4 GOAL statement, planning that requires "'search' can also be done by
the system. QA4 takes care of such search processes automatically through
its backtracking mechanism, In our example to be presented later, search
does not play a role because we have only written one ACTION program
(PUSHTHERE and GOTHERE) for each of the two major GOAL forms that can be
handled., But one can easily imagine a larger system that could respond to
several different kinds of GOAL statements each matching the patterns of
several different ACTION programs,

Our approach involves hierarchies of ACTION programs--in our case we
have the GO hierarchy and the FUSH hierarchy. At the top of each hierarchy

is an action that can be invoked through a GOAL statement, Thus at any

10

level of the system whenever a GOAL statement is used, the resulting PLAN
is in terms of top level ACTIONS.

We note that GOAL statements themselves can be thought of as ACTION
programs, When they are run, some other ACTION program is invoked that
might affect the external world or generate a PLAN,
B. EXECUTIVEs

EXECUTIVEs are programs that run PLANs, We run an EXECUTIVE as a
QA4 process that creates offspring EXECUTIVE processes.f At any given
time, there may be several EXECUTIVE processes set up and waiting to run.

The argument of an EXECUTIVE program is a PLAN. Recall that a PLAN is
an ordered list of ACTIONs, For example {ROLLTO(3. 4), PUSHTO(THING -2 7),
GOTO(8 b5), PUSHTO(THING 3 4)} is a PLAN, The EXECUTIVE program can be
explained simply as an ordered application of a program called PERFORM to
each ACTION in the PLAN. The simple flow chart in Figure 1 shows how PERFORM
works,
C. An Example

To get a clear understanding of how the EXECUTIVE and ACTION programs
interact and of how hierarchical PLANS are composed, let us consider an
example taken from our simple robot world, Suppose the world and WORLD-MODEL

are as shown in Figure 2., We set up a QA4 process based on the EXECUTIVE program.

EY
The QA4 process mechanism was used here mainly because it simplified the

implementation of our scheme for execution monitoring to be described later.

11

ACTION

Set up a PLANNING-MODEL to be
used by ACTION in case it has 10
do any planning. The PLANNING-
MODEL is simply a copy of the
existing WORLD-MODEL.

'

Run ACTION
{It may produce a PLAN,)

Create 8 new EXECUTIVE process and
run it on the PLAN just produced.

5A-1187-2

FIGURE 1 SIMPLIFIED FLOW CHART FOR PERFORM

12

WORLD-MODEL

X GOAL

12 1+
{AT ROBOT 0 0} » 20, 121
{HEADING ROBOT 0}
(AT BOX 7 1] /
81 [AT THING -4 -12) /
4 L
ROBOT /
(o, 0l sox| (7. 1}
-12 -8 -4 4 8 12 16 20 x
/T /
/ ~
- ,y
A
_ /
/ -
L 12 L
THING
(-4, -12)
SA-118B7-1
FIGURE 2 INITIAL WORLD AND WORLD-MODEL FOR EXAMPLE PROBLEM

i3

Let the input to this process be the singleton PLAN {GOAL (AT THING 20 12)}.
A trace of this process goes as follows:

(1) Since the PLAN is a singleton, the process consists merely of
applying PERFORM to the ACTION (GOAL (AT THING 20 12)). A
PLANNING-MODEL is set up and the ACTION is run, PUSHTHERE is
invoked resulting in the creation of the PLAN {PUSHTO(THING 20 12)},
The planning model is updated, but this will have no conseguences
in subsequent activity.

(2) An EXECUTIVE process is set up and it is run on the new PLAN,

(3) BSince the new PLAN is also a singleton, the process consists
merely of applying PERFORM to the ACTION PUSHTO(THING 20 12).

A new PLANNING-MODEL is set up and the ACTION is run. Since BOX

is in the way of a straight path from THING to the goal, a subgoal
at (14 -6) is calculated, Finally, the PLAN {PUSHTO(THING 14 -6),
PUSHTO(THING 20. 12)] is created through pattern-directed calls to
PUSHTHERE,

(4) An EXECUTIVE process is set up and it is run on this PLAN, The
creation of PLANs and EXECUTIVE processes continues like this until
finally a ROLLTO is executed, taking the ROBOT near THING to push
it to the designated subgoal, We tabulate the hierarchy of ACTIONS
that are planned and run in Figure 3. The circled numbers indicate
the order in which each ACTION is run., The path taken by the robot

is shown by a dashed line in Figure 2,

14

FTdWVYXT IHL NI NNH SNOILDVY 40 AHOHVHIIH £ JHNOIS

E-LBLL-¥S
Q7HOM S10344Y QTHOM S12343V
A ’
g7yOMm 510334V JTYHOM 512344V A*ml ¢1)01170d “ Q7HOM S1L23d4v a1dom S1L233d44v Aﬁw_.l £-)OL7710d v
. 'y
(&), 5
O, &, (® © ©

A~NF 0z ONIHLIONIHSNG ¢ (L1 6LjoL710d ¢ {6~ ZLIOLOD V Aﬁml ¥I ONIHL)ONIHSNd ¢ tg- g110L770d {Z1- £-)0L0D “

Q) ®

A {Z1 OZ DNIHLIHSNJ “ A (8- ¥1 ONIHLIHSNG v

() ©,

AHN_. 0Z ONIHLIOLHSNd {9~ ¥1 DNIHLIOLHSNd v

A {21 OZ ONIHLIOLHSNd v

®

“HN_. 0Z ONIHL 1V) |_<00v“

15

We see that the various levels of the PLAN are expanded in a depth-
first manner. This convention may be too simplistic for more sophisticated
problems, but it does afford us a good beginning strategy. Modifications
might include the uniform expansion of each step in a plan down to some
level at which we would dare to execute some of the steps (see Sacerdotia).
Our view in this study is that the choice of an expansion strategy is a

second~order matter,

16

IIT SYSTEM DESCRIPTION: FAILURES AND SURPRISES

a, Failures

In a dynamic and inaccurately modeled world, several pitfalls
prevent the smooth generation and execution of plans., TFor this reason,
the execution of plans must be well integrated with the generation of
plans, and provision must be made to compare the expected outcomes of
ACTIONS with the actual outcomes. For convenience we have somewhat
arbitrarily divided the difficulties that might arise into two broad
clagsses: failures and surprises,

A failure occurs whenever a QA4 program FAILS., In QA4 such a
failure invokes the backtracking mechanism that undoes all of the
reversible effects of the computation occurring since the last decision
point., In our use of this mechanism, the decision points would typically
be at the points where GOAL statements invoke programs that attempt to
satisfy the goal, If, after such a choice, planning stops due to a QA4
failure {(caused for example by exhausting choices at a lower level), this
backtracking resets the system to its state at the choice point and another
choice is made. If ultimately a choice resulting in a viable plan is made,
the system continues just as though no failure had occurred. If no plan is

found at the level in guestion, a failure at the next highest level 1s generated,

17

and so on, until some level is reached that can adequately deal with the
failure. In case no level can set the failure right, the system responds
with a FAIL COMPLETELY. We use the QA4 failure mechanism quite liberally
in the design of the ACTION programs. It is considered good programming
style to put checks at the beginning of a program that might rule out the
use of that program so that it would be eliminated from consideration
sooner rather than later. (Note that in PUSHTHERE if BOX overlaps the
goal location, PUSHTHERE fails, In that case there would either exist
some other program that could be invoked to deal with such a difficulty
or the failure would propagate upward.,) The failure mechanism is a con-
venient way to handle automatically the various failures in planning in a
hierarchical system.

Additionally, we have used the failure mechanism to signal when an

*

ACTION program did not accomplish what was intended for it. This use
has been with the primitive actions, ROLLTO and POINTAT, in which checks
are made of the ROBOT's position and heading, respectively, before exiting.
If the error is not sufficiently small, a QA4 failure is generated, We have
put in a test in the EXECUTIVE program to trap failures originating from
primitive ACTIONs. This trap merely tries to run the failed primitive pro-

gram once more {(sometimes this works!). We take a second failure as a sign

*
In our present system, in which the effects of ACTIONs on the world are

Simulated, we have not exercised this feature. It will be important,
however, in the control of actual robots.

18

that something more serious is wrong, and propagate the failure up the
line to be trapped by the next higher level EXECUTIVE and so on,

It appears that this application of the failure mechanism will be
useful but we have not experimented with it very much yet. Larger scale
experiments, perhaps with the SHAKEY hardware will be needed to gain a
better appreciation of its advantages and disadvantages.

B. Surprises

In a dynamic and unknown world, assertions might dynamically appear
in and disappear from the WORLD-MODEL. In the WORLD-MODEL of a robot
wandering around an office environment populated by people, doors that
wvere closed may suddenly become copen and vice versa, the locations of
objects and people may change, and s¢o on--all independently of the robot's
own actions., New information may appear in the WORLD-MODEL as a side-effect
of the robot’'s actions. For example, when a robot uses vision to update
its location in the model, it may ''notice' a new object of which it has no
previous record. Also people may make assertions in the robot's WORLD-MODEL
while it is executing a task. (Many actual changes in the world will not
immediately, or ever, be recorded in the WORLD-MODEL. Obviously the robot
cannot he troubled by these until they do get recorded.)

Now many of these changes in the WORLD-MODEL will have no consequence
for the ultimate execution of a task. They will be irrelevant happenings.
We are interested here in those that could affect the way a robot executes

the rest of its task. These we shall call surprises,

19

First, we must have a2 way of dealing with the happy kind of surprise
that signals that some goal is satisfied before the robot expected it would
be. In this case, the system should abandon all work toward making that
goal true and get on with the rest of the task.

Second, there is the sort of surprise that signals that some subsequent
step in the PLAN being executed will not he able to be run, even though
no failure has yet occurred. Such a difficulty can be absclutely prevented
only by continuous checking of the assumptions on which the PLAN is based.

In the STRIPS-PLANEX system both types of surprises were handled by
the PLANEX scanning algorithm., Qur view here is that this scanning was overly
expensive, and that what is needed are mechanisms that achieve most of the
PLANEX results with much less effort. Currently we have partially implemented
a simple technique for dealing with the happy surprises, The technigque involves
the use of the QA4 demon mechanism.,

A QA4 demon is a technique for interrupting a running program or process
and transferring control temporarily to some other program or process. A
demon specifies a "watch-for" condition and a program to be run whenever the
condition being watched is met, In our system we store on the property list
of a PLAN that particular assertion that this PLAN is supposed to achieve,
Then just before an EXECUTIVE process is created to run the PLAN, we set up
a demon to watch the WORLD-MODEL for the occurrence of the assertion. Our
idea is that whenever this assertion occurs either as a direct result of the
robot's efforts or through serendipity, the demon should interrupt whichever

process is running and transfer control to the EXECUTIVE process that originally

20

set up the demon. 1In this way, the next step in the next-higher level
PLAN will be executed.

At the moment, QA4 has no easy way for a demon to transfer control
to the process that created it, so we are awaiting an improvement here
before this use of demons can be fully tested. Our current system
merely has the demon transfer control to the parent of that process
running at the time the demon fires, Also there is no way yet to kill
demons after they have performed their intended service, but future
versions of QA4 ought tce have this feature.

We have not yet implemented a technique to deal with the second
kind of surprise, the type that signals that some future step in a
PLAN will be unexecutable, As an example, consider a PLAN that has as
one of its steps going through (an assumed open) doorway. Suppose while
executing some preliminary steps in the PLAN, the robot learns that the
doorway is closed. 8Since going through the doorway can no longer be
executed, the robot might better halt the entire PLAN as soon as it learns
this new fact instead of waiting for the inevitable failure when it attempts
the unexecutable action,

Our feeling is that QA4 demons can be used to monitor these kinds of
surprises also, although we have not yet included this feature in the pro-
gram. The conditions to be watched for can be stored in the PLAN's property
list, and the EXECUTIVE that creates an EXECUTIVE to run the PLAN can set up
the appropriate demons, When any of the demons are activated, a QA4 failure
could be generated, which would then be treated the same as any other failure.

21

We note that being able to deal with surprises merely improves the
efficienecy of the execution., In the case of happy surprises, we have
achieved a goal before we expected to; if the system fails to notice
this, it would presumably go on working and ultimately either notice it
had already achieved the goal or achieve it again. In the case of the
other surprises, the system would ultimately attempt to execute the
unexecutable ACTION and a failure would be ggnerated. Appropriate

b3
processing of surprises provides an advance notice of success or failure,

The current system lacks one major ability of STRIPS-PLANEX, The PLANEX
scan algorithm would automatically recognize when early steps in a PLAN
could be discarded because their effects only provided already-satisfied
preconditions of later steps. This feature appears to be important, and
we will devote some future effort to see how it can be incorporated into

the system,

22

IV DISCUSSION

This report has described a simple model system for hierarchical
robot planning and execution. We presented a short example to illustrate
the operation of the system. Several features of the system were not
fully exercised in this example, but it is felt that these features will
be important components of an expanded system designed to deal with more
complex robot tasks, In particular, we might stress the importance of
the following items:

{1) Hierarchically Organized ACTION Routines~-~Hierarchies of actiocn
routines have been important in other robot execution systems,
for example the LLAs and ILAs of the SRI SHAKEY system.l1 There
has been little attention to their use, however, in conjunction
with a general planning system such as the QA4 interpreter. We
think that any large robot system must have some sort of hierar-
chical organization of its actions. Our example in this report
did not fully illustrate the economies in plan generation made
possible by a hierarchical system, but a slightly more complex
example would (if it involved several pattern-invocable ACTIONS
for each GOAL statement).

{(2) TUniformity of Planning and Execution Strategies--We have already

mentioned that we feel a uniform structure throughout the hierarchy

23

will be important when we begin to consider systems that can
automatically add new levels to the top of the hierarchy.

(3) A Generalized Planning Ability--Obviously each ACTION routine

could have its own specialized planning or problem-solving
system incorporated within it and hand-tailored to deal with
the kinds of problems it encounters. However we feel that a
common planning system (such as the QA4 interpreter with back-
tracking) is adequate and useful for many planning tasks, and
thus its use allows substantial design economies for perhaps
only a small cost in efficiency.

(4) Execution Monitoring—-Any robot system must have a means to

monitor performance, The approach taken here has relied on
demons, and it is our feeling that they will play a useful role
in larger systems.
It is intended that work on this system will continue; ultimately we
would like to test it out on the SHAKEY hardware or its successor. Such
testing will probably await the completion of a more efficient QA4 system

now being developed.

24

bl

ACKNOWLEDGMENT

This work was supported by the Information Systems Branch of the
Office of Naval Research under Contract No. N00014-71-C-0294, This work
was done in conjunction with another project supported in part by the
Advanced Research Projects Agency through Contract PAHCO DAHCO4-72-C-0008,

The author wishes to thank Peter Hart, Earl Sacerdoti, and Richard

Fikes for their several helpful suggestions and criticisms.

25

REFERENCES

R, Paul, "'Modelling, Trajectory Calculation and Servoing of a
Computer Controlled Arm," Ph,D. Dissertation, Computer Science

Department, Stanford University, Stanford, California (1973).

G. Sussman, 'Teaching of Procedures-Progress Report,’ Artificial
Intelligence Laboratory Memo No. 270, Massachusetts Institute of
Technology, Cambridge, Massachusetts (October 1972),

T. A, Winograd, '"Procedures as a Representation for Data in a
Computer Program for Understanding Natural Language,’ Ph.D. Thesis,
Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, Massachusetts (1971).

J. A. Derksen, J. F., Rulifson, and R. J, Waldinger, ''The QA4 Language
Applied to Robot Planning,' AFIPS Conference Proceedings, Vol. 41,
Part II, pp. 1181-1192, Fall Joint Computer Conference (AFIPS Press,
Montvale, New Jersey, 1972)}.

R. E, Fikes and N, J, Nilsson, "STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving," Artificial
Intelligence, Vol, 2, No. 3/4, pp. 189-208 (Winter 1971).

R. E. Fikes, P. E. Hart and N. J. Nilsson, "Learning and Executing
Generalized Robot Plans,' Artificial Intelligence, Vol. 3, No. 4,
pp. 251-288 (Winter 1972).

R. E. Fikes, P, E, Hart, and N, J, Nilsson, 'New Directions in Robot
Problem Solving," Machine Intelligence 7, D. Michie and B, Meltzer
(editors), (Edinburgh University Press, Edinburgh, Scotland, 1972).

E. Sacerdoti, "Planning in a Hierarchy of Abstraction Spaces,’
Preprints of International Joint Conference on Artificial Intelligence-
1973, Stanford, California (August 1973).

L. Siklossy and J. Dreussi, ""A Hierarchy-Driven Robot Planner Which

Generates Its Own Procedures, Preprints of Internation Joint Conference
on Artificial Intelligence-1973, Stanford, California (August 1973).

26

10.

11.

J. F. Rulifson, ""QA4: A Procedural Calculus for Intuitive Reasoning,"
Ph.D. Dissertation, Computer Science Department, Stanford University,
Stanford, California (November 1972).

P, E, Hart, et al., "Artificial Intelligence-Research and Applications,”

Annual Technical Report, Contract DAH-C04-72-C-0008, SRI Project 1530,
Stanford Research Institute, Menlo Park, California (December 1972),

27

