Atern

Technical Note 523 ¢ March 1993 .

Automated Theorem—Proving Research in the
Fifth Generation Computer Systems PrOJect
Model Generation Theorem Provers

Prepared hy:

Mark E. Stickel

Principal Scientist

‘Artificial Intelligence Center

Computing and Engineering Sciences Division

This research was supported by the National Smence Foundalion under Grant. CCR~8922‘330 The
views and conclusions cont,amed herein are those of the author and should not he interpreted as
necessarily representing the official policies, either expressed or implied, -of the Nahonal Science
F oundatlon or the United States governmem

© 333Ravenswood Avenue o MenloPark, CA94025-3495 = (415)326-6200 © FAX: (415) 326-6512 o Telex: 334486

Abstract

One of the successful outcomes of the Fifth Generation Computer Systems
Project is the development of Model Generation Theorem Provers (MG TPs).
MGTPs have solved previously open problems in finite algebra, produced
rapid proofs of condensed detachment problems, and are providing an in-
ferential infrastructure for knowledge-processing research at 1COT. They
successfully exploit the Fifth Generation Project’s KL1 logic programming
language and parallel inference machines to achieve high performance and
parallel speedup. This paper describes some of the key properties of MGTPs,
reasons for their successes, and possible areas for future improvement.

Keywords
automated theorem proving, model generation, MGTP, SATCHMO

1 Introduction

Research on Model Generation Theorem Provers (MG TPs) is a recent ac-
tivity of the Fifth Generation Computer Systems Project. It started only in
the 3-year final stage of the 10-year program, but became one of the prin-
cipal research initiatives of ICOT’s Fifth Laboratory. This research effort
lias been quite successful. Hasegawa and Tujita [7] provide an extensive
summary of MGTPs and their applicatious.

There is no single Model Generation Theorem Prover. Instead, two fam-
ilies of theoremn provers (ground and nonground MGTPs) share the MGTP
name but little else. In particular, ground and nonground MGTPs are con-
ceptually quite different and have essentially no code in common.

Ground MGTP (MGTP/G) has the more innovative design and has the
distinction of having solved a number of open problems in finite algebra.
Specifically, it was able to find or determine the nonexistence of qnasigroups
(Latin squares) with certain additional properties. This is basically a finite
{but huge!) enumeration task, which benefited substantially from execution
on ICOT’s Parallel Inference Machine (PIM} with 256 processing elements
(PEs). In the ICOT environment of the KI1 language running on PIMs,
signal features of MGTP/G are its ability to use KL1’s restricted form of
unification and its suitability for parallel execution.

Nonground MGTP (MGTP/N) is more conventional and offers a. small
subset of the capabilities of the powerful OTTER. theorem-proving pro-

gram [9] developed at Argonne National Laboratory. MGTP/N has been .
tested primarily on problems involving condensed detachment, a recent
problem domain for OTTER. MGTP/N has in a number of cases solved
problems with much smaller search spaces than OQTTER. and has sometimes
solved problems that OTTER. failed to solve. OTTER and MGTP/N exe-
cute sitnilar deductive closure algorithms for these problems, but MGTP/N
often finishes sooner after generating fewer clauses because it employs looka-
head search for a solution. Achieving good parallel performanee in MGTP/N
was quite a challenge that required substantial software engineering and ex-
perimentation.

Although these systems are quite diflerent, their joint development forms
a coherent research program. A major objective of the research on MGTPs
was to combine logic programming and automated theorem proving. MGTP /G
has achieved this to some extent and its extension to a new bottom-up
programming language system is contcmplated. However, MGTP/G has
some deficiencies that complementary research on MGTP/N is meant to
overcome. MGTP/G requires that all inferred results be ground. This is
frequently an acceptable restriction, but far from always. MGTP/N allows
nonground consequences. MGTP/G is designed so that case-splitting on
non-Horn clauses is the principal source of parallelism. Thus, little parallel
speedup exists for the important case of Horn problems. MGTP/N, which
is restricted to Horn problems, is designed to achieve good parallel speedup
on them. The techniques to enable parallel speedup in MGTP/N can be
folded into MGTP/G to provide it good parallel performance on problems
with little or no case-splitting.

2 Ground Model Generation Theorem Prover

The inference system of ground MGTP (MGTP/G)is basically the same as
that of the SATCHMO theorem-proving program [8]. The overall objective
of these theorem provers is to generate a set of models of an input set of
clauses (hence the name model generation). Model generation is not the ob-
jective of most theorem-proving programs. However, many theorem-proving
programs prove theorems by demonstrating the unsatisfiability (absence of a
model) of their negations. Model generation is more general, demonstrating
absence of a model for unsatisfiable sets of clauses, and producing models
for satisfiable ones.

The operation of MGTP/G can be understood partially in terms of the

hyperresolution inference rule [14] that employs rules (implications) to derive .
new facts from old ones. Let Ay,..., Ap, A, ..., AL and Cy,...,C, (m >0
or n > 0) be atomic formulas. Then the inference

Ay
A
AN AA,=C v v,
Cyov---v(Cyo

where @ is the most general unifier of the pairs (A}, A1},..., (AL, A,) is
a special case of hyperresolution. If n = 0, the empty disjunctive fact is
derived signifying a contradiction. If » = 1, an atomic formula is derived; it
can be used as the input to further hyperresolution inferences. If n > 1, a
disjunctive fact has been derived; it cannot be used asinput to this restricted
form of hyperresolution, which requires facts to be atomic formulas.

MGTP/G resolves the mismatch between the atomic-formula inputs to
this restricted hyperresolution rule and the possibly non-atomic-formula out-
put by employing a case-splitting rule as well as hyperresolution. Disjunc-
tive facts ¢y vV --- VvV Cy, (n > 1) result in the problem space being split
into n cases, one for each C;. Let M(S) denote the set of models of set
of clauses 5. The logical justification for the case-splitting rules is that
MESU{CLV - VCu}) = MSU{C1HU---UM(S U {C,}). However,
this is true only if ¢y} v ---V C,, is ground (contains no variables); other-
wise the cases may contain shared variables that must have consistent value
assignments. MGTP /G requires facts to be ground; this is ensured by the
range-restrictedness property.

The input to MGTP/G is range-restricted if every fact A! is ground and
every rule AjA---A A, — CyV---VC, has the property that every variable
in Cyv---v(, also occurs in Ay A---AA,,. When regarding facts and rules
as clauses, range-restricteduess requires that every variable that occurs in
a positive literal of a clause must occur in a negative literal of the clause.
With range-restrictedness, facts derived by the hyperresolution operation
are always ground, and case-splitling becomes feasible.

Case-splitting is the principal source of parallelism in MGTP/G. There
is virtually no overhead for processing cases in parallel, as there are no
shared variables and the separate searches for models proceed independently.
Problemns with enough cases run with near-linear speedup on PIMs with as
many as 256 PIs.

Non-range-restricted problem Problem in range-resiricled form

a(x,x) dom(X) —> d(X,X)

d(x,Yy) , d(v,z) —> d(X,2) dalx,y) , 4(v,2) -> d{x,2)
p(X) ; d(g(¥},X) dom(X) -> p(X) ; d(g(x),Xx)
p(X) ; 1(1,g(x)) dom(X) —> p(X) ; 1(1,g(X))
p(X) ; 1(g(X},x) dom(X) => p{X) ; 1{g(X},Xx)

1(1,X) , 1(X,a) -> p(£(X)) 1(1,%) , 1(X,a) -> p(£(X))
1(1,X) , 1(X,a) -> d{£(X),X) 1(1,X) , 1(X,a) -> d{(£(X),X)

1(1,a) 1(1,a)

p(x) , d{(X,a) -> false p(X) , d(X,a) —> false
dom{1)
dom{a)

dom(X) -> dom{f(X))
dom(X) -> dom{g(X})

TYigure 1: Example of transformation to range-restricted form.

An extremely fortunate side effect of the range-restrictedness condition
is that the hyperresolution operation no longer requires {ull unification since
facts are alwavs ground. MGTP is implemented in the KL1 language that
provides pattern matching but not {ull unification when matching a goal with
a clause head. KL1’s “one-way unification” is sufficient for MGTP /G. Full
unification with the occurs check is unnecessary, and all necessary unification
is performed with high efficiency by I{L1’s built-in unification.

Non-range-restricted problems can be transformed into range-restricted
problems by addition of a “dom” predicate. Negative dom predicate literals
are used to qualify clauses with non-range-restricted variables. The dom
predicate is defined to include all ground terms of the problem. IFigure 1
contains an example of the transformation to range-restricted form.!

For what class of problems is MGTP/G well-suited? MGTP/G offers
no advantage for Horn problems. Horn problems are those for which 0 <
n < 1 {or every rule Ay A+ A A, — Cy V-V (. There is no case-
splitting in Horn problems. For range-restricted Horn problems, MGTP/G
inference is the same as hyperresolution. For non-range-restricled Horn
problems, the transformation to range-restricted form results in all input
and derived facts being ground, resulting in less general and compact results

!The problem itself is unimportant and will not be discussed further. For the curious
I P / ,
it is a small, standard theorem-proving exercise for proving existence of prime divisors.
The predicates “p”, “d”, and “I” stand for “prime”, “divides”, and “less than™; “f” and

o_

g" are Skolem functions.

dom(1).
dom(2).

dom(12)}.

dom(M) , dom(N) —> p(M,N,1} ; p(M,N,2) ; ... ; p(M,N,12).
dom(M) —> p(M,M,H).

p(M,¥ K1) , p(M,N,K2) , {K1#K2} -> false.

p(M,N1,K) , p(M,N2,K) , {N1#N2} -> false.

p(M1,8,K) , p{H2,N,K) , {M1#M2} —> false.

p(Y,x,1) , p(U,Y, v} —> p(V,Y,%}.

p(M,12,K) , {K+1<M} -> false. J, omit some isomorphic cepies

Figure 2: Clauses for generating idempotent {yx.y)y = 2 quasigroups.

than hyperresolution operating directly on non-range-restricted clauses.

MGTP/G is usually unsuitable for problems with function symbols,
and especially so for non-range-restricted problens with function symbols.
Such problems have infinite search spaces and the transformation to range-
restricted form yields a definition for the dom predicate that blindly gen-
erates elements of the Herbrand universe, as in the example of IMigure 1.
Infinite search spaces in general require fairness to ensure completeness.
The issue is not addressed in MGTP /G, whose design is restricted to finite
problems.

Thus, MGTP /G is particularly suitable {for function-free, non-Horn prob-
lems. The following is a slight variant of the MGTP/G input for one of the
previously open problems in finite algebra that it recently solved [2, 6].
These problems fall neatly into the ideal class of function-Iree, non-Horn
problems, with finite, but huge and branchy search spaces. Figure 2 con-
tains the clauses for constructing idempotent quasigroups of order 12 that
satisfies the equation (yx.y)y = x. The formula p(X,Y,Z) is interpreted as
a2y = z in the quasigroup. MGTP/G was able to determine that no such
quasigroup exists, after exploring nearly 3,000,000 branches in the search
space. This took less than four hours on a 256-PE PIM and would have
required weeks on a single processor.

MGTP/G is essentially an “industrial strength”™ version of SATCHMO.
SATCHMO and MGTP/G attempt to produce the deductive closure of a
set of facts under a set of rules. The growing set of facts comprise a possible
partial model. The key operation for deriving new facts is the conjunctive
matching of facts Aj,..., Al in the current candidate model with rule an-

tecedent Ay A --- A Ay, It is vital that rules not be reapplied to the same.
facts. For example, suppose there are A/ facts and a single rule that has
already been applied to all M™ combinations of the facts. The naive strat-
egy for computing the new closure of those M facts plus one additional
one would involve examining (M + 1) combinations, M™ of which had
already been done. SATCHMO does this recomputation; MGTP/G does
not. MGTP/G computes only the new combinations. In database system
terminology, SATCIIMO uses the naive strategy for computing a deductive
closure, while MGTP/G uses the seminaive strategy [3].

“Partial falsification” is a second substantial engineering improvement
of MGTP/G over SATCIIMO. Instead of eagerly splitting on disjunctive
facts Cy vV ---V C,, (n > 2) as soon they are generated, it is generally better
to choose from a set of them one with smallest n for splitting. Moreover,
prior to making this selection, it is best to eliminate atoms ; that a little
lookahead reveals will lead immediately to failure. The disjunctive fact with
smallest n after such obviously false literals are eliminated by this partial
falsification step is chosen for splitting. C; is eliminated by partial falsifica-
tion if it plus facts of the current candidate model match the antecedent of
some tule A, A -+ A A, — false. Partial falsification resulted in orders of
magnitude of improvement in performance on the finite algebra problems.

MGTP/G has become a core technology for the Fifth Generation Com-
puter Systems Project. It has been used in applicationssuch as truth mainte-
nance, legal reasoning, program synthesis, and natural-language parsing [7].
Excellent work has also been done on encoding in MGTP/G other forms
of reasoning such as abduction, modal reasoning, nonmonotonic reasoning,
and logic programming with negation as failure [7]. MGTP/G is important
in part because case-splitting search in MGTP/G is dual to backtracking
search in Prolog, a feature that was lost when ICOT shifted focus to com-
mitted choice languages to facilitate parallel execution. There is a question
of whether programming in comnmitted choice languages should he regarded
as logic programmming. But programming for MGTP, written in the KL1
committed choice langnage, can certainly be considered logic programming.

3 Nonground Model Generation Theorem Prover

MGTP/G has some deficiencies: it is applicable only to range-restricted
problems and has poor parallel performance in the absence of case-splitting.
It is thms notably weak in the very important case of non-range-restricted

Horn problems. Nonground MGTP (MGTP/N) is designed for this class.
of problemms. MGTP/N also uses the hyperresolution inference rule, but
input and derived facts need not be ground, and there is no case-splitting
since ¢onsequences must be single atoms. Unit hyperresolution is the only
inference rule. MGTP/N has been extensively tested on problems involving
condensed detachment [11], a recent problem domain for QTTER, and the
subject of several challenge problems for theorem-proving programs posed
by Ross Overbeek [13], who brought these problems to ICOT’s attention. An
example is to prove that XGK is a single axiom for the equivalential calculus
by proving known single axiom PYO from it. This is done by refuting:

p(X) , ple(X,Y}) -> p(Y).
ple(X,e{e(Y,e(Z,X)),e(Z,Y)))). Y%X6K
ple(e(e(a,e(b,c)),c),e(b,a))) -> false. YPYOD

The first clause is the condensed detachment rule that states that y is prov-
able in the equivalential calulus if z and e(z,y) are. These problems had
several advantages as test problems in a new theorem-proving project. Their
inference system requirements are small: hyperresolution is sufficient and no
equality reasoning is required. The problems have few clauses; this was ben-
eficial in early stages of development of the theorem prover when the input
was effectively hand compiled. Finally, the problems are hard: they have
large search spaces and long proofs. This forced researchers to focus on
search strategy and efficiently coping with large numbers of clauses.
Ground MGTP fit the KL1 and PIM environment well. KL1 unification
sufficed for range-restricted problems, and case-splitting provided ample par-
allelism with little overhead. Neither is the case for nonground MGTP.
The hyperresolution rule in MGTP/N requires full unification with the
occurs check. MGTP/G was able to represent logic variables by KL1 vari-
ables; MGTP/N could not. For MGTP/N, it was necessary to represent

variables as integers and substitutions as arrays indexed by those integers

and to code a unification algorithm, just as one would do in a language like
(. Not being able to rely on KL1's built-in and having to program unifica-
tion in such a high-level language resulted in remarkably little performance
loss—unification on a PIM processing element has been measured at a re-
spectable 1/4 of the speed of unification in OTTER (written in C) running
on Lhe approximately 2-times faster SPARC-2 processor.

The MGTP/N inference system lacks case-splitting as a source of lots
of low-overhead parallelisin. The operation of the system had to be decom-
posed iuto separate stages—generation of new clauses, determining whether

-1

they are subsumed, and testing if they complete a refutation—and the sys-.
tem constructed as a collection of generator, subsumer, and tester com-
ponents. High speedup factors have been achieved. but only after much
experimentation with different ways of organizing these tasks.

MGTP/N computes the deductive closure of a set of clauses in the same
manner (by the seminaive strategy again) as OTTER. MGTP/N operates
on derived facts in strict first-in-first-out order, unlike OTTER, which or-
dinarily orders them by increasing size (ajthough OTTER’s ratio sirategy
used for condensed detachment problems interleaves selecting clauses in or-
der by size and in first-in-first-out order). Clauses exceeding a user-specified
size are discarded; this is the only heuristic control in MGTP/N. Size lim-
its are used in OTTER as well. In OTTER, size limits primarily serve to
control memory usage and have little effect on search order since clanses
are ordinarily operated on in order by size. Large clauses that might be
deleted would in any case be operated on with low priority. The choice of
size Jimit is more critical in MGTP/N with its first-in-first-out processing
order—clauses will be processed in the order in which they were generated,
unless they are deleted because of the size limit.

The use of first-in-first-out order is controversial. In OTTER, ordering
by size generally works much better than first-in-first-out. One motiva-
tion for MGTP/N’s use of first-in-first out ordering is the desire to process
clauses in parallel coupled with the desire to have exactly reproducible re-
sults regardless of thie number of PEs being used (this is a strong, possibly
unncessary, constraini that nevertheless facilitated experimentation). In the
purely sequential execution of OTTER, the smallest, previously unselected
clause is selected for processing, and all its consequences are inserted into
the size-ordered list; the process is then repeated, with the next selected
clause often beiug one of the cousequences of the immediately previously
selected clause. Reproducing this behavior in MGTP /N would require ex-
cessive serialization, forcing selection of which clause to process next to be
delayed unti] processing of the previous clause is completed.

Lazy model generation and lookahead represent a significant departure
from the functioning of hyperresolution in OTTER. They account for MGTP /N’s
ability to prove theorems after having stored far fewer clauses than QTTER.
Hyperresolution derives positive clauses. The final inference of a hyperres-
olution refutation matches unit positive clauses with all the literals of a
negative input clause.

OTTER repeatedly selects a clause for inference and derives new clauses
by hyperresolution between the selected clause and all previously selected

clauses (i.e., those in the axioms or usable list}); these new clauses become .
candidates for future selection for inference if not subsumed (i.e., they are
placed on the set of support list). If the empty clause is derived, the refuta-
tion is complete. In this procedure, a refutation cannot be completed until
all the unit positive clauses necessary to watch a negative input clause Lhave
been selected for inference. {Actually, OTTER is not quite this strict. It
will recognize that the refutation can be completed immediately after gener-
ating a positive unit clause if it matches a unit negative input clause.) With
lazy model generation, no new results are derived by hyperresolution uutil
it has been determined that the current set of positive clauses, selected and
unselected (i.e., those in the axioms or usable list and those in the set of
support list), do not falsify a negative input clause. This extends OTTER s
recognition of completability of a refutation from unit negative input clauses
to nonunit negative input clauses. Being able to recognize completability of
a refutation at the time the last necessary piece is derived instead of when it
is selected can result in much faster proofs with many fewer stored clauses.

This improvement alone would have no effect on the solution of con-
densed detachment problems compared to OTTER, since condensed detach-
ment problems have only unit negative input clauses, and the effect of lazy
model generation for unit negative input clauses is already present in OT-
TER. The refutation-completability test can be enhanced by lookahead—
allowing the test to use not only all derived clauses, but their immediate
consequences as well. The consequences are derived solely to test for im-
mediate completability of a refutation and are discarded afterward; they
may be rederived when and if their parent clauses are selected for infer-
ence. Refutations can be completed after selecting far fewer clauses for
inference, at the expense of some recomputation. Using lazy model gener-
ation and lookahead, proofs of condensed detachiment problems have often
been completed after storing far fewer clauses than OTTER. MGTP/N has
also proved some condensed detachiment problems that OTTER. has not yel.
succeeded in proving.

4 Ewvaluation

4.1 Ground MGTP

MGTP/G is limited to finite problems and thus is capable of a-limited
style of theorem proving. Function-free theories can be finitely instantiated
to ground theories and processed by theorem provers {or the propositional

calculus. Although limited, such theories are often sufficient for applications .
like truth maintenance, natural-language parsing, and deductive databases.

MGTP/G is a niche theorem prover, although the niche appears to be a

useful one.

The basic idea of MGTP /G comes from SATCHMO, but MGTP/G has
been refined into a powerful, practical tool, with obvious inefficiencies of the
original SATCHMO overcome.

I would like to compare MGTP/G to the Davis-Putnam procedure [4],
the classic method for propositional calculus theorem proving. The two have
much in common—the Davis-Putnam procedure also attempts to construct
a model of its input and employs case-splitting. The most obvious differ-
ence is that MGTP/G allows nouground input. The Davis-Putuam proce-
dure can be applied to MGTP/G problems after first creating all ground
instances of the input clauses. However, MGTP/G’s nongronud representa-
tion has substantial practical importance. For example, consider the ground
instantiation of the clauses in Figure 2: the clause p(Y,X,U0) , p(U,Y,V)
-> p(V,Y,X) has four variables and can thus be instantiated in 12 ways.
My input to the Davis-Putnam procedure for this problemn contained more
than 48,000 clanses and 118,000 literals. Coping with problems of this size
demands good data structures and fast operations. I have found some prob-
lems of this size feasible using the discrimination tree representation for sets
of propositional clauses recently proposed by de Kleer [5]. Problems with
only slightly larger domains or more variables per clause could easily have
ground instantiations too large to hold in computer memory.

The following table shows the number of branches in the search space
and the time in seconds for MGTP /G and an implementation of the Davis-
Putnam procedure on some of tlie harder quasigroup problems tested. The
finite algebra problem in Figure 2 is named QG5.12 in the table. Problems
flagged with an asterisk were listed as open problems in [2] before being
. solved by MGTP/G. Although the formulations given to the two systeins
differed slightly, the search space was basically the same, and the same
naive heuristic for choosing case-splits (i.e., split a shortest positive clause
after all unit simplifications have been done) was emploved by both systems.
MGTP times are in seconds for a 256-PE PIM; DP times are in seconds on
a SPARC-2 workstation running Lucid Common Lisp.

10

MGTP | MGTP DP DP
Problem | Branches Time | Branches | Time
QGL.8 180,430 1,894 236,851 | 20,906
QG3.9 312,321 1,022 83,630 | 7,158
QG4.9 315,025 1,127 116,476 | 10,114
*QG5.12 | 2,749,676 | 13,715 6,832 | 4,524
*QG6.12 | 2,420,467 8,300 13,488 | 10,487
*QGT7.10 | 1,451,992 2.809 12,972 | 6,628

MGTP/G is clearly competitive. Several additional conclusions can he
drawn from the table:

¢ The problems are apparently hard. The searches are large and time-
consuming for both systems.

¢ MGTP often required much Jess wall-clock time. Researchers can ob-
tain results more quickly using MGTP on PIM. This is an unarguable
benefit.

¢ MGTP required much more total CPU time. MGTP's single processor
performance is substantially less than DP’s.

¢+ MGTP’s search space was often larger and sometimes much larger. DP
is exploiting some problem constraints for more unit simplification that
MGTP overlooks.

It should be noted that both MGTP/G and the Davis-Putnam procedure
were designed as general-purpose theorem provers and are not specialized
to quasigroup problems. Slaney’s FINDER. [15] has also been used to solve
quasigroup problems. It is also a general-purpose program, but was de-
signed for constraint satisfaction rather than theorem proving. MGTP/G
and FINDER are probably not essentially very different from the Davis-
Putnam procedure, although there may be substantial differences in detail.

Onue difference in detail that probably accounts for much of the differeuce
in search-space size between MGTP /G and the Davis-Putnam procedure is
thie amount of simplification by unit clauses that is possible. All instances
of partial falsification in MGTP /G are handled by unit simplification in the
Davis-Putnam procedure, but the converse is not true.

Consider the rule p(Y,X,U) , p(U,Y,V) -> p(V,Y,X) in the quasigroup
problem. In MGTP/G, this is used only for forward reasoning to derive in-
stances of p(V,Y,X). In the Davis-Putnam procedure, it is just a clause.

11

In particular, if an instance of p(Y,X,U) is true and p(V,Y,X) is lalse, the .
negative unit clause -p(U,Y,V) can be derived and used in unit simplifica-
tion. MGTP /G assigns asymmetric roles to positive and negative clauses.
Positive clauses are model elements, mixed clauses are generators, and neg-
ative clauses are constraints. But assigning roles of code versus data to
clanses may result in a failure to recognize and exploit useful relationships
among them. A challenge for MGTP/G is to be more effective in this regard
without losing its procedural nature and efliciency.

A second critical challenge for MGTP/G is to be able to cope with
or avoid irrelevant case-splitting. The search space can easily be made
arbitrarily large by adding extra irrelevant positive clauses to split. In
many applictions. it is not realistic to expect irrelevant clauses o be ab-
sent. Some work in this direction has been done for SATCHUMO [17]. The
Davis-Putnam procedure shares the same defect, but there is an elegant so-
lution [12]. Case-splitting in the Davis-Putnam procedure uses the property
that M(S) = M{SU{p}HHUM(SU{-p}). If SU{p} has no models and keep-
ing track of dependencies shows that the demonstration of its unsatisfiablity
did not depend on p, then it can be recognized that S U {-p} also has no
models and search for them can be eliminated. A challenge in applving this
rule to MGTP/G is that it is sequential: it analyzes the search for models
of 5 U {p} before deciding whether to search for models of §U {-p}, which
would reduce parallelism in MGTP/G.

Finally, the efficiency of MGTP/G’s implementation deserves further
scrutiny. It is hard to evaluate the effects of the different representations
{(restricted first-order for MGTP, propositional for DP), and different hard-
ware and software bases (kL1 on PIM versus Lisp on SPARC-2), but it is
nevertheless true that, for the quasigroup problems, MGTP running on 256
processors was at best 10-times faster than DP running on a single pro-
cessor. There has been much effort on speeding up the key “conjunctive
match” operation—finding sets of positive clauses in the current model that
simultaneously unify with all the negative literals in a negative or mixed
clanse—but 1 do not think the final answer has yet been found. I believe
that term indexing will be part of the final answer.

4.2 Nonground MGTP

MGTP/N js not restricted to finite problems like MGTP/G. It is closer
in spirit than MGTP/G is to conventional theorem-proving programs like
OTTER, although it is restricted to Horn clauses and uses only the hyper-

12

resolution inference rule. Allowing infinite search spaces makes it closer to |
“real” theorem proving. MGTP/N has succeeded in proving a number of
difficult (for antomated theorem provers) condensed detachment problems.
Despite its successes, MGTP/N is a less complete system than MGTP/G.

The most often nsed versions of MGTP/N lack some crucial {eatures,
such as backward subsumption and ordering clauses for inference in other
than first-in-first-out order, let alone additional inference rules such as those
for equality reasoning. All of these topics have received some investigation,
but have not been elevated to common usage in MGTP/N.

Indexing clauses {or fast, selective retrieval for unification and snbsnmp-
tion operations is critical to the performance of large-scale theorem prov-
ing [10], but has only recently been incorporated into some versions of
MGTP/N, where it has produced substantial performance gains. Indexing
is absent in MGTP/G as well, and its absence does create a performance
problem. However, the problem is mitigated by the comparatively small
number of model elements in exainples of interest {e.g., a model of an order
n quasigroup contains only »? literals) compared to MGTP/N, which may
store thousands of clauses.

The major innovation of MGTP/N is lazy model generation and looka-
head. These are the features that have enabled it to substantially outperform
OTTER on a number of examples. ICOT has created in this approach a use-
ful, substantial modification of the deductive closure operation of QTTER.
This refinement is often stunningly effective. On condensed detachment
problems when using first-in-first-out order, lazy generation and lookaliead
often enable MGTP/G running on a single PE to beat OTTER. running on a
SPARC-2 and to be 200-1000 times faster when running on a 256-PE PIM.

Such use of lookahead is not unprecedented, though it has rarely been
so convincingly demonstrated. The TERMINATOR module [1] played a
similar role in the Markgraf Karl refutation procedure. In that system, as
each clause was derived, a bounded search for a unit refutation starting from
the new clause was conducted before resuming generation of new clauses.
The linked inference principle [16]} also has lookaliead properties. However,
as it is used in OTTER, linked inference, like ordinary inference, draws
conclusions only from previously selected clauses (i.e., those in the axioms
or usable list). MGTP/N’s lookahead only tries to derive the empty clause
but operates on all clauses, not just those previously selected (i.e., it operates
on clauses in the set of support list as well as those in the axioms or usable
list.).

In the future, support for ordering clanses for inference in non-first-in-

13

first-out order is vital. This means allowing best-first as well as breadth-first
search. Not only does best-first search. which in practice usually means or-
dering clauses by their size, often perform much better, but ordering clauses
by size instead of age makes the maximum size for stored clauses a much
less critical parameter for performance of the system. It is harder to achieve
high parallel speedup with best-first search than with breadth-first search.
Although near-linear speedups on 256 PEs have been shown for MGTP/N
using breadth-first search, to date this has been achieved on only 64 PEs for
best-first search.

It would also be nice to see MGTP/N extended to additional inference
operations, such as for equality, and to formulate equally elfective lookahead
strategies for these rules.

Again, as with MGTP/G, I believe the basic operation of MGTP/N
can be improved. MGTP/N’s superior performance compared to OTTER
owes more to changed search strategy than efficiency. For example, prior
to the recent experiments with term indexing, subsumption testing entailed
matching newly derived claunses against every previous clause.

5 Conclusion

The Fifth Generation Computer Systems Project has created in MGTP/G
a useful tool for reasoning in artificial intelligence applications and fonnd
a paradigm for their continued research in automated theorem proving.
MGTP/G has already proven useful in solving open problems in finite alge-
bra, an application that was not anticipated when the program was being
developed. I see more analysis to reduce branching as an important area for
future improvement.

MGTP/N is less mature. In many ways, developing MGTP/N is harder
than developing MGTP/G. MGTP/N does not benefit as easily from the
FGCS Project’s KL1 and PIM technology. Full unification is necessary
and lots of low-overhead parallelism from case-splitting is absent. Given
the difficulties, getting near-linear speedup for MGTP/N running on large
multiprocessors, as they sometinies have, is a heroic achievement. There
are many requirements, such as indexing, backward subsumption, non-first-
in-first-out clause ovder, and additional inference rules such as for equality,
that will take much more time to adequately address. Nevertheless, even in
its preliminary form, MGTP/N has demonstrated some success. The major
contribution of MGTP /N to date is development and analysis of lazy model

14

generation and lookahead. They have allowed MGTP/N to occasionally
beat OTTER by a substantial margin at its own game of solving condensed
detachment problems. The methods are not entirely new, but are not as
widely used as they should be.

As relatively little research in automated theorem proving has beeu done
in Japan in the past, it is a pleasure to report on this work. which represents a
substantial increase in Japanese interest and activity in automated theorem
proviug. The research on Model Generation Theorem Provers at ICOT has
achieved a great deal in a short period of time. These systems are still
young, bul improving rapidly, so we can hope for more in the future.

References

[1] Antoniou, G. and H.J. Ohlbach. TERMINATOR. Proccedings of the Eighth
International foint Conference on Arfificial intelligence, Karlsruhe, West Ger-
many, August 1983, 916-919.

[2] Bennett, F.E. and L. Zhu. Conjugate-orthogonal Latin squares and related
structures. In J.H. Dinitz and D.R. Stinson (eds.). Contemporary Design The-
ory: A Collection of Surveys. Wiley, New York, 1992.

[3] Date, C.J. An Introduction to Database Systems. Addison-Wesley, Reading,
Massachusetts, 1986.

[4] Davis, M. Eliminating the irrelevant from mechanical proofs. Proceedings of
the Symposia of Applied Mathemalics, Volume 15. 1963, 15-30.

[5] de Kleer, J. An improved incremental algorithm for generating prime impli-
cauts. Proccedings of the AAAT-92 Tenth National Conference on Artificial
Tutelligence, San Jose, California, July 1992, 780-785.

[6] Fujita, M., J. Slaney, and F. Bennett. Automatic generation of some resulls
in finite algebra. Unpublished, 1992.

[7] Hasegawa, R. and M. Fujita. Parallel theorem provers aud their applications.
Proceedings of the Inlernational Conference en Fifth Generation Compuler
Systems 1992, Tokyo, Japan, June 1992, 132-154.

(8] Manthey, R. and F. Bry. SATCHMO: a theorem prover implemented in Pro-
log. Proceedings of the 3th Intcrnational Conference on Aulomaled Deduction,
Argonne, Iilinois, May 1988, 4115-434.

[9] McCune, W. OTTER 2.0 users guide. Technical Report ANL-90/9, Mathemat-
ies and Computer Science Division, Argonne National Laboralory, Argonne,
1linois, March 1990,

[10] McCune, W. Experiments with discrimination-tree indexing and path indexing
for term retrieval. Journal of Aulomated Reasoning 9, 2 (October 1992), 147-
167.

[11] McCune, W. and L. Wos. Experiments in automated deduction with con-
densed detachment. Proceedings of the 1ith Imternational Conference on Au-
tomated Deduction, Saratoga Springs, New York, June 1892, 209-223.

[12] Lee, S-J. and D.A. Plaisted. Eliminating duplication with the hyper-linking
strategy. Journal of Automaled Reasoning 9, 1 (August 1992), 25-42,

[13] Overbeek, R. A proposal for a comipetition. Unpublished, 199().

[14] Robinson, J.A. Automatic deduction with hyper-resolution. International
Journal of Computer Mathematics 1 (1965), 227-234.

[15] Slaney, }.K. FINDER, finite domain enumerator: notes and guide. Technical
Report TR-ARP-1/92, Automated Reasoning Program, Australian National
University, 1992.

[16] Veroff, R. and L. Wos. The linked inference principle, 1: the formal treatment.
Journal of Automated Reasoning 8, 2 (April 1992), 213-274.

[17] Wilson, D.S. and D.W. Loveland. Incorporating relevalicy testing in
SATCHMO. Technical Report CS-1989-24, Department of Computer Science
Duke University, Durham, North Carolina, November 19889.

16

