: Technical Note 513 o December 1991

Caching andLemméizing in Model Elimination
Theorem Provers -

Prepared by:

Owen L. Astrachan

Department of Computer Science
Duke University

Durham, North Carolina 27706

Mark E. Stickel

Principal Scientist

Artificial Intelligence Center '
Computing and Engineering Sciences Division

This research was supported by the National Science Foundation under Grant CCR-8922330. The
views and conclusions contained herein are those of the author and should not be interpreted as
necessarily representing the official policies, either expressed or implied, of the National Science
Foundation or the United States government. - ‘ ' :

333 Ravenswood Avenue @ Menlo Park, CA 84025-3493 = (4*15)326—6200 s FAX:{415)326-5512‘@ Telex:_884486

Abstract

Theorem provers based on the model elimination theorem-proving procedure have exhibited ex-
tremely high inference rates bnt have lacked a redundancy control mechanism such as subsump-
tion. In this paper we report on work done to modify a model elimination theorem prover using
two techniques, caching and lemmaizing, that have reduced by wmore than an order of magnitude
the time required to find proofs of several problems and that have enabled the prover to prove

theorems previcusly unobtainable by top-down model eliminatlion theorem provers.

1 Introduction

- Model elimination (ME) [22, 23, 24] is a complete inference procedure for the first-order predicate
‘calculus. It is the method underlying the Prolog Technology Theorem Prover (PTTP) 38, 39), the
SETHEO prover [21], and several or-parallel theorem provers [35, 9, 2]. The use of model elimination,
an input proof procedure, has enabled ME-based provers to draw on techniques developed by the
logic-programming community (hence the name PTTP) that enable the implementations to be
very efficient in the use of space, lo have a high inference rate, and to be readily parallelized.
METEOR [2] is a high-performance implementation of ME written in C that runs under the UNIX
operating system. It compiles clanses into a data structure that is then “interpreted” at runtime
by a uniprocessor, a multiprocessor, or a network of uniprocessors. METEOR. and PTTP perform
exactly the same number of inferences in solving the problems reported in [39] when METEOR is
rnn using inference count as the cost measure (see Section 3).

The high inference rate and modest storage requirements of PTTP and METEOR make them
attractive inference engines useful for seeking shallow proofs. In some domains, the high inference
rate may overcome the lack of redundancy control and permit the discovery of hard theorems with
deep proofs. For example, using METEOR we arc able to find proofs of two problems [2] from a sct
of real-analysis challenge problems [7] that are diflicult if not unobtainable for OTTER [27], a prover
that employs both subsumption and a notion of best-first searcli. The proof of the third challenge
problem from this set is too deep for METEOR to obtain without some modification. Parallel
implementations of model elimination theorem provers have resulted in very high performance
provers [35, 9, 2], though they have not produced a proof of a theorem infeasible to obtain by
rnning the prover on a single processor.

In general, the lack of both a redundancy-control mechanism snch as subsumption [419] and
a best-first search methodology are severc impediments to finding deep proofs. Many theorems
obtainable by OTTER [27] cannot be proven in our systems because the size of the search space
and the lack of redundancy control quickly overwhelm the high inference rate. In this paper, we
report on the modification of the search mechanism nsed in METEOR by the addition of eaching,

which replaces search, and lemmaizing, which augments search. Qur goal has been to implement

these modifications with minimal degradation of the high inference rate. These modifications have
enabled METEOR to prove theorems not previously obtainable by top-down ME provers and can
teduce by more than an order of magnitude the time required to find proofs of some “difficult”

theorems. We use the two-dimensional grid in Iigure 1 to categorize our approaches.

replace search | augment search
discovery cost caching '
other cost heuristic caching lenmaizing

Figure 1: Changing the search mechanism.

In a broad sense, the cost referred to in Figure 1 is a measure of the computational resources
used to find a solution of a goal. More precisely, METEOR employs an iterated form of depth-
first search called iterative deepening [41, 20] in which the maxiniun depth of search is bounded
-during each iteration. This bound limits the computational resources available to solve a goal; the
resources actually used to find a solution of a goal constitute the discovery cost of the solntion.
Concretely, the number of steps in the solution of a goal (i.e., the length of its proof or the size
of its proof tree) or the maximum depth of its proof tree may be hounded. Details of the search
mechanism and the depth bounds used in METEQOR are given in Section 3.

In our terminology, caching rvefers to a mechanism that optionally replaces the normal search
mechanism at a lower computational cost, but yields essentially identical results to search. Cached
goals are solved by lookup instead of search. Proofs will be found with the same cost bound as
when caching is not used, and no more inferences will be performed with caching than without (in
practice, many fewer inferences are required when caching is used). Caching reduces the number of
inferences because replacing search for solutions of previously scen (cached) goals by lookup avoids
repeating inferences on “failure branches” of the search tree explored during the search for the
cached solution; lookup ideally will return each distincl soluntion only once, whereas search may
repeatedly generate the sante solution, and fewer more general solutions may be retrieved from the
cache instead of many more specific ones. Whether there is a net performance gain depends on how
efliciently the cache is implemented, i.e., what are the relative costs of search and cache lookup.

For caching to reproduce essential features of the search and. in particular, to guarantee that
nse of the cache does not result in more rather than fewer inferences being performed, it is nec-
essary for the cache to return solutions with the same cost bounds as search would have found.
Caching charges discovery cost to reproduce essential features of scarch, e.g., the same solutions
with tlie same cost. Charging discovery cost is not the only option, however. I some solution
looks partienlarly useful, perhaps because of its generality, it might be desirable to charge less than
discoverv cost for it, to make it easier to use. Or if all solutions look alike (e.g., they have only
constant arguments and no function symbols, as in the case with Datalog programs} despite being

discovered with different costs, it may be reasonable to charge a uniform minimum cost for themn

instead of distinguishing among them on the basis of how deep their proofs were. Charging some
cost other than discovery cost leads to what we call heuristic caching, which is identical to caching

~ in concept and implenientation except for the cost charged for looked-up solutions. The guarantee
that caching will not increase the number of inferences is absent for heuristic caching, but in soine
domains henristic caching can be extremely successful.

The objective of caching is to make effective use of results discovered in past search. Caching
simply stores results of past searches and replaces future searclies by cache lookup. Another way
to use results discovered in past searches is to record some seemingly nseful solutious as lemmas
and use them in future extension operations in the same way as input clauses are used. Note that
lemmas, unlike caching, can introduce substantial additional redundancy in the search space, since
theorems can then be proved both either entirely from the input clauses as hefore or by use of
lemmas. Allowing leminas 1o be treated as input clauses thus increases the branching factor of the

“search space, but nse of leimmas may still shorten the proof enough to compensate for the increased
branching factor. Note that it makes no sense to charge discovery cost for lemmas. This would
result in an iucreased branching factor aud no reduction in proof length—goals would be solved by
both input clauses and lenimas with the same cost. Lemmas (as stored solutions) can be heneficial
only if less is charged for their use than for their solution from the input clauses and, even then, a
lernma must actually be used in the proof of the top goal for there to be any reduction in the tofal
size of the search space. We use the word lemma-izing or lemmaizing' to refer to this mechanism
that augments the search by introducing lemmas that are treated as input clauses .

The potentially large number of goals and solutions in caching or lemmas in lemmaizing poses
the problem of large numbers of formulas not unifiable with a goal being found in the cache or
among the lemmas if they are simply stored in linear lists. The resulting slowdown would overcome
any possible saving front a reduced munber of inference operations. Successful implementations of
caching and lemmaizing must provide efficient means to reduce the number of doomed atlempts to
unify goals with solutions in the cache or lemmas. It is easy to use caching or lemmas to reduce
the number of inferences required to find a proof. Reducing the total time as well requires that
cache or lemma Jookup costs be minimized. We have succeeded in obtaining substantial reductions
in time as well as inference count. This reqnires efficient cache/lemma storage and retrieval and
restrictions on their use. For example, cache lookup is not used if the cost hound is low, since snuch
shallow searches can be completed quickly withont caching, and lemmas may he restricted in size,
or be demodulated.

This paper is organized as follows: In Section 2 we briefly describe the model elimination proof
procedure. In Section 3 we ontline the search mechanism used in METEOR and characterize onr
modifications to this search mechanism. Caching is described in Section 4 and lemmaizing in Sec-

tion 5. In Section 6 we deseribe the implementation of these modifications: results generated using

'Although the juxtaposition of vowels in this word may be inharmonious, recall memo-izing [30] used to mean
essentially what we call caching,.

this implementation are given in Section 7. Related work is outlined in Section § and conclusions

presented in Section 9.

"2 Model Elimination

In this section we give a description of the ME extension and reduction inference rules and other ME
terminology sufficient for an understanding of the femahﬁng sections. We assume familiarity with
terminology of resolution proof procedures, e.g., terms, atomic formulas (atoms), literals, clauses
and unification. For a description of these, see [24], which also gives a coniplete description of the
model elimination procedure. We use Prolog notation in which variables are represented by capital
letters and functions, constants and predicates are represented by lowercase letters.

The ME proof procedure uses a kind of annotated clause called a chain. Roughly, the annotations
in a chain record previons inferences that have been made in the current sequence of inference steps
and identify information that can be used as the proof is expanded. Intnitively, as the deduction
progresses the chain is extended (more literals may be added) or reduced (literals are removed)
nutil the empty chain is generated, signifying that the initial set of clauses is unsatisfiable. The
literals in a chain are a set of goals to be refuted. We will speak of them being solved, since removal
of a goal by a sequence of ME inference operations also constitutes a proof (relative to the rest
of the chain) of the complement of the goal. Literals in a chain are either B-literals or A-literals.
An A-literal has been used in an extension operation and may participate in the ME reduction
operation. A-literals represent ancestor goals of all the literals to their left in the chain.

The ME procedure begins with some designated input clause as the initial chain. The leftmost
literal in this chain is unified with a literal of opposite sign (i.e., a positive literal {atom) if the
leftmost literal in the chain is a negative literal {negated atom) and vice versa) in an input clause.
The leftmost literal in the chain is designated as an A-literal (ancestor literal), the other literals (if
any) in the input clause are added to the [ront of the chain, and the unifying substitution is applied.
This is the ME extension operation. 1t is the same as the Prolog inference operation except that
it retains the unified literal as an A-litcral, which may then be used in subsequent ME reduction
operations. A-literals appear in brackets in the following descriptions. We assume that all chains

and clauses are renamed apart so that they are variable disjoint as necessary. Formnally we have

Definition 2.1 Given chain Cy of the form 1, Cy with leflmost B-literal I} and input cleuse (o
with Lteral Iy of opposite sign 1o [y such that the aloms of Iy and ly are unifiable with most general
unifier (mgu) 8, the ME extension operation of Cy with Cy on by yields the chain {{Cy — 1)[1;]Co}4
where [I1] is an A-liteval and the literals in (Cy — lp) may be reordered. We use the nolation

extend(C, 1y, (s, 12,8) to denote the result of the extension.

Example: H € = ¢(f(X), Y)YV, Z2)p(X,2) and C; = ~¢{f(a),¢)-7(c,b) {note that
Cy has one A-literal and two B-literals) then () extended with €3 on -¢{f(e),c) is

4

=r{e,b)[g(f(a), c)l[r(e, Z)]p(a, Z).

Besides applying the Prolog-like extension operation to the leftmost literal of a chain, the ME
procedure also allows the leftmost literal, which is always a B-literal after. mandatory contraction
{(see below) is applied, to be removed if it matches the compleﬁent of an A-literal. The reduction
operation implements a form of reasoning by contradiction: if P is provable from =P and @, then
it is provable from ¢ alone. Extension and reduction together comprise a sound and complete
inference system for the first-order predicate calculus, not just the Horn clause subset handled by

the extension operation alone as in Prolog.

Definition 2.2 Given chain Cy of the form 1,y with leftmost B-literal Iy and A-literal I3 of oppo-
site sign to [; such that the atoms of 1) and Iy are unifiable with mgu 6, the ME reduction operation

yields chain (ofl. We use the notation reduce(Ch. 1y, /2,8) to denote the result of the reduction.

Example: In the resultant chain above, —7(c, b)¢(f(a).c)|[r(¢, Z)]pla, Z), the (ouly possible)
reduction operation yields [¢(f(a), ¢)][r(c, b)]p(e,b). Many people have been confused about reduc-
tion, thinking that if reduction can be applied, no other rule need be used.? In general, reduction is
not a mandatory ope.l'a.ticni—the' search for extensions or other rednctions cannot be pruned after
a successful reduction. However, in the special case when the unifying substitution is empty (e.g.,
in the propositional case), successful reduction does obviate the need to try other reduction or
extension alternatives.

Note that both the reduction operation and extension with a unit clanse (in which no literals
are added to the chain) can make the leftmost literal of the chain an A-literal. As the ME inference
roles require the leftmost literal to be a B-literal, any leftmost A-literals are removed after the
extension and reduction operations are performed. Tlis is the confraction operation as defined
in [24]. In the chain used in the examples above, the chain [q{ f{«), c}][r(c,b)]p(a,b) is contracted
to the chain p{e,b). In practice this operation is incorporated iuto the extension and reduction
operalions. The A-literals that are removed by contraction represent solved goals or lemmas whose
use is outlined in Sections 4 and 5. Since we use and describe ME as a refutation procedure, an
A-literal removed by contraction is refuted and its complement is considered proved and treated as

a. cached solution or lemmma.

3 Search Mechanism

Althongh MI is a complete proof procedure in that there is always an ME derivation of the empty
chain from an unsatisfiable set of input clauses, a complete search strategy must be employed to
ensure that such a derivation is fonnd. Prolog, for example, uses unbounded depth-first search and

may fail to find a proof because of infinite branches in the search tree.

ZIn [10] we see: “When an ordered resolvent is generaled, we always check whether it is reducible. [it is, we
always reduce it o the rednced ordered clause.”

[}

Rather than employ a breadth-first strategy with its exponential storage requirements, METEOR
and PTTP use iterative deepening [41, 20] to ensure completeness of the search strategy. Iterative
deepening is asymptotically optimal among brute-force search strategies® and has minimal storage
requirements, being in essence a depth-first strategy. Rather than storing intermediate results as is
done in breadth-first search, results are recomnputed at each stage of the iterative deepening searcl.

We impose a cost bound on prospective proofs. Our cost bounds are not bounds on the entire

search space {except imp]icitl};), but rather only on each portion of it that forms a single (partial)
proof. Thus, for example, a bound on the number of inference steps in a proof is a cost measure, but
a bound on the total number of inferences performed in the process of finding the proof, including
those on failing branches of the search space, is not. A finite cost bound « makes the search tree
finite while allowing all proofs with cost bounded by d to be discovered. If no proof is found,
the bound is incremented and the entire search tree is re-explored with the larger hound. When
bounded search is used, each goal has an associated cost bound (derived from the current global
bound) that must not be exceeded during an attempt to solve the goal. Tor example, when the
bound is ¢ the initial chain has a cost bound of d; the resulting cost hound for each derived chain
is computed in a manuer dependent on the cost measure being used (see below). A chain’s cost
bound is used as a bound on the attempt to solve its leftmost-literal goal. We use the notation (G ,n}
to refer to a single literal goal G with associated cost bound n. The search mechanism employed
in METEOR is described in Figure 2. In the description in Figure 2, we treat input clanses as
mordered with each literal in a clause a potential candidate for extension. In practice, each n-
literal clause is represented as m ordered clauses all of which have the same literals but distinct
leftmost literals; only the leftmost literals are eligible for extension.

Several opthmizations can be applied in the search mechanism without affecting its complete-
ness [39]. Many of these are implicit iu the definition of an acceptable chain and the accepting
transformation that is applied to chains in the original presentation of ME [22, 23, 24]. The most
effective of these tends to be the identical-ancestor pruning rule. Before any reductions or exten-
sions are altempted, the A-literals in the chain to the right of G are examined to see if any are
identical to G. If this is the case, Solve returns FALSE; it is not necessary to solve a goal in the
context of « previous attempt to solve the same goal. This pruning rule is highly effective but it
must be partially disabled when caching is employed, in a manner described later.

If no proof is found during a stage of ilerative deepening, the global cost bound is increased
and the process repeated. To ensure that a minimal proof is found, the bound is incremented by 1
each time, unless the previous search demonstrates that a larger increment will be needed to find a
proof. There are several possible cost measures; we mention two here. For a more detailed account

of different measures, see [1].

*The optimality result applies only in the absence of redundancy control mechanisms such as subsumption. For
example, breadth-first search would keep duplicate formulas and make further inferences from them instead of rec-
oguizing Lheir redundancy and discarding Lhem.

boolean
Solve(chain C,cost n)

[0] if C is the empty chain then .
return TRUE
[1] goal G — leftmost literal in €
[2] R — A-literals of C potentially unifiable with complement of & (for reductions)
[3] E — input clauses with literals poientially unifiable with comiplement of & (for exlensions)

/¥ try to solve (Gn) */

[4] for each {g in R do

[5] Tlnew — Tesources available if reduction made

[6] if npew > @ and Ip and complenient of ¢ unify with mgu & then
[7] if Solve(reduce(C, G, {5.0),mhen) then

{8] return TRUE

endfor (reduction)

1[9] for each clause C in E with literal Ic do

[10] N.ew — resources available if extension of € mth Cis nnde

[11] if fipew = 0 and and I and complement of & unify with mgu @ then
112 . if Solve(extend(C,G,C lc), fnew) then -

[13] return TRUE

endfor (extension)

[14] return FALSE

Figure 2: The search procedure.

We envision the search tree as an and-or tree. An and-node represents an inference and has a
branching factor equal to the number of literals introduced into the chain by the inference. These
are and-nodes since each such literal must be removed in order to derive the empty chain. Extension
with an n-literal clause prodnces an (n — 1)-branching and-node, one for each literal introduced
as a result of the extension. Note that reduction and extension with a unit clause vesult in a
zero-branching and-node. Such a node closes off a path in the search tree since it effectively solves
the branch that produced the node. An n-literal Lop goal is represented by an and-node with n
branches since there are n literals that must be removed to derive the empty chain.

Each and-node branch corresponding to a literal G leads to an or-node whose potential branching
Tactoris the number of clauses that are candidates for extension with G plus the number of A-literals
that are candidates for reduction with G. The actual branching factor is determined by the number
of snccessful extension and reduction operations, each of which produces an and-node as described
above. For purposes of calculating cost in the search tree (and thus the resources available to solve
a goal), or-nodes are disregarded. Only and-nodes visited dnring a search affect cost because a
(partial) proof is an and-subtree; or-nodes reflect alternative attempts at proofs.

In PTTP, cost is measured by the number of ME inferences performed; we call this measure

=1

inference depth or Dips. A naive calculation of Dj,r decrements the cost bound by 1 with each
extension or reduction: 7pew +— 7 — 1 on lines 5 and 10 in Figure 2. Thus, for example, a bound
of 10 will permit the discovery of any proof with 10 or fewer extensions and reductions, i.e., any
proof of length less than or equal to 10. Note that an exteusion with an n-literal clause vields an
and-node requiring a minimum of » — 1 inferences to solve. Lxploring below such a node when the
cost bound is less than that makes little sense since the deduction cannol succeed, This leads to a
predictive calcnlation of Dius in which the bound is decremented as goals are added to the search

tree instead of when they are extended or reduced. Line 10 in Figure 2 calculates nyey by
ipew — 1 — (number of literals in C — 1)

for extension operations, and line 5 calculates fiypw DY

Rpew — 7t

for reduction operations. Note that npew = = for reduction operations and extension operations
with nnit clauses when the predictive calculation is used. This is because the minimum possible
single inference reqnired to solve a goal is subtracted from the bound when the goal is added to
the search tree by an extension operation with a nonunit clause. This predictive method is used in
PTTP and in calculating Din¢ in METEOR.

As an alternative to Diyr, consider using the (1épth of the search tree as the cost measure {only
and-nodes are used in calculating the depth of the tree). This metric is the defaull cost measure
used in SETHEQO and was used in one of the earliest implementations of ME [15]. The depth of
the search tree corresponds to the number of A-literals present in the chain that represents the
current state of the deduction; we call this A-literal depth or Dap. Note that, althongh when Djy¢
is the cost measure, each and-branch has fewer resources than the branch to its left (if the tree is
traversed in left-to-right order}, when Dyy, is used, every and-branch successor of a given node has
the same resource. When D4y, is used, for extension with a nonunit clause, we have m,00 — 2 —1
since the extension produces one new A-literal {and an and-node one level deeper in the search
tree). For extension with unit clauses and reduction, the value of #,., depends on the chain C
since the mmber of A-literals may decrease (and cannot increase) as a result of these operations.
The A-literals removed by the contraction operation in Figure 2 can produce and-nodes with a
larger resource.

Using Dy, ensures that the length (number of steps) of the proof is minimized; using Day
ensures that the depth (in A-literals) of the proof tree is minimized. Neither of these measures is
clearly superior to the other in that there seems to be no a priori method for determining which
measure yields a proof more quickly for any particular theorem. Note that whereas the resources
available when D¢ is used as the cost measure decrease monotonically with each inference (the
resources available to solve a chain are less than or equal to the resources available to solve its

parent}, inferences can increase the resources available when Dyy;, is used (extension by a unit clause

or reduction may result in a chain having fewer A-literals than its parent). This nonmonotonicity
allows more inference steps and larger terins to be constructed, which can result in a problem of

needing to store many large terms in the cache (see Section 5).

4 Caching

By caching we mean the use of a device {the cache) that on occasion replaces the regular search
mechanism and yields substantially identical results to search. This means that solutions shonld be
retrieved from the cache only when it is known that the cache contains complete information.i.e.. it
contains all solutions that would be generated by search. Wlen the cache is complete in this sense,
its use can replace the normal search mechanism. To this end, the cache consists of two logical
© parts: the cache directory, which stores information about which goals have solutions stored in the
cache, and the eache store, which contains the solutions. When a goal and its associated cost bound
- are submitted Lo the Solve procedure (see I'igure 2), the directory is consulted and the caclie store
used, if possible, before line 4. 1f the cache store is used, procedure Solve is exited {with success
or failure) before lines 4-14 are execnted. If the cache store is not nsed, lines 4-14 are executed
as in the regular search procedure. The cache is intended to be a more efficient mechanism than
the normal search procedure. For exhaustive searches, its use will never result in more inferences
being made than when the cache is not used. Its effectiveness in decreasing the time to find a proof
depends on the efficiency with which it is implemented, the number of cache “hits” that occur, and
on other costs (e¢.g., increased storage) incurred by its use.

In the grid of Figure 1, note that caching occupies a cell corresponding to use of “discovery
cost”™. This is the amounut by which the cost bound is decreased by the solntion of the goal. If
Solve(chain C.cost n) leads to Solve(chain C’,cost n') being called after the leftmost literal G of
C is solved, the discovery cost of that solution of G is n — a’. Tor caching to reproduce the search
space, it is important that cache lookup for & vesult in the same reduction in the cost bound n as
a search for solutions would, i.e., the discovery cost of the solutions of ¢ should be charged when
solutions are looked up.

Caching is a sound and complete replacement for search. Every caclied solution is discoverable
by search: if solving the leftmost literal & of € by cache lookup in the call Solve(chain C.cost n)
results in Solve(chain C" cost »”') being called with leftmost literal G solved, then search leads to
the same call on Solve {possibly differing only in the names of variables in C”). Every solution
discoverable by search is an instance of a cached solntion: if searching for a proof causes the call
Solve{chain C,cost n) to lead to Solve{chain C’,cost n') being called after the leftmost literal G of
C is solved, then cache lookup of G will lead to Solve{chain C",cost n”) being called. where (" is
equal to or a generalization of €' and =" > »'. Caching ideally returns a minimal set of solutions,
omitting duplicates and solutions that are less general or cost more than others. Solutions may be

generated in different orders by searching and cache lookup, so a proofl could conceivably be found

after more inferences with caching than withont due to the potentially different order of solutions
in the final iteration of the iterative deepening search. It is guaranteed, however, that no more
inferences will be performed with caching than without for exhaustive searches. The cache is not .
normally used when the cost bound is small because of conflicts with the identical-ancestor pruning
rule and because the overhead of a cache lockup may be too high compared to the time needed in
METEOR to completely search a shallow tree.

The caching method we describe lere is applicable only to cases of model elimination in which
the reduction operation is not used; this includes problems expressed in Jorn clauses. For such
problems, all solutions of the pair g; =(G.n) are also solutions of the pair g, =(G,m) il n < m, since
the sequence of inferences that solve G in gy will also solve G in go, provided the identical-ancestor
pruning rule is partially disabled.

I during the search for solutions of some goal (G.n) a branch of the search tree below § is
pruned using identical-ancestor pruning with an ancestor Ag of &, a solution might be missed
that would be found in another context in which Ag did not appear as an ancestor. To prevent
such inconsistencies, and to avoid the need for storing an environment of ancestor literals, identical-
ancestor pruning of subgoals of cacheable goals is disabled. More precisely, a goal cannot be pruned
by any ancestor of a cacheable goal. Pruning is peritted if the pruning goal is not being stored
in the cache, or its descendants are not.

For non-Horn problenis the sequence of deductions that solve ¢ in g, may iuclude reductions
with ancestors of G. This same sequence of deductions will solve G in g, only if the same reductions
are possible, i.e., only if the necessary A-literals (ancestor goals) are present iu the chain. For further
discussion of the problem of caching in non-Horn problems and one possible partial solution, see
Section 4.4.

4.1 The Cache Mechanism

For a given pair {G,n), it must be possible to deterniine if the cache should be nsed to solve the
goal or if the regnlar search mechanism should be used. This decision is based hoth on ihe goal
and on the current cost bound, since the sel of solutions of a goal depends on the bound.

The cache store contains all the cached solutions. A cached sclution consists of a substitution

instance of the subgoal and the cost bound used in obtaining the solution.

Definition 4.1 A cached solution s « pair {G',ng) where G’ is GO for some goul G, 8 is the

composition of unifiers used in solving G, and nge is the measure of the resources used in producing
Gg'.

Tf

A cached solution stores only the instantiation §'—nothing to identify the goal ¢ it was used to
solve. Thus, the cache store contains solutions {provable literals) divorced from the goals during

whose proof they were found.

10

The cache directory, which is consulted to determine if the cache store of solutions should he

used, consists of cache templates defined in Definition 4.2.

Definition 4.2 A cache template or template is a triple (G.m,mg) that indicates that the cache is

m-complete for goal G. If mg < m. then mg is the smallest resource needed to solve G; if ms > m,

then G has no solution with cost < m.

The templates in the cache directory are used to determine when the solutions in the cache

slore include a compleie set of solutions for any particular goal.

Definition 4.3 A cache s complete for (G, n) if all solutions of (sub)goal G that can be obtained
with a cost bound of ai most n are in the cache store. In this case we say thal the cache is

n-complete for &.

Given a goal pair (G,n), the cache directory is searched to see if G appears as the first com-
pouent of a template (there may be more than one applicable template if we are using template
subsumption, see Section 4.2). If a template is found and it indicates that the cache is m-complete
for ¢ with m > n then the cache can be used in licu of the regular search mechanism. As an
optimized special case. we note that if m > n and mg > n then there are no solutions bounded
by n, so further cache lookup to find solutions is unnecessary. This use of the cache :directory to
indicate failure corresponds to the fuilure cache outlined in {14]; when templates are used in this
way we call them failure templates.

If the cache is complete for a. goal, solutions to the goal can be found by retrieving from the cache
store all cached solutions that are instances of the goal. Later we describe eliminating subsimned
solutions from the cache store 1o reduce its size. This will require retrieving cached solutions
unifiable with the goal instead of instances of it.

Our cache differs in use from the cache described in [32] in which the cache may be used even
when it is not complete. It is similar to an unimplemented modification developed for iterative
deepening of the LT algorithm for Datalog programs ontlined in [13].

When caching is used, the modifications indicated in Fignre 3 are made to the search routine
of [igure 2. The procedure CacheSolve called in Figure 3 is shown in Iigure 4.

In its implementation in METEOR, the code in Figure 3 is guarded by a statement that enables
cache nse only when =, the resource available, is above some user-specificd threshold value. In the
current itmplementation, the same threshold is nsed to guard both solution storage and template

retvieval. Clache use is Jimited by a threshold for several reasons:

o The cost of retrieving cache templates and solutions may exceed the cost of the regular search

mechanism for small 7.

s The identical-ancestor pruning rule, whose use often results in large decreases in search space

stze, must be at least partially disabled when caching is used.

11

/* added before line 4 in Figure 2 %/
[3.1] (G,m,ms}) — template corresponding to (G,n)
[* more than one template may be applicable

if template subsumption is being used * [

(3.2] if m > n then

(3.3] if n > mg then

(3.4] retnrn CacheSolve({C.n)
35 else

(3.6] return FALSE

[* if we reach here then use regular search mechanism */

Figure 3: Determining if the cache should be used.

o The efficiency of the cache tends 1o decrease as the number of entries in it increases.

We present data in Section 7 showing how different threshold values affect the performance of the

prover; in general. low thresholds severely degrade cache performance.

4.2 Storing Templates and Solutions

A-literals removed by the ME contraction operation represent solved goals and, therefore, potentially
cacheable solutions. For Horn problems, contraction occurs when extension is made with a unit
clause and when all the subgoals introduced by extension with a nonunit clause are solved. In each
of these situations the {possibly instantiated) goal can he entered in the cache store with the cost
used to solve the goal as a solution pair {G#,mge). To conserve cache storage and to minimize the

effective branching factor of the search space, a solution subsumed by an entry (G .ngd in the cache
L 1 : A A G

store s not stored. Subsumption of solution pairs is defined in Definition 4.4.

Definition 4.4 /{5, = (H.ny) and 5, = (G.ng} are solution pairs then the pair 5y subsumes the

parr 5o if and only if H subsumes G (lhere exists a substitution ¢ with Ho = G) and ny < ng.

The cost bound of a potentially subsumed solution pair must be compared with the cost bound of
the subsuming pair to ensure that the subsuming pair is at least as general, e.g., that it will be
retrieved from the cache in every context thai the snbsumed solution pair wonld be retrieved. If
the cost bound ny of a pair (H.ny) is greater than the cost bound ng of a pair (G.ng) then both
pairs must be stored in the cache even if H subsumes G since the solution ¢ might be usable when
H is not, because of its lower resource requirements.

Consider the solution pairs $7 = {p(a),3) and 52 =(p(a),4). There is no reason to store Sy in
the cache if 5, is stored since, whenever the current cost bound allows 57 to be retrieved from the

cache, 5, must be retrievable as well. Redundant search results if both solutions are retrieved,

12

boolean
CacheSolve(C.n)
{G is the leftmost literal in C}
[1] L ~ all solution pairs {G’,ngr) such that G’ is potentially unifiable with G and
suclh that ngr < n

{2] for each ({',ng:) in L do

3] if G and G’ unify with mgu @ then
[4] Npew — 1 — Ng
(5] il Solve(extend(C,G,G’,G’, 8}, Nyew) then
[6] return TRUE
end for

[7] return FALSE

Figure 4: Using an m-complete cache.

Consider the solution $) = (p(X),3) and the less general solution S5 = {p(2a),3). Again in every
case that 55 is retrieved from the cache and used successfully in a deduction, 5, must be retrievable
and useful as well, so only the more general solution should be stored to reduce redundancy in the
search generated by cache retrievals.

Because of emploving this subsumption technique, a cache lookup requires potentially unifiable
solution pairs (as opposed to instance pairs) to be retrieved from the cache store (line 11in Figure 4).
Consider cache lookup for solutions of the goal p{a). If the solution pair 52 = (p(a},3) is not stored
in the cache because of the presence of the subsnming solution pair 5y = (p(X),3}, then the latter,
which js unifiable with the goal, must be used by CacheSolve to solve the goal p(a).

Goal templates must be provided for each goal seen in a deduction and updated when new
information is obtained concerning a goal’s completeness level or when a new minimal-solution is
found. When a goal template is retrieved (line 3.1 in Figure 3) for a goal G that has not previously
been seen, a template (7,-1,00) is created and stored in the cache directory. Previously unseen
soals must be solved by search. Fach time a solution to the goal is found, the template is updated
il the new solution requires a lower cost than the minimum cwrrently registered in the template.
The initial value oo ensures that the cost of the first solution found will be used correctly 1o update
the template. When the Solve rontine returns FTALSL for a pair (G,n) (line 14 in Figure 2), a call
is made to a cache directory updating procedure that registers that the template corresponding to
¢ is now n-complete. The initial value —1 ensures that the cache store will not be used (line 3.2 in
IFignre 3).

Since the cache replaces search with (it is hoped) a more efficient mechanism, and since previ-
ously unseen goals cannot use the cache, it is worth investigating methods that allow the search
for solutions of a previously unseen goal to be replaced with a cache lookup. This is the motivation

for the concept of template subsumption (defined in Definition 4.5): 10 allow the cache to be used

13

when a specific goal is encountered for the first time with a given cost bound if the cache contains
solutions to a more general goal. :

When a new template is constructed for the pair (¢,n) (i.e., G has not been seen before), it is
possible that the cache is m-complete for a more general goal with m 2 n. In this case the cache may
be used instead of the regular search inechanism; we say that the pair {G,n) is template-subsumed

as defined in Definition 4.5.

Definition 4.5 If cache templaic T = (Hmmg) and goa pair G = {(Gn) then T

template-subsumes G if and only if H subsumes G and m > n.

If such a goal pair (G .n) is template-subsnmed by a cache template {H,m,mg), then since the cache
is m-complete for the more general goal H all solutions of 'H are stored in the cache. These solutions
are a superset of the solutions of G given that H subsumes & and that the cost bounds m and n
satisfy the constraints of Definition 4.5. Thus the cache is m-complete for the goal pair as well,
and the caclie replaces search. . |

In practice there may be more than one subsuming template for a given goal pair (G,n). In
METEOR (potentially) all subsuming templates are examined and the template with the largest mgs
(minimal solution cost) is returned as the applicable template on line 3.1 of Figure 3. The scarch
for a subsuming template is stopped, however, if a template is found with mg > n. This ensures
that if a subsuming template can serve as a failure template such a template is used. Since failure
templates enable a branch of the search tree to be pruned without making any inferences, they
allow a potentially greater saving than results from using the cache in liew of the normal search
mechanisii.

In the current implementation, no new template is constructed when a goal pair is template-
subsumed. It is possible that construction of a new template in such cases would be beneficial
when the minimal solution cost for the subsumed goal is greater than that stored with the more
general subsuming goal. Storing such a template would permit its subsequent retrieval as a failure
teliplate in more situations since the minimal cost bound is greater than that recorded with the
subsuming template.

The usc of template subsumption in the cache is a. parameter that the user of the system can set.
Resalts in Section 7 indicate that the more frequent cache access enabled by template subsumption

more than compensates for the increased lookup time of a subsuming template.

4.3 Heuristic Caching

Caching is used to replace search and cannot result in more inferences than are made when the
norual search mechanism is employed. This is true preciselv because the cache is consulted only
when it is complete {or a given goal and because the use of a cached solution incurs a cost equal to

the cost required to generate the solution using the normal search mechanism. We have investigated

14

an alternative to caching in which a cost other than discovery cost is incurred when a cached solution
is used. We call the method heuristic caching and, as shown in Section 7, have found a domain in
wlich its use yields substantial performance gains over the normal caching mechanism.

When a solution is retrieved from the cache, a cost is incurred as shown on line 4 of Figure 4.
When caching recreates the search space, this cost reflects the cost used in creating the solution.
~ Consider charging some other cost, e.g., a cost less than that used to discover the solution. In
such a case a solution may be used whose discovery cost exceeds the current cost bound. Using
such a solution in effect permits a search beyond that constrained by the current cost bound. For
example, a solution whose discovery cost is ten but for which a cost of one is charged can be used
twice in a proof when the the global cost bound is at least two whereas a cost hound of at least
twenty is needed if caching is used. This method has the potential for finding proofs that would
require a much higher cost bound than if caching-or the normal search mechanism were used. Of
course charging less than the discovery cost can also permit many deep but fruitless paths to be
searched as well. In general, it is difficult to identify those solutions that should be stored with
a cost less than the discovery cost. In certain domains, however, it may be paossible to treat all
solutions uniformly and realize a substantial performance gain over caching. We report on such a
domain in Section 7.

In ounr experiments with heuristic caching, each retrieved cached solution incurs a cost less than
or equal to the discovery cost of the solution. It is possible that some mechanism might identify
certain cached solutions as extremely unpromising (i.e., their use would be ineffective in leading to
a proof) and charge a cost greater than the discovery cost for such solutions. If effective. such a
mechanism would prune nupronising paths in the search space. Identifying such solutions seems
quite difficult; in the ensuing development heuristic caching refers to the method in which the cost
Incurred by the use of a cached solution is no greater than the discovery cost of the solution.

Just as caching substitutes cacle lookup for search, heuristic caching also is used as a substitute
for search rather than to augment search. For every solution returned by a normal cache lookup,
a heuristic cache lookup returns the same solution (or a more general one) with the same or less
cost. Unlike caching, however. heuristic caching may return extra solutions, i.c., solutions whose
discovery cost exceeds the current cost hound. These extra solutions are then used to probe more
deeply into the search tree in the sense that the potential exists for finding high-cost proofs with
low cost bounds as noted above.

Whereas caching always returns the same set of solutions for a given goal pair, it is possible for
hewristic caching to return an increasing number of solutions for the goal pair on successive cache
lookups. This is due to the retrieval of a cached solution with high discovery cost stored in the
cache as a solution with a low retrieval cost between successive cache lookups for the same goal
pair. When the universe of instantiated goals is finite as it is in the function-free Datalog domain,
there is a bound on the number of solutions. Great care must be taken, however, when there is no

such bound, since the increasing number of solutions can overwhelm cache storage (see Section 5.1

15

and Figure 5) and increase the branching factor to the point that a proof may not be found.

4.4 Caching with Non-Horn Problems

Recall that the leftmost literal in a chain represents the current goal. In Horn problems, if we do
not employ the identical-ancestor pruning rule, this goal occurs independently of the other Jiterals
‘in the chain since they are not used in inference sequences involving the goal. In non-Horn problems
A-literals can contribute to the solution of a goal via the reduction operation. Thus for non-Horn
problems a goal cannot be considered in isolation, but must be considered in the context of the
A-literals in the chain. These A-literals constitute an environment in which attempts to solve a
goal are made. Since a goal template is iutended to provide information about possible solutions
for a given goal, and solutions are based on this environment, a template must somehow convey
informatiou regarding the A-literals that constitute the particular environment of a poteutially
cached goal. We give an abstract definition of such a template and then briefly discuss methods of

implementing this abstraction. Note that for Horn problems this definition reduces to Definition 4.2.

Definition 4.6 A non-Horn cache template or non-Hom template for « non-Horn goal G is «

quadruple ({Ag},G,m,ms) that indicates that the cache is m-complete for goal G in the environment

{Ag} and that mg is the smallest cost needed o solve G in this environment.

The naive method for constructing a goal template calls for actually storing the A-literals that
can be used in reduction operations during the solution of G in {Ag}. When a template for a goal G
is retrieved (line 3.1 of Figure 3), an applicable template must have the property that each A-literal
in the enviroument of G is an instance of an A-literal stored in the template environment.

Examination of “chain dunips” for several non-Horn problems indicates that cache hits would
be very rare and this method does not appear viable for non-Horn problems (Plaisted noted this
as a polential problem with caching using model elimination in [33]). Cousider a snapshot of the
search tree for a particular theorem. I'or Horn problems, nodes in the search tree {unexpanded
and-nodes that correspond to subgoals) can be considered for caching independently of the position
at which they occur. In the naive approach we have outlined for non-Horn problems, it is the root-
to-node path that is considered for caching (where each node other than the last constitutes an
A-literal). It is, perhaps, not surprising that such paths are not often candidates for cache retrieval.
There are methods for reducing the size of the set of A-litevals cached using the naive approach.
Plaisted has shown [33] that it is possible to limit the set of literals nsable in reduction operations
Lo negative A-literals and retain a complete inference system. This positive refinement (so called
becanse only positive subgoals are considered for reduction with negative A-literals) will lead to a
smaller environment at the expense of potentially longer proofs. However, our examination of chain
dwmps indicates that this restriction appears to be no more promising than the naive approach.

In order to increase the number of potential cache hits, we have been led to consider a generalized

environment as an alternative to the naive method. For a goal G, rather than storing each A-literal

16

on the root-to-node path in {A¢}, we consider storing a completely general A-literal, i.e., a distinct
variable for each A-literal. A count of the number of the (generalized) A-literals would he stored
rather than the literals themselves. When considering a cache-lookup for a goal ¢ we need only
ensure that the number of A-literals that are potential candidates in reduction operations for solving
G is less than or equal to the nuinber stored in the environment of the retrieved cache template.
In order for this method of caching to work, all attempts to solve a goal ¢ must be made with
completely general A-literals. When a goal is solved, the instantiated generalized A-literals are
compared to the A-literals that actually occur as ancestors of G. (Note that this comparison entails
unifying the instantiated generalized A-literals with the actual A-literals.) 1I each instantiated
generalized A-literal occurs as an actual ancestor, then the current deduction is valid, a solution is
stored, and the proof search continued. To ensure that the cache is complete, the solution is stored
even if the conparison of instantiated generalized A-literals to actual A-literals fails. In either case,
the stored solution contains the instantiated generalized A-literals.

This method incurs the overhead of yielding many general sclutions that [ail to be actual
solutions when the instantiated generalized A-literals fail to appear as ancestors of a particular
goal. We call this method generalized non-Horn caching; we are investigating its implementation.
In both the naive method and the generalized mmethod cached solutions must store the A-literals
used in reduction operations to solve a cached goal. Cached solutions for non-Horn problems are
defined in Definition 4.7. ‘

Definition 4.7 A cached non-Horn solution is a triple ({Ag }, G .ng) wherc G' is GO for some goal
G. 0 is the composition of the unifiers used in solving G, {Ag'} is the set of (instantiated) A-literals

used in reduclion operations lo solve G, and ng: is the measure of the cost used in solving G.

These cached solutions correspond to what was termed a lemina iu the original presentation of
ME [22, 23, 24]. There il is shown that the conjunction of the negation of a. solved goal {actually.
a contracied A-literal) with the negation of the A-literals used in reduction operations to solve
the goal represents a clanse that might be generated using resolution methods. Specifically, such
a clause is a logical consequence of the input clauses and can thus be treated as an input clause if
desired. In the Horn case, when no reduction operators are used. a solved goal in our context is a
unit lemma. In the non-Horn case, unit lemmas ave generated only when a goal is solved without
any reductlion operations, and nonunit leruinas are generated when reduction operations have heen
used to solve a goal and correspond to our cached non-llorn solutions.

If a template is retrieved that indicates that the cache can be used to solve a goal G, the in-
stantiated A-literals stored in a cached solution are matched against the A-literals that are actually
ancestors of (these may be generalized A-literals). If there is a. match, which involves unifving the
cached A-literals against the actual A-literals, the cached solution is used and replaces the search

used in constructing the solntion.

The explosive increase in the number of these A-literal dependent cached solutions combined
with the apparent lack of cache hits using the najve method leads us to believe that generalized
caching, even with its additional overhead, is the method of choice for non-Horn problems. However,
'guided by our examination of chain duinps, our intuition leads us to believe that caching may still
not be viable for any large class of non-Horn problems. As our experiments with its implementation
progress, we hope to report more {ully on caching for non-Horn problems. It may prove, however,

" that lemmaizing is more productive than caching for non-Horn problems (see Section 7).

5 Lemmaizing

The use of the cache described in Section 4 replaces some search with a cache lookup. The cache
functions as a more efficient search engine; it recreates the same search space that would he explored
without its use and hopes to do so mnore efficiently. We have outlined the difficulties of caching
for non-Horn problems and note that even for deep Horn problems the number of potential cache
entries may preclude caching as an alternalive because of both memory considerations and the
concomitant increase in cache lookup time. This has led ns to investigate alternatives to caching
that can decrease the storage requirements inherent in caching all solutions and that can allow
high-cost proofs to be discovered with low cost bounds. In this section we investigate another
approach we have called lemmaizing.

Lemmaizing differs [rom heuristic caching in that not all solutions are stored for a given goal, but
only some (it is hoped rclevant) solutions are stored, thus augmenting rather than replacing search.
We reserve the word caching for use with the mechanism in which cache lookups replace search. We
have used heuristic caching to refer to a method that replaces search but for which certain cached
solutions may be used although resource requirements are not met. We use lemmaizing to refer to
a method in which only certain solutions are stored (rather than all solutions); these solutions are
used to augment the normal search mechanism. The term lemma store has the same meaning as
its cache counterpart but refers to the storage of solutions used in lemmaizing. In lemmaizing, the
same kind of solution pair (G,ng) used in caching is stored as a lemma. in the lemma. store.

Heuristic caching and lemmaizing allow certain stored solutions to be used although cost. bounds
would not be sufficient to allow them to be nused in caching. By identifying a relevant solution whose
derivation may require many inference steps, but not deducting the cost of the derivation from the
available resources when the stored solution is used, it is possible to discover high-cost proofls with
low cost bounnds.

Since lemmas are nol needed for completeness, we may impose arbitrary syntacltic and semantic
criteria when deciding which lemmas to retain. The idea is to store lemmas that are used to
eliminate repeated subdeductions. In this sense the use of lemmas allows us to combine an aspect
of bottom-up reasoning with the Lop-down reasoning in METEOR. By imposing strict criteria on

lemimas we retain a complete inference system that will hopefully allow us to prove theorems

18

otherwise unobtainable. In one of the first implementations of ME [15], this kind of lemma use was
explored in an ad-hoc manner. No notion of lemmma cost was explored and lemmas were not {found
to be useful in general since the potential for a smaller search space was not realized because of the

increased branching factor induced by allowing lemmas as alternatives for extension.

5.1 Lemma Costs

When some, but not all, solutions are stored as lemmas and used to augment the search, the cost
of using such lemmas (as deducted {rom the current cost bound) must be less than the discovery
cost of the lemma if use of the lemma is to be productive.

For example, if solutions used in the prool of the top goal incurred a smaller cost than other
solutions, the proof could be found more quickly. The intuition here is that these solutions function
as lemmus; they reflect useful information to he used without requiring that the information be
rederived each timeit is used and whose use can make a proof easier to understand as well as shorter.
The information may be used “for free” (or at a cost less than that required to originally prove
the lemma) much as a mathematician makes use of lemmas to make a proof simpler. Identifying
useful lemmas is a nontrivial task and an important one in automated reasoning systems [6]. We
are only beginning to explore this use of stored solutions and report on several successful uses of
lemmaizing in Section 7.

Consider treating lemmas as input clauses when predictive Dj,r is used as the cost measure. If
only “good” lemmas are placed in the lemma store, a. proof may be found quickly. However, if all
solutions are treated as input clauses the lemma store may be quickly overwhelmed with irrelevant
lemmas. Consider the snapshot in Figure 5 of part of the search process for a proof in a group
theory problem (r is the equality predicate. p is the predicate for the group’s binary operation, e

is the identity element, and p{X.Y, f{X,Y¥)} is the closure axiom).

H{U, V) — -p(X,Y,U) — -p(X,Y.V)
(1)
p(X,V,W) — p(X,Y, U — -p(Y.Z.V) — -p(U,Z,W)

s(e,fle,c),c))

p(X,Y,H(X,Y))

p(X,e,X

Figure 5: The potential for term explosion.

In Figure 5, the extension labeled (2) is an exteusion with a lemma. As a result of the sequence

of extensions shown, the top goal =p(X, Y, U} is instantiated to —=p{c, f(f(e,¢),e),¢). If this new

19

solution is stored as an input clause {i.e., a zero-cost lemma) and substituted for p(e, f(e,c),c) in
Figure 5, the same sequence of inference steps will result in the solution ~p(e, f(f(f(e.c), €}, €),¢).
Repeating this process results in the storage of solutions with ever-increasing term depth and size.
Retrieving such solutions, checking them for subsumption, and using them as potential unifiers will
quickly degrade cache performance. As a sidenote, consider the same example but using caching
rather than lemaizing with Dy as the cost measure. Note that in this case the sequence of
deductions outlined in Figure 5 requires resource two since the depth of the proof tree is two (a
maximum of two A-literals appear in all proof tree branches). If the solution ~p(e, f(fle.c),e),¢)is
stored and retrieved in a cache lookup, the same sequence of steps (using a cost bound increased by
one) will result in the storage of the same solutious outlined above when storing lemmas as input
clauses. It can be shown that using Daj, can result in cached terms that are exponentjally larger

than the terns stored for the same problem when Dy ¢ is used.

5.2 Storing Lemmas

Since leminaizing angments Lhe search space and has the potential to increase the branching factor
in the search tree to the point that a proof cannot be found, some care must be taken in determining
what lemmas to store and what to charge for the use of each lemma.

We have uscd several syntactic and semantic criteria in determining what lemmas to store. In
our experiments to date we have treated all lemmas as input clauses in charging for their use. We
report on the successful use of lemmaizing for several Horn and non-Horn problems in Section 7;
we give a brief smuumary here of the general methods we have used in determining what solutions
to store as lemmas.

The primary criterion we have employed is to limit the nesting depth of terms that may appear
in lemmas. This is done in an attempt to circumvent the kind ol combinatorial explosion in the
number of lenunas and their size as illustrated in Figure 5. In our experiments we generally limit
the nesting of function symbols to one or two except as described lxclow when demodulation is used.
We have also experimented with limiting the size of the terms that may appear in lemmas, both
independently of and in conjunction with limiting the nesting depth of terms. Although limiting
term size is important, all of our favorable results depend to a large degree on limiting the nesting
depth of terms that appear in lemmas.

In some domains (e.g., group theory) demodulators may be used to rewrite solutions Lo a
canonical form. This reduces redundancy since subsumption checks permit rewritten solutions to
be discarded that might otherwise appear {redundantly) in the lemma store. Demodulation also
permits terms thal might violate a syntactic eriterion such as nesting depth to be rewritten to
a form that does not violate the criterion. Although demodulation and resolution may not, in
general, result in a complete proof procedure, we can impose any restrictions on lemmas (including

demodulating them) and retain completeness in ME. We have experimented with demodulating

20

lemmas in the group and ring problems by including the complete set of rewrite rules for free groups
or rings as demodulators as well as using demodulators generated during the search to rewrite all
lemmmas. This leads to a substantial reduction in the number of lemmas stored, thus decreasing
the effective branching factor of the lemma search space. In addition, rewriting lemmas allows the
early discovery of lemmas that would be discovered deeper in the search tree if demodulation is not
emploved. Both of these factors can greatly decrease the time to find a proof for problems in which
demodulation is possible as shown in Section 7. We have not yet implemented back demodulation,
which promises to further reduce the branching factor of the lemma search space.

In the current system we use lexicographic recursive path ordering [12] based on a user-specified
total ordering of syinbols to determine if a rewrite rule applies. The ordering is also used to rewrite
orientable instances of unorientable rules such as f(X,Y) = f(¥, X). This usage is similar to that
of LEX demodulators in OTTER [27] and is a feature of the unfailing Knuth-Bendix procedure [3].
The user may specify if a set of rewrite rules is to be used in addition to or independently of any dy-
" namically generated demodulators. For further details on the results obtained using demodulators

in conjunction with Jemmaizing. see Section 7.

6 Implementation

Becanse cache teml.)l;ll;es and solutions must be added at runtime, it is not feasible to compile
cache entries in the same way thal input clauses are compiled in PTTP. In METEOR, however,
input clauses are compiled into a data structure that is subsequently interpreted by the theorem-
proving engine(s). The cache can be compiled into a similar structure so that once a cached solution
is retrieved. making an inference with it is no more expensive than making an inference with an
input clause.

Despite this efficiency. some pruning of the solutions retrieved from the cache must be made or
the normally high inference rate obtainable in METEOR would decrease because of a large number
of unsuccessful attempts to unify goals with cached solutions. We must implement the operations
templaie lookup (line 3.1 in Figure 3) and solution lookup (line 1 in Figure d) as efficiently as possible
while returning only templates and solutions that are “close” matches (i.e.. we want to maximize
the ratio of snccessful to attem pl;e(l‘ unifications).

Caching and lemmaizing both require fast associative retrieval of terms suitably relaled to
goals to achieve this efficiency. This necessitates some type of term indexing as is often emploved
in Prolog imiplementations and other theorem-proving systems [40].

Cache and lemmna lookup operations lor a goal G require the retrieval of terms that are exact
matches, generalizations, or possible unifiers for §. If stored solutions can caunse the removal of less
general solutions already in the cache (back subsunption), theun instances of & need to be retrieved
from the cache as well. In order to implement these operations efficiently, we have developed a

modification of the trie [19] data structure. Tries provide efficient mechanisms for storage and

21

retrieval of strings. Whereas in a (binary) search tree the search key is compared to the key stored
at each node of the tree to determine which branch to follow, a trie uses the structure of the key
itself to determine which branch to follow and performs a comparison of keys only at leaf nodes.
Cousider the expressions p(X,Y, f(X,Y)), p(X,e, .X), and p(b, g{f(b,¢)),€) stered in the trie of
Figure 6. As indicated in the figure, we map all variables to an anonvinous variable V to decrease
‘the branching factor in the trie and to minimize the computation done in flattening a term (see
below). This method gives perfect retrieval for linear terms (i.e.. terms with no repeated variables),
but can give false matches for nonlinear terms due to conflicts in variable bindings.

When used to store terms and expressions in this manner, tries are often referred to as dis-
crimination trees or nets; variations of tries have heen employed in many diﬁ'erent theoremn-proving

svstems [11, 16, 28]. Discrimination trees are especially good for retrieving generalizations [28, 40].

p(XY H(X,Y)) G

p(h,g(f(b.e))e)

Figure G: The cache data structure.

Tor example, every leaf node in the trie shown in TFigure 6 will be retrieved as a term unifiable
with p(X, Y. Z), only the leaf nodes pointed to by the nodes labeled 4 and 5 will be retrieved as
possible generalizations of p(X, e, f(X,Y)), and the leaf nodes pointed to by the nodes labeled 5
and 9 will be retrieved as possible instances ol ¢ X, N.¢).

An analysis of tries shows that they support sublinear {actually O{logn)} cache operations for
{exact) string matchinug. Retrieval time may be greater and multiple values may need to be relurned
for more general pattern matching (e.g., all leal nodes must be returned when retrieving instances of
the variable term A'). In many of the problems we have rmn, the number of nodes in the trie quickly
becomes quite large. This leads to an increase in lookup time (for both templates and solutions)
and can increase the paging activity of a run, forther slowing down the prover. This has led ns
to investigale various trie compression alternatives. Many of these alternatives eliminate those
nodes with a single braiuch that do not discriminate between different kevs (see below). Although

compression of the trie as described eliminates nodes with a single brancli, in keeping with standard

22

terminology we refer to the elimination of one-way branches rather than single-branching nodes.

Consider the nodes labeled 3,4,5,7,8and 9 in Figure 6, which are redundant from the point
of view of string search operations. Ior example, the term p(X,Y, f(X,¥)) can be relerenced by
the pointer labeled f in node 2 since nodes 3 and 4 do not. diflerentiate between the term and
other terms stored in the trie. Similasly, the term p(b, g(f{b,€)), ¢) can be referenced by the pointer
labeled f in node 6, eliminating nodes 7, 8, and 9 that do not differentiate that termn from any
other term stored in the trie. By eliminating nodes with a single branch, we decrease the storage
required for the trie and decrease the nuinber of nodes visited during a trie search.

Conipressing a trie by eliminating one-way branches results in a PATRICIA trie [19, 43]. Formal
analysis shows that such tries result in decreases in both time and storage compared o a standard
trie. The analysis, however, is based on string-searching applications (where we view any sequence
of bits as a string). In our application, we use the trie for pattern matching rather than for
exact matches. Consider the elimination of the one-way branches in Figure 6. In searching the
uncompressed trie for the expression p(b, g{ f(e,e)),e) the search is cut off hefore a leaf node is
reached. In the compressed trie this term must be compared with the term stored in ihe leaf node
since elimination of the one-way branches also eliminates the early cutofl. Since we use the trie to
retrieve instances, generalizations, and candidates for unification for a given literal, the comparison
at the Jeaf node may be an expensive operation (e.g., unification) as opposed to a simple test for

equality.

6.1 Some Implementation Details

In our example, compression resulted in the “shrinking” of one-way branches that lead to a leaf node
{external one-way branches). In a PATRICIA trie all one-way branches are eliminated. As a resnit
of the elimination of internal one-way branches, each node of the trie must store informadtion that
indicates how many bits in the search pattern shonld be skipped when moving to the next node.
Although the code for implementing such tries is not overly complex for exact matches [36], the loss
of information cansed by compression {resulting in nore attempted unifications, for example) has
led us to consider a compressed trie in which the only one-way branches eliminated correspond to
nodes all of whose children are one-way hranches (a similar device was used in [16]). Tor example,
if the only branch from the node referenced by p in Iigure 6 was the anonvmous variable branch
(relerencing the node labeled (1)), that hranch would not be removed since the node labeled (1)
has more than one child {in addition to having a child with more than one child—node (2)}). By
eliminating only such external chains of one-way branches, no auxiliary information is stored in
internal nodes and the addition and removal of leal nodes is relatively straightforward.

We also consider limiting the maximum depth of the trie so that after m levels, for example, a
leal node is replaced by a linked list of leaf nodes. Both this modification and the compressed trie

reduce the sizc of the trie considerably as well as decreasing the time used in searching the trie.

23

This leads to substantial performance gains for many problems, although both mechanisms vield
less perfect retrieval than is possible in a full trie, e.g., false matches occur even for linear terms.
‘Statistics rega,rding'va.rious combinations of these mechanisms are given in Section 7.
Each internal node in our trie holds an array of poiunters that represent the possible branches
from the node and a. counter of how many poiniers are non-nil in this array. As each function and
- constant symbol in the input clauses is parsed, it is given a unique number that serves as an index
into the array of pointers. This technique is outlined in [11]. The count of the number of branches
is used to recursively remove internal nodes that are removed when cached solutions are removed
during back-subsnmption. In practice this operation rarely removes nodes other than leaf nodes,

especially when external one-way branches are compressed.

6.2 Possible Optimizations

Although the trie is an efficient data structure supporting the retrieval of expressions for unification
and subsumption, expressions are often retrieved that fail to unify with (or subsume) the subgoal
that invoked the retrieval. This is most often due to conflicts that occur in variable bindings, some-
times as a result of mapping all variables to an anonymons variable. In our implementation, no
bindings are made during trie traversal; bindings occur only during the nnification or subsumption
routines that are called after a potential match is found. For problems in which caching and Jem-
maiziug are successful, the ratio of successful unifications to attempted unifications using solutions
retrieved from the cache store rauges from 50% to 80%. In contrast, caching is detrimental for the
condensed detachment problems described in Section 7.5 for which this ratio is often less than 5%.
For these problems, early binding of terms to variables may result in early rejection of alternate
solutions and increase this ratio, thus making caching more tractable [28].

In our inmiplementation the solution store supports finding generalizations of terms more effi-
ciently thau finding instances of terms (cf. [28]). This is especially true if the tree form of a term
is used. To find generalizations, an anonymous variable branch is followed in the tiie and the
corresponding nonvariable term skipped in the target expression. When the tree form of terms is
employed. the argunients of a functor or predicate of arity n occupy the next n places after the
{unctor or predicate symbol so that skipping oue of these arguments is quite simple. In contrast,
if the stringized form of terms is used, skipping a term involves calculating where the next term
begins. When instances are retrieved from the solution store, these calculations must be made since
the branches in the tric constitute a flattened representation of terms. Since finding potentially
nnifiable solutions also involves these term calculations, long terms tend to degrade performance.
It is possible te alleviate some of these problems by incorporating an extra pointer in internal trie
nodes referencing the node at which the next term begins (one such pointer is necessary for each
possible branch). Following these “jump” pointers avoids the overhead associated with calculaling

the beginning of the next termi. These pointers do add to the storage cost, and when external

24

nodes are compressed, updating these pointers can be an expensive operation (e.g.. during the
“uncomnpressing” of a compressed sequence when a new term is added).

Both these ideas are incorperated to a degree in the OTTER theorem prover [27]. Jump pointers
are employed explicitly in the flatterm representation of terms in [11] (but not in the trie) and are
used in the discrimination tree employed in the SNARK theorem prover [42]. We are investigating
tliese potential optimizations, but they are not employed in the results given liere.

We lhave investigated one method that has the potential to improve the ratio of successful to
attempted unifications. Qur unification routine attempts to unify two terms by traversing the terms
{rom left to right, performing substitutions of terms for variables as necessary. Since the trie is
normally constructed by traversing a term from left to right as well, attempts at unification that
{ail late in the left-to-right unification traversal may not be pruned during trie traversal because of
compression,

It is possible that using a right-to-left term traversal in searching the trie might lead to better
- performance since the right-te-left trie traversal and left-to-right unification traversal might result
in less redundancy in the matching of literals than if left-to-right traversals were used in both the
retrieval and the unification routine. This could lead to earlier unification failures although the
ratio of unification successes to failures would be the same.

Since there is no performance penalty in traversing terms {rom right-to-left as compared to left-
to-right during retrievals, this bidirectional traversal scheme will prima fecie yield a performance
gain. However, the effect may be small; experiments show little observable gain over the normal

method of left-to-right traversals in both retrieval and unification.

6.3 Physical and Logical Solution Stores

In our caching and leinmaizing mechanisms the allocation and initialization of trie nodes is handled
by a single module. In this sense, there is a single physical store that is divided into two logical
stores: the template directory and the solution store. Each of these two logical stores is further
divided into substores with one substore for each signed predicate. This requires two pointers for
cach signed predicate symbol—one for the first entry in each of the directory and the store. The
store pointer is labeled p in Figure 6. In order to decrease the number of entries in the solution
store, il is seeded with unit clauses. These clauses are nol retrieved as solutions, bul serve as

subsuming solutions preventing more specific solutions from being entered in the solution store.

7 Results

In thiz section we include results for a variety of problems we have run using the caching aud
lemmnaizing methods outlined in the previous sections. Rather than give an exhaustive set of
results based, for example, on the problems reported in [39], we include problems that have been

historically difficult for ME-hased provers.

We show that caching can reduce the time needed to solve several difficult problems by a
significant amount, sometimes by more than an order of magnitude. For these results we provide
figures indicating that template subsumption is useful when caching is emploved and show that
the value used for the cost threshold to restrict caching can have a significant impact on cache
performance.

We provide a successful application of both caching and heuristic caching in proving SAM’s
lemma [48] in which we lLave achieved spectacular results for top-down or ME theorem provers.
Although OTTER solves the same formulation of SAM’s lemma in aboutl seven seconds, it has
been an intractable problem for provers not emploving some form of redundancy control. In the
formulation we use, the input clauses for this problem are from the domain of function-free Datalog
problewns. Ior this and other Datalog-like problems, storing all solutions bhut charging unit retrieval
cost seens a pronuising method.

We have also experimented with lemmas in several group or ving theory problems. By imposing
limits on the nesting depth of function symbols that appear in lemina terms and by use of demodu-
lation we have been able to prove both the commutator problem and the theoremn that if 2? = 2 in
a ring then the ring is commutative [48], whose proofs have, heretofore, been unobtainable by top-
down ME theorem provers. These results indicate the potential {for lemmaizing since we succeeded
by using svntactic criteria for lemma retention, although we note that the use of demodulation is
© a powerful tool.

We also succeeded in finding a proof of the intermediate value theorem of calculus (as formulated
in [47]). This non-Horn problem is proved using lemmaizing and has to onr knowledge been bevond
the capabilities of linear provers. Success with this and other non-Horn problems indicates the
potential for lemmaizing in this domain.

All the results in this section are hased on running an unoptimized version of METEOR (in the
sense that the compiler debug rather than optimize flags were set) on a Sun SPARC-station 2 with

64 megabytes of memory.

7.1 Caching and Lemmaizing with Horn problems

In Figure 7, we provide comparisons of the performance of caching and lemnaizing with several
Horn problems. Ior all the problems we report on, caching reduces both the number of inferences
and the time to find a proof.

The label “fail.temp.” means that the cache was used only for pruning using failure templates
(with template subsnmption used). Although these results seem to indicate that by themselves
failure templates are not useful, recall that caching requires the disabling of the identical-ancestor
pruning rule. The time and number of inferences required for these problems without this rule (and
without caching) indicate that failure templates improve the performance of the prover but do not

compensate for the disabling of the pruning rule.

26

&

The label “cache” is based on the best cache threshold over several runs {see Figure 10) with
template subsumption used; “unit lemma” indicates that only solutions with function symbols
nested at most 1 were stored and retrieved with unit cost; and “demod™ indicates the same run
but with lemmas rewritten using the complete set of redunctions for free groups as well as with any
demodulators meeting the nesting criterion generated during the proof. These results indicate hoth
the potential for lemmaizing and the need for demodulation when it is applicable.

Each run indicates the number of seconds needed to find the proof (the top number) and the
number of successful inferences made. Missing figures indicate that the the method failed for the

problem (e.g., no proof was found in the allotted time).

fail. unit demod.
problem Di.r temp. cache lemma
wosl(13.06 26.51 - 3.72 6.40 2.73
78,664 129,643 10,714 19,562 7,979
wos 1 19.64 35.96 6.39 316 0.48
139,068 223,455 10,551 | 1,221,686 1,273
wos21 283.43 540.2 55.51 584 39.73
2,200,583 | 5.397,293 368,426 | 2,134,087 132,307
wos1h 13,841 1,356 29.8 4.37
01,879,275 5,399,388 104,883 . 15,701
satm 1011 250.37 40.83f
5(1017)z 948,444 | 155,480
wos22 11,388 1,565
71,143,961 7,217,820

theuristic caching
iprojecled measure

Fignre 7: Results for caching and lemmaizing with Horn problems.

7.1.1 Use of Demodulation

Figure 8 shows results from running several group or ring theory problems using demodulators
generated during the proof in addition to using the standard demodulators for free groups or
rings. No back demodulation was emploved and all terms appearing in lemmas were restricted by
limiting the level to which function symbols could be nested. As these results show, demodulation
in conjunction with term-size restrictions is very successful in reducing the number of generated

lemmas to a manageable size.

7.2 Lemmaizing with non-Horn Problems

We have noted the difficulties that occur when caching is used with non-Horn problems. Although
caching requires storage of all sohutions. lemmaizing, since it augments search instead of replacing
it, can be more selective. An essential difference between Horn aud non-Horn problems is the

possibility of nonunit lenunas in the latter. Lemmas are {ormed during the contraction operation

27

Dynamic Demodulation
time # proof steps # stored lemmas
problem | {secs) inferences proof depth lemmas generated
wosl0 2.73 7,979 7/8 38 7,101
wos 1 0.48 1,273 /T 10 1,585
wos2] | 39.73 132,307 9/9 33 92,640
wosl1h 4.37 15,701 779 21 12,872
comumutator | 430.7 1,281,052 /9 417 611,148
2? =2 ring | 1,495 4,763,795 5/10 170 2,349,653

Figure 8: Using demodulation with lemma generation.

when leftmost A-literals are removed from a chain. The removed A-literal is disjoined with all
A-literals to its right that were used to remove by reduction B-literals formerly to its left. Ouly if
no such reduction operations occurred {as none can in the case of Horn problems) is a unit lemma
formed from the A-literal alone. Since lemmas are not required for completeness, we can restrict
- ourselves to storing only unit lemmas even for non-Horn problems, just as in the case of Horn
clauses. This allows lemma handling to be as efficient as in the Horn case. Cousidering only unit
lenunas is often effective, but not vniformly so. There are problems in which unit lemmas are too
scarce or discovered too late in the search to be useful.

Results are given in Figure 9 for lemmaizing with several non-Horn problems. The results are
given as nnmber of seconds and number of inferences needed to solve the problems. The problem
labeled ivt is the intermediate value theorem. As noted above, this problem has been beyond the
range of top-down, linear provers. It is proved by the STR+VE prover [8] and the HD-PROVER
in [47]. With the addition of several nonautomatically constrncted rewrite rules it is proved by
the prover in [34]. The problem labeled nonobv is a problem given in [31] and subsequently cited
in [26]. We should note that when D4y is used as the cost measure METEOR solves this problem
in nnder one second. The problem labeled salt is Lewis Carrol’s salt and mmstard logic puzzle

(non-propositional version) taken from [25].

problem | normal search | lennaizing
ivt Do 915
3,216,208

nonobv Di.r GHT 1.42
6,526,914 12,071

salt. Dapn 60.3 35.7
660,774 309,434

Figure 9: Lemmaizing with non-Horn problems.

7.3 Parameters Affecting Caching and Lemmaizing

Results are given in Figure 10 using different cache thresholds, i.e., varying the minimum level

at which the cache is consulted. Statistics are given in seconds and number of inferences. These

28

results show that a low threshold uniformly degrades cache performance; the higher inference rate
of the normal search procedure more than compensates for the reduction in inferences. Note that
low thresholds also preclude the use of the identical-ancestor pruning rule in more cases. When
these results are examined in light of the depth of search needed to find a proof (the number of
steps in a proof found using Dj,r, sce Iigure 12) we see that there is a threshold window such
that for runs made within the window, performance increases as the threshold increases (note, for
example, that for wos2l a threshold of & resnlts in a 540,000 inference proof found in 93 seconds
and a threshold of 9 results in a 1 million inference proof found in 154 seconds). Although the user

can set the threshold. the default threshold used in METEQR is five.

Cachie Threshold Level
problem 1 2 3 4 5 6 T

wos1() 4,37 4.66 4.12 3.72 4.45 65.54 8.83
8,482 8,452 8,482 10,714 17,563 31,608 406,561
wos | 11.57 9.43 7.12 6.39 6.68 7.96 13.11
8,499 §,499 5,499 10,551 14,136 23,059 49,552
wos2i 492 483 358 226 133 a6 36
133,536 133,536 139,843 156,766 203,618 292,732 368,426
woslh 31,822 31,043 16,203 5,720 2,141 1,515 1,356
1,507,114 1,507,114 1,509,839 1,721,907 2,413,466 3,763,384 5,399,388

samy 42 42 41 41 43 32

126,650 126,650 127,451 130,328 156,433 242,347
wos2? 36,078 35,009 17,288 6,075 2,504 1,686 1,565
1,846,619 1,846,619 1,921,009 2,280,075 3,231,997 4,942,331 7,217,820

yheuristic caching

Figure 10: Using different cache thresholds.

When template subsumption is not employed, the cache stores exactly the same number of
solutions. but is accessed less frequently. In addition, the number of tewplates stored greatly
increases further degrading performance. Tigure 11 gives statistics for the same problems and
parameters as given in Figure 10, bul without employing template subsumption.

In Figure 12, the number of steps in the proof found using different parameters is given. Note
that for caching results the search tree is explored to the samme depth as when Dy is used; the
nmunber of steps in a proof is shorter wlen a solved goal is used in place of a sequence of deductions.

The two entrics under the cache heading correspond to whether template subsumption is employed.

7.4 Memory Requirements

METEOR and PT7TP are attractive partly because of their minimal memory requirements. One of
the potential drawbacks incurred by caching and lemmaizing is the {potentially large) size of the
cache and lemma store. Figure 13 shows the memory requirements for the problems reported in
this section.

The use of lemmaizing imposes only modest memory requirements when tight restrictions on

29

Cache Threshold Level {no template subsumption)
problem 2 3 4 5 6
wos1(25.39 21.21 15.72 13.83 14.85
39,036 39,032 42,570 51,293 68,088
wos 1 25.77 16.83 11.49 10.44 10.61
15,953 15,953 15,576 27,330 35,964
wosZ i 937 727 455 285 184
275,448 284,512 319,149 392,029 510,506
samf 70 Tl 72 64 67.7
239,251 240,044 254,946 268,438 355,197
wos22 51,403 18,823 8,398
8,452,066 9,966,389 14,083,812

theuristic caching
14,754 secs. and 17,191,011 inlerences at threshold 7

Figure 11: Diflerent cache thresholds (no template subsumption).

Diar cache unit = demod.
problem subsume no subsume | lemna

wos1() 10 4 7 4 7
wos 1 10 T 7 T 7
wos21 12 5 8 9

woslb 15 10 T T
samj 29 T 9

w0522 14 G 10

theuristic caching

Figure 12: Number of steps needed to find proof.

what Jemmas to keep are employed. Results using caching for hard problems (e.g., wosl5 and
wos22) indicate that unconstrained caching may not be viable for very hard problems without
some modification of the caching mechanism. For hard problems, the memory requirements needed
to store all solutions as is done in caching makes lemmaizing an attractive alternative. Of course

lemmaizing requires the identification of useful lemmas, which is a difficult task itsell.

7.5 An Un-cacheable Problem Class

Although caching works well for a class of problems, there are many probiems for which the increased
storage costs and retrieval time incurred by the cache do not compensate for the reduced number of
inferences. We have nsed METEOR to solve several of the problems given in [29], which are based
on the inference rule of condensed detachment. While many of the problems are solved quickiy in
METEOR, we fail to find proofs for nearly 70 out of 112 problems. The search for a proof of some
of these problems generates very long terms—on the order of 100 symbols appear in the terms lor
these problems. Because METEOR uses the standard technique of copy on use for binding terms to

variables, and because these terms are so long, the cache quickly fills with terms whose subsequent

30

problem # solutions | # trie nodes | size (Mbytes)
wos10 473 1,300 0.05

wosl 2,301 7,269 0.38

wos21 8,867 28,428 1.5

samj 143 407 0.013

wos15 55,076 176,037 10.2
wos22 79,871 243,227 15.38
commutator 417 1,094 0.48
z? = r ring 170 469 0.19
ivti 91 289 0.14
nonobvi 31 80 0.002

theuristic caching
ilemmaizing

Figure 13: Memory requirements for several problems.

binding results in a severe degradation in overall performance. Although no copying of terms is
done in forward subsumption tests, terms are copied during unification and backward subsumption,
While the number of inferences is reduced for these problems when caching is used the inference
rate often decreases by more than an order of magnitude. This could be alleviated to some extent
by binding terms to variables during trie traversal, so that variable-binding conflicts, the most
common reason for unification failure for these problems, will e detected more quickly. Such a
mechanism is employed in the OTTER system [28]. The use of lemmas may hold more promise for

these and other problems, however.

8 Related Work

Much work has been done in the area of query optimization for deductive databases [4]. This
work tends to focus on reducing redundant (recursive) derivations by program transformation
techniques [5]. by introducing a control Janguage [17, 18], and by runtime analysis [45]. In general,
these techniques are designed to work with function-free, Horn (Datalog) programs. As our results
with SAM’s lemma indicate, caching and heuristic caching can work well for this class of problem.
The framework of SLD-AL resolution [46] is closely related to our framework, and the concept of
a lemma in SLD-AL resolution corresponds exactly to (and is antedated by) the use of lemmas
in model elimination; the QSQR implementation [45] of SLD-AL resolution also uses iterative
deepening. The OLDT resolution procedure [44) is very closely retated and involves an iterative
decpening search of Datalog programs. As database optimizations, these methods concentrale on
reducing redundancy when all solutions to a goal are desired; in a theorem proving context we
(usually) search for only one proof.

Extension tables as used in [13] are closely related to the OLDT procedure. Although an outline
of an iteralive deepening prover is given there, no empirical data is given and it appears that the

method has not yet been implementied. Plaisted [32] has implemented a theorem prover in which

31

solved goals are stored, although no notion of cache completeness is used. Although he reports
some favorable results, caching in his prover could lead to longer proofs, did not work for the same
class of problems we report on here, and did not admit proofs for problems previously unprovable
in his system. In fairness, his implementation was not optimized and access 1o the store of solved
goals can be particularly slow in the system employed in his prover.

Elkan [14] reports on the idea of caching to reduce redundancy in a resolution-based prover
for Horn problems, but only reports on the use of caching to solve one problem. His prover has
been used in the realm of explanation-based learning, and the use of the prover with what we call
lemmaizing is reported in [37]. The EBL domain is slightly different since the principal aim there
is to “train” the prover by storing solutious for a class of problems and then using these solutions
to solve other problems of the same type. The only kinds of lemmas stored in the svstem are
generalizations of goals. This makes it possible to prune the search with success when a match is
found with a stored solution. Qur work indicates that this methodology is of limited success for

the kinds of problems traditionally addressed in theorein proving domains.

9 Conclusions

We have outlined two modifications to the ME search mechanism used in METEOR. These modifica-
tions, caching and lemmaizing, have enabled METEOR to prove theorems previously unobtainable
by top-down model elimination theorem provers and have reduced by more than an order of mag-
nitude the time required to prove some typically difficult theorems.

Other work in this area has focused almost exclusively on lemmaizing. We have studied, and
shown 1o be successful, a method (caching) that consciously replaces search rather than angmenting
it. In our implementation we have succeeded not only in reducing the number of inferences (which
is easy and guaranleed for exhaustive searches), but in reducing the time required to find reduced-
inference proofs, which is not so easy. The volume of data caching and lemmaizing nses demands
indexing schemes unnecessary for ordinary ME. Adding and using such schemes in an already fast
theorem prover indicates not only the promise of the methods, but the versatility of our prover.

In the future, we hope to further improve the caching mechanism in terms of its storage re-
quirements and ils redundancy reduction capabilities and thus permit it to be applicable to a larger
class of problem. Ve also plan to investigate methods for identifying useful Jemmas that will allow
us to combine aspects of botton-up reasoning with the goal-directedness of top-down provers in

solving hoth llorn and non-Horn problems.

Acknowledgments

We would like to thank Donald Loveland and Richard Waldinger for their valuable comments on

earlier drafts of this paper.

32

References

(1]

Q.L. Astrachan. Investigations in Theorem Proving based on Model Elimination. PhD thesis,

. Duke University, 1992. (expected).

{2]
[3]
[4]

5]

[6]

[10]
[11]
12)
[13]
[14]

[15]

0.L. Astrachan and D.W. Loveland. METTORs: High performance theorem provers using
model elimination. In R.S. Boyer, editor, Automated Reasoning: Essays in Honor of Woody
Bledsoe. Kluwer Academic Publishers, 1991.

L. Bachmair, N. Dershowitz, and D.A. Plaisted. Completion without failure. In H. Ait-kaci
and M. Nivat, editors, Resoluiton of Equations in Algebraic Structures, vol. II: Rewriting
Technigues., pages 1-30. Academic Press, 1989.

F. Bancilhon and I. Ramakrishnan. Performance evaluation of data inteusive Jogic programs.
In J. Minker, editor, Foundations of Deductive Dalabases and Logic Programmang. chapter 12,
pages 439-517. Morgan Kanfmann, 1988,

C. Beeri and R. Ramalkrishnan. On the power of magic. In Proceedings of the 6th Symposivm,
on Principles of Database Systems, pages 269-283, 1987,

W.W. Bledsoe. Some thoughts on proof discovery. In Proceedings of the IEIEE Symposium on
Logic Programming, pages 2-10, 1986.

W.W. Bledsoe. Challenge problems in elementary calculus. Journal of Automated Reasoning.
6(3):341-359. 1990.

W.W. Bledsoe and L. Hines. Variable elimination and chaining in a resolution-based prover for
inequalities. In Proceedings of the Fifth Conference on Automated Deduction. pages 281-292.
Springer-Verlag, 1930,

S. Bose, E. Clarke, D.E. Long, and S. Michaylov. Parthenon: A parallel theorem prover for
non-Horn clauses. In Proceedings of the Symposium on Logic in Computer Scicnce, 1989.

C. Chang and R. Lee. Symbolic Logic and Mechanical Theorem Proving. Academic Press.
1973.
J. Christian. Flatterms, discrimination nets, and fast term rewriting. Journa! of Autonetcd

Reasoning. to appear.

N. Dershowitz. Orderings for term-rewriting systems. Theoretical Compuler Scicnee, 17:279-
301, 1982, .

S.W. Dietrich. Extension tables: Memo relations in logic programming. In Procecdings of the
IEEE Symposium on Logic Programming, pages 264-272, 1987.

C. Elkan. A conspiratorial and caching and/or tree searcher for theorem-proving. In Proceedings
of the Eleventh Inlernational Joint Conference on Artificial Inlelligence, 1989,

S. Fleisig, D. Loveland, A. Smiley, and D. Yarmash. An implementation of the model elim-
ination proof procedure. Journal of the Association for Computing Machinery, 21:124-139,
January 1974.

33

[16]

[17]

[15]

[19]

[20]

[21]

[22]

23]

[24]
[25]

[26]

[27]
28]

(29]

[30]
[31]
[32]

(3]

S. Greenbaum. Input Transformations and Resolution Implementation Techniques for Theorem
Proving. PhD thesis, University of Illinois at Urbana-Champaign, 1986.

A.R. Helm. Detecting and eliminating redundant derivations in logic knowledge bases. In
W. Kim, J.-M. Nicolas, and S. Nishio, editors, Deductive and Qlject-Oriented Databases, pages
145-1G1. Elsevier Science Publishers, 1990,

A.R. Helm. On the elimination of redundant devivalions during execution. In S. Debray and
M. Hermenegildo, editors, Proceedings of the North American Conference on Logic Program-
ming, pages 551-568, 1990.

D.E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison-
Wesley, 1973. '

R.E. Korf. Depth-first iterative deepening: An optimal admissible tree search. Arficial Intel-
ligence, 27:97-109, 1985.

R. Letz, S. Bayerl, J. Schumann, and W. Bibel. SETHEO--a high-performance theorem
prover. (to appear).

D.W. Loveland. Mechanical theorem proving by model elimination. Journa! of the Association
for Computing Machinery, 15(2):236-251, April 1968.

D.W. Loveland. A simplified format for the model elimination préced ure. Journal of the
Association for Compuling Machinery, 16(3):349-363, July 1969.

D.W. Loveland. Automated Theorem Proving: A Logical Busis. North-Holland, 1978.

E. Lusk and R. Overbeek. Non-horn problems. Journal of Automated Reasoning, 1:103-114,
1985.

R. Manthey and F. Bry. SATCIIMO: a theorem prover implemented in Prolog. In Proceed-
ings of the Ninth Internaiional Conference on Automated Deduciion, pages 415-434. Springer-
Verlag, 1988.

W. McCune. OTTER 2.0 Users Guide. Argonne National Laboratory. March 1990.

W. McCune. Experiments with discrimination-tree indexing and path indexing for term re-
trieval. Technical Report MCS-P191-1190, Mathematics and Computer Science Division Ar-
gonne National Laboratory, January 1991. (to appear in Journal of Automaled Reasoning).

W. McCune and L. Wos. Experiments in automated deduction with condensed detachment,
1991. (results presented at 1991 Joint Japanese-American Workshop on Antomated Theorem
Proving).

D. Michie. Memo functious and machine learning. Neture, 218:19-22, April 1968.
I.). Pelletier and P. Rudnicki. Non-obviousness. AAR Newsletler, (6)=1-5, 1986.

D. Plaisted. Non-Horn clause logic programming without contrapositives. Journal of Auto-
malcd Reasoning, 4(3):287-325, September 1988,

D. Plaisted. A scquent style model elimination strategy and a positive refinement. Journal of
Auwlomated Reasoning, 6(4), 1990.

34

[34] D. Plaisted and S.-1. Lee. Inference by clause linking. Technical Report TR90-022, University
of North Carolina, Department of Computer Science. Chapel Hill, NC, 1990.

[35] J. Schumaun and R. Letz. PARTHEO: A high performance parallel theorem prover. In
Proceedings of the Tenth International Conference on Automated Deduction, pages 40-56, 1990.

[36] R. Sedgewick. Algorithms in C. Addison-Wesley, 1990.

{37] A. Segre and D. Scharstein. Practical caching for definite-clause theorem proving. [draft],
September 1991,

{38] M.E. Stickel. A Prolog technology theorem prover. New (feneration Computing. 2(4):371-383,
1984. ‘

[39] M.E. Stickel. A Prolog technology theorem prover: Implementation by an extended Prolog
compiler. Journal of Automated Reasoning, 4:343-380, 1988.

[40] M.E. Stickel. The path-indexing method for indexing terms. Technical Report 473, SRI
International, Artificial Intelligence Center, October 1989.

[41] M.E. Stickel and W.M. Tyson. An analysis of consecutively bounded depth-first search with
applications in automated deduction. In Proceedings of the Ninth International Joint Confer-
. ence on Artificial Intelligence, pages 1073-1075, August 1935,

[42] M.E. Stickel and R. Waldinger. Proving properties of rule-based systems. In Proceedings of
the Seventh Conference on Artificial Intelligence Techniques, pages $1-88, 1991.

[43] W. Szpankowski. Patricia tries again revisited. Journal of the Association for Compuling
Muchinery, 37(4):691-711, October 1990.

[44] H. Tamaki and T. Sato. OLD resclution with tabulation. In Proceedings of the Third Inter-
national Conference on Logic Programming, 1986.

[45] L. Vieille. Recursive axioms in deductive databases: the query/subquery approach. In Pro-
ceedings of the 1st International Conference on Ezpert Database Systems, pages 179-193, 1986.

[46] L. Vieille. Recursive query processing: The power of logic. Theoretical Computer Science,
69(1):1-53, 1989.

[47] T.C. Wang and W.W. Bledsoe. Hierarchical deduction. Journal of Automated Reusoning,
3:35-77, 1987.

[48] L. Wos. Awlomated Reasoning: 33 Basic Research Problems. Prentice Hall, 1988.

[49] L. Wos and R. Overbeek. Subsumption, a sometimes undervalued procedure. in J.-L. Lassez
and G. Plotkin, editors, Compulational Logic, Essays in Honor of Alaun Robinson, MIT Press,
1991.

35

