reenewond Aves

Integrated Interface‘s for Decision-Support with Simulation

Technical the 507' |

June 1991

Prepared by: =~ Philip R. Cohen, Senior Computer Scientist

Atificial Intelligence Center
Computing and Engineering Sciences Division

Approved for Limifed Distribution

This paper will appsear in the Wmter Simulation Conference, Assomatson for Computlng Machmery,
Phoenix, Arizena, December, 1991 ,

334486

e @ Moo Park, CA S4075-3488 » {415 326-6200 « FAX: (415) 326-8512 @ Telex:3

Integrated Interfaces for Decision-Support with

Simulation *

Philip R. Cohen

Senior Computer Scientist

Artificial Intelligence Center
SRI International
pcohen@ai.sri.com

Abstract

A majorlimitation of graphical user interfaces for simulation is that users such as managers
and decision makers need to know too much., We examine the weaknesses inherent in graphical
user interfaces to support these users of simulation for short-term situation assessment and
scenario evaluation, a style of problem solving characteristic of military and factory command-
and-control. Then, we present Shoptalk, a factory command-and-control system with an
interface integrating direct manipulation and natural-language processing, and demonstrate
how the Shoptalk style of interaction can overcome these limitations,

1 Introduction

The interface to a simulation-based decision-support system should at 4 minimum assist the
user in iteratively assessing the state of the complex system being studied; expressing, sim-
ulating, and comparing scenarios for altering that state; and, assessing the resulting state.
Although modern simulation systems employ graphical user interfaces {(GUI’s), and hence
benefit from their advantages, they are hindered by the absence of any provision by GUT’s for
end users to describe rather than merely select objects. This limitation is particularly severe
for nontechnical users of decision-support or command-and-control systems, who would like

*This paper will appear in the Proceedings of the Winter Simulation Conference, Assodiation for Computing
Machinery, Phoenix, Arizona, December, 1991.

to solve complex unstructured problems without delving into the intricacies of the underlying
computer system. In this paper, we describe a next-generation integrated interface, incorpo-
rating graphics and natural-language processing, that overcomes many of the limitations that
graphical user interfaces pose for these users of simulation.

1.1 End Users and Their Problems

User interfaces should not be considered in the abstract, but as supporting particular kinds of
users in solving specific types of problems. The user we have in mind is the decision maker or
manager, who would typically not be the among the developers of the simulation model to be
used, and hence would be unlikely to know or want to know details of modeling, simulation,
programming or query languages, or database structures. For this kind of end user, the ability
to express strategies and questions is vital, as is ease of use in general.

One class of problem such users face is to determine the effects of taking various actions
on the short-range behavior of the complex system under study, starting in that system’s
present state. When the courses of action and the problem solving process itself are routine,
a user interface can be tailored to the specific needs at hand. However, decision makers
are often called upon to evaluate nonroutine courses of action, or to cope with unforeseen
effects of prior courses of action. For such nonstandard cases, a user interface needs to offer
the decision maker a conceptually simple but powerful set of tools, emphasizing maximum
ﬂex.ibili-ty and freedom in expressing scenarios and in determining their effects.

For the users in question, unstructured problem solving would cycle through the stages
of situation assessment and scenario evaluation. That is, the user would first determine the
present state of the complex system, and then decide how to alter it to achieve some desirable
end state(s). This process requires that the user be connected to an information system that
maintains current and historical information, At the same time, the user needs to have a
decision-support system, such as a simulator, to assist in scenario evaluation. Unfortunately,
most simulation systems are divorced from the real-world information system (e.g., a factory
information system or military command-and-control system) and so they provide different
functionality, data structures, and user interfaces. Ideally, the user should have a uniform
view of both real and simulated worlds. Were this true, the assessment of the current real-
world situation, and the evaluation of the situation that results from a simulation would
then use similar techniques. Hereafter, this paper will consider more generally the analysis of
situations, but both prospective and retrospective analyses should be understood.

Given this iterative view of problem-solving, we argue that users are impeded by their
interface to the information and simulation subsystems. To substantiate this claim, we next

discuss strengths and weaknesses of two user interface technologies, direct manipulation and
natural language processing.

1.2 User Interfaces

The interface technology of choice in modern simulation systems derives from the direct
manipulation style of interaction currently available on workstations and personal comput-
ers. With mouse and menu, users can model the system of interest, set parameters, supply
attribute values for objects, and animate a simulation run. Although graphics and direct
manipulation are effective interface technologies for fna.ny classes of problems, they are lim-
ited in important ways. Specifically, they provide little support for identifying objects not
on the screen, for specifying temporal relations, for identifying and operating on large sets
and subsets of entities, and for using the context of interaction. Thus, the user who is trying
to solve a problem when he does not know which objects, events, or time periods satisfy his
constraints, can only point to entities on the screen, and attempt to determine their relevance.
At times, this may be an effective strategy, but in many common circumstances, it can also
be tedious or even completely ineffective. Unless a query language is available, and the user
is willing and able to learn it, someone else must translate the user’s problem into search
commands to find the entities of interest. So much for end-user interaction.

On the other hand, the identification of objects, events, and time periods are among the
strengths of natural language. That is, English, or any other natural language, provides a
set of finely-honed descriptive tools such as the use of noun phrases for identifying objects,
verb phrases for identifying events, and tense for describing time periods. Moreover, these
capabilities can easily be deployed simultaneously, as in the question “when will the F-157
that are being repaired be operational?”

Because these interface technologies are complementary, they can be merged, affording the
advantages of each, and overcoming the limitations each poses for effective problem solving
with simulation. Elsewhere, we have described how to merge such interface technologies [1].
In the remainder of this paper, we discuss typical problems such users face, and then describe
a system, called Shoptalk, that deploys such an integrated interface to make possible new
forms of interaction with simulation systems,

2 Expressing Scenarios: What-ifs

Proponents of simulation claim that the strenths of such systems lie in the analysis of “what-if”
questions. Modern object-oriented simulators (such as SIMKIT!) represent an improvement
over simulation languages such as GPSS, in that they provide the user with a graphic ability
to create a simulation model and to set various input and output parameters. For example,
the user could select among various dispatching rules, assign priorities, alter interarrival or
service-time distributions, etc.

But, in general, many what-if questions are not easily modeled by merely adjusting pa-
rameters. For example, the question “If I give IBM lots top priority, where will the AT&T
lots be when the ion implanter goes down for maintenance?” describes an assumption (IBM
lots are given top priority), a stopping condition for a simulator (when the ion implanter goes
down for preventive maintenance [PM]),? and a question (where are the AT&T lots). None
of these conditions is easily modeled by a simple setting or tabulating of parameters. For ex-
ample, the only way to determine which are the IBM lots with present GUI-based simulation
systems would be to select each currently displayed lot, examine its attributes to find those
destined for IBM, and adjust their priorities. With luck, the system designer would have
made the relevant information easily accessible. But, when there are hundreds of entities to
be examined (as in many factories), this process would be extremely tedious, and it would
be nearly impossible to conduct for lots that have yet to be created (because there would be
no icons to select). Rather, the user should be able to characterize the desired objects once,
and have the system use the description to find the relevant objects that presently exist, or
as they are created.?

In summary, our point is that because direct-manipulation GUI’s typically afford no means
for describing entities of interest, decision-makers cannot even erpress the scenarios to be
investigated.

ISIMKIT is a trademark of the Intellicorp Corporation.
2 A scheduling program may already have created a database of future events, in which case this condition

would amount to a database retrieval.
30f course, spedific search and action capabilities could perhaps be added to a eystem to handle each of

these problems, but at the risk of greatly complicating the interface. In general, if the user needs to wnte
queries in a query language, rules in a rule language, or programs in the host system’s programming language,
most end users would be lost.

2.1 The Analysis of Situations

Typically, the tools provided by simulation systems for analyzing the state of the complex
system being studied include graphical displays, as well as the collection and display of statis-
tics computed over the usual suite of variables (e.g., throughput, lateness, down time, etc.)
Current interfaces built on object-oriented message-passing graphics will display such charts,
both as the simulation is progressing and at its end. In addition, various forms of animation
are possible, though the benefits of animation are often debated. It is generally true, how-
ever, that a user must know in advance what data he wants to collect before running the
simulation. If the user wishes to see unanticipated information, he would typically need to
rerun the simulation, with a new set of variables to be tabulated.

However, in the previous section, we argued that many kinds of what-if questions do
not merely involve the setting of variables, but rather the satisfaction of complex conditions.
Similarly, in determining what has happened, the user may want to do more than tabulate
and graph statistics derived from parameter values. More generally, he would like answers to
questions. To continue our previous example, the user might want to know where the AT&T
lots are, which ones are late, where they waited, for how long they waited, etc. Frequently,
the user may not know in advance what questions to ask, but will need to determine the
subsequent questions from having seen the answers to prior ones.

Current simulation systems make this style of problem-solving difficult. To support such
intelligent exploration of the knowledge base, the simulator needs to record the events that
occur and be able to derive new information on demand. At the same time, the interface
needs to allow the user to pose arbitrary questions rather than just compute statistics.

In addition to learning about the final state of the simulation, the user may have a bona
fide interest in learning about intermediate states. Thus, a simulation system should provide
the capability for viewing the state of the system under study at any prior time [5]. Though a
few systems may provide a “rewind” capability, there are (at least) two reasons why the user
interface to that simulation system needs to provide more functionality than merely allowing
users to select a prior time. First, the user we are trying to support may simply not know
what time is of interest. With systems that allow the user only to scan backwards by dragging
a “slider” or typing in a precise time, the user would have to devise a search strategy. A linear
search would be particularly poor, while one that merely stepped through the events again,
as in a slow-motion replay, would be only marginally better.

Second, such interface tools for entering times would likely provide only one time per
view. But if the decision maker is interested in all the times when a certain condition arose,
he would have to exhaustively re-apply the temporal search strategy to find the relevant times.

Unfortunately, there are simply too many time points from which to pick. The decision maker
should be able to describe the condition of interest only once, and rewind the simulation to
each of the relevant times.

In summary, we have argued that simulation interfaces that allow decision makers only to
perform actions on objects selected from the screen limit the user’s ability to express many
scenarios and to evaluate their results. Rather, to be useful in solving nonroutine problems,
the interface must enable users to describe objects, events, and time periods of interest. The
next section describes the Shoptalk system developed at SRI International (SRI) to provide
these capabilities.)

3 Shoptalk

Shoptalk is a prototype decision-support system developed at SRI over the past eight years to
support such factory situation assessment and scenario evaluation tasks as work-in-progress
tracking, quality assurance monitoring, and production scheduling. The current version of
Shoptalk demonstrates the application of the technology to semiconductor and circuit-board
manufacturing. However, the basic technology is equally applicable to a wide variety of do-
mains. For example, a version of Shoptalk is currently being written for military command-
and-control. In this section, we discuss the system, presenting an example of its use for
answering what-if questions, and point out features that make it uniquely capable in support-
ing complex problem-solving,.

Shoptalk allows users to query databases on the current state and recent history of the
factory and to examine alternative factory scenarios by running an event-based discrete event
simulator. The simulator is programmed in Prolog, and thus inherits a theorem-prover for
determining the truth of complex conditions over a database of facts. Rather than concen-
trating solely on objects and their properties, as is common in current generation knowledge-
based simulation systems, the Shoptalk system is centered around the scheduling, execution,
recording, retrieval, and manipulation of events (cf.” {6]). For example, in contrast to the
usual simulation strategy of determining that an event should occur because its scheduled
time has arrived, the Shoptalk simulator takes an action because its invocation condition has
become true.

To specify the necessary conditions, the system features an integrated interface that per-
mits intermixing natural-language queries and descriptions with mouse pointing, menu se-
lection, and graphical output. The natural language subsystem is an extension of the Chat
system [7] based on definite-clause grammars [4] written in Prolog. The system parses each

oo) (Een) {Traes Beoos T
Wew tor g fin Simuister Actinas [Pior]

Timutats tntil: 15 Jats sra hore oz _tlwbel]

vorle: Caorim2 Tima: {0) W\ C -]
Revet Time: £ latast When: ¥

BEIPPU] arstior: mith

1 stislve: renning
yor capacily: 1
werder: 1170

contento: [letl)
aueve: [1012,10135)
on_hold: []

conveyorl
—— canvayord
\ / o tubsl
plewmg wteher? m
5
8

Figure 1: Factory floor window

natural language phrase into temporally-qualified Prolog expression, whose truth is evaluated
by a temporal-constraint satisfier coupled with database retrieval.

The main Shoptalk window contains an iconic depiction of the actual factory floor (see
Figure 1). The icons can be manipulated grapically, for example, to show finer grained
attributes (see the icon representing the stripper in Figure 1), or to alter parameters, decision-
rules, etc. With graphical actions, new objects of various types can be created and the factory
layout changed. The user can enter stopping conditions for the simulator from the Simulate
Until line of the main window. From the Query line, the user can ask questions about the
actual factory’s present state and its history. In response to such queries or to graphically
invoked actions, data would be retrieved from a Prolog database created by a simulation. For
actual operations, such data can be obtained from the main factory computer(s). Fortunately,
it is a simple matter to translate Prolog into various query languages, such as the industry-
standard SQL language, to retrieve data from relational databases. With this introduction,
we first describe how a user can retrieve information from current and historical data using
an integrated interface, and then we describe how the same interface can be deployed during
scenario evaluation.

3.1 An Interface Integrating Natural Language and Graphics

Pure natural language interfaces for modeling and simulation date back at least to Heidorn’s
NLPQ system [3], which compiled modeling information, given in English statements, into
GPSS programs. Shoptalk is more oriented towards using English in the control of simulation
and in the analysis of results. The system serves as a testbed for integration of natural
language and graphical techniques. The philosophy is to let users employ each technology
to its best advantage. Graphical interaction, such as that found on the Apple Macintosh,
is effective when the objects of interest are on the screen or are easily found, and when the
range of possible actions to be taken is relatively small. Natural lasguage is most appropriate
when the user does not know which objects or time periods satisfy his needs, or there are
too many objects to conveniently manipulate graphically. In such cases, the user can employ
natural-language descriptions to select a relevant object or set of objects. For example, a user
can ask a question such as “Where were the defective hot lots when lot 3 was being baked?”
without having to know what defects are being discussed, which lots are “hot” (i.e., have high
priority), or when lot 3 was being baked.

Shoptalk takes advantage of the ability to intermix natural language with graphics to
provide users navigational guidance during problem solving, and at the same time avoid
some of the more difficult complexities in natural-language discourse processing. Interactive
problem solving often starts out with the user’s looking at a “big picture,” then narrowing the
scope of inquiry to particular areas of interest. For a user to be able to engage in an English
discourse that narrows the focus of attention, the interpretation of each utterance will depend
on its prior context. Unfortunately, present natural-language processing technology is rather
weak in handling the dependence of reference on context in a principled way. Shoptalk
incorporates Follow-Up Windows (see Figure 2) as a tool that can be used to maintain
context in an interaction, using graphics to overcome this difficult natural-language processing
problem. These windows remind the user that follow-up questions can be asked to focus on
selected parts of the answer to previous queries. For example, in response to “When did the
hot lots arrive at ox_tube1?” the user receives a table indicating that lots 1 and 2 waited
there. By selecting those lots, the user indicates that he wants the next follow-up question to
focus solely on them. Then, if he asks the follow-up question “When were they inspected?”
the user has explicitly restricted the scope of his query to the hot lots that have waited at the
scope. The system will respond with a table of answers in a new follow-up window, which
will become a daughter in a context tree (see Figure 3). The foci of a given follow-up window
constrain the interpretations of references to focused entities of the same type further down
in the tree. Thus, further focusing on those lots would specify hot lots that waited at the

[Redirect | | Parent] { Quit) [Piet {Create Report}

Current question: when did the hot lots arrive at ox_tubel?
Query time: 94

Focus on: lot interval

Follow-up question: ‘i
© Messages: Look here for messages.

lot interval

iot1 interval(74,74)
, lot2 interval(79,79)

Figure 2: “When did the hot lots arrive at ox_tubei?”

scope and were inspected.

The user can also select other portions of the context tree to obtain a new context for
follow-up questions. With the ability to navigate the context tree freely, the user can maintain
several lines of inquiry and follow those that appear most promising.

Another feature of this system is its handling of temporal relations, which are crucial
to problem solving with discrete-event systems. Because Shoptalk allows users to employ
the full English tense system [2], as our earlier examples showed, the system provides great
flexibility for expressing temporal relations. This is one of the areas in which natural language
is superior to a purely graphical or query-based interaction. We know of no purely graphical
means for posing and answering questions about complex temporal relations, such as the
ones implicit in the earlier question. Moreover, current query languages such as SQL do
not provide the temporal relationships (e.g., overlapping intervals) needed to answer complex
temporally qualified questions.

3.2 Scenario Evaluation

Although decision makers needs to cope with change on an ad hoc basis, their tools are often
inadequate. As we have argued, what is needed is software that allows end users to pose and
evaluate scenarios flexibly, and to draw comparisons easily. To see how Shoptalk supports
such interaction, let us consider a hypothetical scenario.

Quesiion: where were they when lot7 was bemg baked
L1 -'.;:"A”W‘—Mﬁ WYL Yoy T | T . L {4

BT

*
/ 92
when uere

, they
f which Tots Inspected?
have waited
: ® at the *
worldl scope? ql here uwere
ihey when
10t7 was

being baked?

Figure 3: Context Tree

After asking a series of questions, the user determines that the oven temperature is drifting
and needs adjustment, a task that takes, for argument’s sake, 24 hours. The user decides to
compare two operating strategies for the next day: taking the machine down now, or delaying
the maintenance action until the high-priority lots have been baked, in the hope that their
progress will not be impeded. The user has a complex decision to make, but needs to do so
relatively rapidly.

First, the user would push the New World button to get a new partition of the database.
This feature allows users to create new hypothetical worlds at any time, providing a tree-
structured database, within which various actions or “standing orders” can be taken, either
at the start of a simulation, or during the simulation itself. To compare results obtained under
various strategies, users can take different actions reflecting those strategies in different worlds.
Then, with menus, users can alternate easily between the real world and hypothetical worlds.
Because the simulator creates a database of events, and the question-answering interaction
retrieves data from it or from the database containing the real-world events, the same user
interface can be provided for exploring both real and hypothetical situations.

Currently, the actions that can be invoked include moving lots into a machine, taking
machines up or down, adjusting lot priorities, putting lots on hold, and alerting users. The
system responds to the selection of an action from a menu by presenting a form, which contains
various slots. The user can point at icons and “deposit” them into the slots and/or can type
(or speak) English expressions. Shoptalk parses the content of each slot, determining the

10

B AR OO RO NN

| Cancel | | Do it |

machine(s): [oveni]
when: each hot 1ot has been baked’

..

VA,

Type: & oneshot

- -
o 0 9 2 0 8 BB S A 5B

Figure 4: Bringing the oven down when the hot lots have been baked

objects that are denoted and the conditions under which to execute the action. For example,
to specify the second scenario, the user would select the Machine-down action from the action
menu, point at the oven, deposit it into the action form, then indicate when the action should
take place by filling in the When field with the phrase “the hot lots have been baked” (see
Figure 4). During the course of the simulation, and this can be extended to actions that should
take place in the real world, when the system can prove that an invocation condition for one of
its standing orders holds, it takes the corresponding action. The user does not need to know
when that condition will arise, nor precisely which objects satisfy the specified description.
Furthermore, the user has neither written pattern-action rules in a formal language, nor asked
" a programmer to write special-purpose code.

Since the user does not know precisely when the oven will go down, he cannot supply a
specific time to bring it back up. But, using the English language capability, to bring the
oven on line 24 hours later, the user would simply select the Machine-up form from the action
menu, point at the oven, and fill in the When field with the phrase “it has been down for 24
hours.”

Finally, the user would decide when the simulation should stop. In most simulators, the
stopping condition is specified as a time period (a day, week, etc.). As with other actions the
user can specify, the user can state an arbitrary stopping condition in English. Let us assume
the user wants to simulate until 15 lots are at the oxidation tube, so he might fill in the
Simulate Until field with the sentence “15 lots are here <point to ox_tube1>" (see Figure 1).

11

Once the future state of the factory has been simulated, the user can then employ the
system’s query facilities to elicit information of interest. In our case, the user might want to
know when the hot lots arrived at the oxidation tube. Figure 2 shows Shoptalk’s response to
this question.

Asking what-if questions is often one step in a p-rocess of making comparisons among dif-
ferent operating regimens. However, the first question that comes to mind after a simulation
should not have to be the only question. The user ought to be able to make comparisons
of answers to arbitrarily complex questions developed over time. Shoptalk allows for great
flexibility in deing so. For comparing results obtained from simulations with differing as-
sumptions, rather than retype a series of old questions, the user can drag the old question
into the new world. In the latter case, by dragging nodes (questions and their answers) in the
context tree of the old world to that of the new world, the user can re-ask questions that are
arbitrarily deeply embedded, and thus have been determined contextually. Consequently, the
user need not compare in multiple contexts the answers to just the first question asked, but
can explore the space of results derived from one simulation before deciding what to compare.
In addition, he can explore alternately the competing scenarios.

Finally, in addition to being able to view the final state of the simulation, the user can
rewind the simulation to a time that satisfies some condition by merely specifying that con-
dition in English. For example, the user can find the time when a hot lot was being baked
by filling in that phrase in the Reset Time slot of the main window. The system resets the
display to that time and constructs a menu for selecting any of the other times at which the
condition was true. At any time, the user 3can create a new hypothetical world and simulate
in another direction. This provides a “what-would-have-happened-if” capability in addition
to the usual “what-if” analysis.

In summary, we have argued that although currently popular graphical user interfaces
have provided a new level of ease of use for simulation-based decision-support, they still
can prevent the user from expressing scenarios, and hence from solving certain problems.
Without the right tools, important questions will not get asked. For example, the scenarios
and capabilities discussed above would be difficult if not impossible to obtain with simulation
systems employing only graphical interfaces. In this paper, we hope to have shown how
an interface taking maximum advantage of both graphics and natural language processing,
supported by event-based simulation, can make possible new forms of problem solving for

decision makers.

12

4 Acknowledgments

We would like to acknowledge the contributions of Ma.ry Dalrymple, David Kashtan, Doug
Moran, Sharon Oviatt, and Fernando Pereira to the development of the Shoptalk system.

References

[1] P. R. Cohen, M. Dalrymple, D. B. Moran, F. C. N. Pereira, J. W. Sullivan, R. A. Gargan,
J. L. Schlossberg, and 5. W, Tyler. Synergistic use of direct manipulation and natural
language. In Proceedings of CHI’89, Austin, Texas, April 1989.

[2] M. Dalrymple. The interpretation of tense and aspect in english. In Proceedings of the
26th Annual Meeting of the Association for Computational Linguistics, Buffalo, New York,
June 1988.

[3] G. Heidorn. An interactive simulation programming system which converses in English.
In A. Hoggatt, editor, Proceedings of the 1978 Winter Simulalion Conference. Association
for Computing Machinery, San Francisco, California, 1973.

[4] F. Pereira and D. Warren. Definite clause grammars for language analysis—a survey of the
formalism and a comparison with augmented transition networks. Artificial Intelligence,
13:231-278, 1980.

[5] J. Rothenberg. Object-oriented simulation: Where do we go from here? In J. R. Wilson,
J. O. Henriksen, and S. D. Roberts, editors, Proceedings of the 1986 Winter Simulation
Conference, pages 464-469, Washington, D.C., December 1986. Association for Computing
Machinery.

[6] J. Rothenberg. Knowledge-based simulation at the RAND Corporation. In P. A. Fishwick
and R. B. Modjeski, editors, Knowledge-based Simulation, Advances in Simulation 4, pages
133-161. Springer-Verlag, New York, 1991.

[7] D. Warren and F. Pereira. An efficient easily adaptable system for interpreting natural
language queries. American Journal of Computational Linguistics, 8(3):110-123, 1982.

13

