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INTRODUCTION

Simpson’s paradox exemplifies a class of problems that can arise when the logic
used to reason about the semantics of propositional sentences does not adequately
capture certain dependencies between sentences of interest. This paradox has been
known as early as 1903 [YULO03], and has been discussed extensively in the statis-
tical literature [SIM51, DAWT9, BLY72, BLY73, CHU42]. The phenomena that
typically give rise to Simpson’s paradox can occur in cases such as destructive test-
ing (e.g., determining the breaking strength of materials in orthogonal directions),
and identifying the composition of complex alloys. It has also been reported to
occur in “real life” several times since its discovery [KNA85, WAGS82]. One such
occurrence received wide attention in 1973 over the appearance of a sex bias in the
admission policy for graduate students at the University of Berkely [BIC75]. Given
that automated systems will be expected to recognize and cope with the underlying
phenomena of this paradox, it 1s important to develop effective methods for dealing
with them, particularly as it impacts the choice of logics that systems must use
to reason about real world problems. Only recently, however, has there been any
significant indication that Simpson’s paradox merits serious attention by the Al
community [PEASS].

MOTIVATION

Simpson’s paradox is often described within a medical context where a physician
is confronted with the task of choosing only one of two incompatible treatments, say
A and B, that must be administered to her patient. There are only two outcomes
of each treatment, survival and death of the patient. The data from which the
physician must make a decision are the survival and death rates of patients receiving

either A or B in two distinct cities, say ¢ and c. We represent the survival and

death from receiving treatments A and B by a, a, b, and b respectively. The
number of survivals from using treatment A in city c is represented by Ny, the

number of deaths from using treatment A in city ¢ is indicated by N. , and
N_ represents the number of deaths in city ¢. Similar notation is used for the

remaining survival and death rates for treatments A and B in cities ¢ and c.
Suppose the data indicate that Noo = 50, N. = 950, Ny = 1000, N_I = 9000,
by
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N_. = N_ =5000, N, =95,and N. =5.1 Using traditional analysis methods,
@ &

we find that with respect to each city separately,

N, N._ N
Nt N <N e NN SNoAN (1)
ac + NG be + IV wt Vg Nt N

A plausible interpretation of this data is that treatment B appears more favorable
to the survival of patients in cities ¢ and ¢ than treatment 4. However, when the

data for each city is pooled we find

Noc+ N - S Ny + N
Nec+ No, + N-+N_ = Ny + N‘,,:sz + N_E

to be paradoxical in that now treatment 4 appears to be more favorable than

treatment B overall.

Alternatively, Simpson’s paradox can be characterized in terms of the fol-

lowing question: if by treatment B favorable to S (i.e., survival) we mean

P(S|B) > P(S), B indifferent to § we mean P(S|B) = P(S), and B unfa-
vorable to § we mean P(S|B) < P(S), then is it possible that P(S|B) < P(S|B),
and simultaneously have P(S|BC) > P(S|BC) and P(S|BC) > P(S|BC)? If

so, what treatment is justified by the available data? In an attempt to interpret
the data, our physician might reason that if we let p represent the propositional
sentence Treatment is given in city c,let ¢ represent the sentence Treatment is
given in city ¢, let r represent the sentence Treatment B is more favorable than
treatment A, and given p —» ¢, p = r, ¢ — r, then pV ¢ — r would seem
to follow logically according to the disjunction axiom. However, the pooled data

suggests otherwise—i.e., p V ¢ — —r~that this axiom does not hold in this case.

While some might argue that the underlying cause of this paradox is an inap-
propriate analysis of the data within a classical framework, no classical solution has
been offered to date. Others have suggested that the disjunction axiom is simply

not sound with respect to the calculus of increased proportions; rather, the calculus

' The data for this example is borrowed from [BLY72].
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of extreme probabilities is a suitable mathematical framework for coping with this
dilemma [PEA88]. Foulis and Randall offer still another view of this paradox based
on their investigations of similar phenomena within the physics domain [FOU72,
RANT73]. Their work has resulted in the development of a language, called Empiri-
cal Logic (EL), that provides the foundation of the generalized maximum likelihood

solution discussed in this paper.

A MAXIMUM LIKELIHOOD APPROACH

At the heart of an EL-based formalism to a maximum likelihood solution is
the notion of incompatibility. In our medical example, the two treatments are
incompatible in the sense that once one treatment has been administered then it
1s impossible, even in principle, to measure the result and extract a meaningful
outcome for the other treatment. A determination is impossible because if the
patient is healed, the premise of an illness is no longer valid. If the patient dies,
no further measurements are possible. Incompatibility, in this context, does not
mean measurements cannot be made simultaneously. It means that the execution
of one action (e.g., administering treatment A ) precludes, in principle, extracting
a meaningful interpretation from the outcome of pursuing the second action (e.g.,

administering treatment B ).

According to Kolmogoroff [[KQL33|, an experiment is represented by its sample
space which consists of all possible outcomes of the experiment, and the collec-
tion of probability measures on the sample space. In the presence of incompatible
measurements, we have to reflect the fact that there is not simply one grand canon-
ical measurement that produces all outcomes of the experiment, but rather several
measurements, each capable of producing only a subset of the outcomes of the ex-

periment [FOU72, RAN73|. In our medical scenario, the collection of all outcomes
is X = {a, @, b, b} given the two incompatible measurements A = {a, a} and

B = {b, f)} . Thus, a complete description of the sample space consists not only of

the outcome set X , but also the collection of measurements A = {4, B}.

Although this may appear to be a trivial reformulation of a simple two-sample
experiment, from an EL perspective the explicit inclusion of the structure of mea-

surements in the sample space is a true generalization of Kolmogoroft’s axiomatic
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theory of probability. This generalization allows us to distinguish sharply be-
tween two representations of the simple two-sample experiment that are some-
times confused. Letting s = the survival of the patient and d =the death of the
patient, one might represent our medical experiment with the Cartesian product
{T4, Tp} x {s, d} with outcome set {T4s, Tad, Tps, Tpd}, where T4 means
treatment A is applied and Tp means treatment B is applied. This Cartesian
product sample space refers to the joint measurement of the random variables treat-
ment with outcomes {T4, Tp} and effect with outcomes {s, d}. It describes a
one-sample experiment with two measurements that are made simultaneously on
one and the same patient, whereas the first sample space represents the two-sample
case with incompatible measurements. The two models describe different situations.
Their sample spaces are not equivalent, and consequently they generate different
sets of probability measures. Moreover the Cartesian product representation blurs
the fact that we have to deal with incompatible measurements. An event such as
{Tad, Tpd}, read as given treatment A or B, the patient dies, seems to have
a dubious ontological status since there exists no real action that could result in
both outcomes. The random variable effect with outcomes {s, d} is not really an
independent measurement without any reference to the treatment. We show here
that 1t is the inadmissable representations of the experiment that lie at the heart

of Simpson’s Paradox.

A complete and detailed exposition of the mathematical theory underlying EL
and a maximum likelihood solution to Simpson’s Paradox can be found in [FOU72,
RANT3, I{LAQO]. Here we begin to summarize the essential features of the proposed
solution by first defining a maximum likelihood estimator (MLE) over a generalized
Kolmogoroff-like sample space. Next we characterize compositions of generalized
sample spaces (GSSs) in terms of a two-stage hierarchical experiment that we posit
is an appropriate method for viewing our medical example. MLEs are then defined
over a hierarchical GSS. Finally, we show how the data used in the above example

are reconciled by the proposed MLE solution.

A GSS is a nonempty set A of nonempty sets where E,F € A are operations
{e.g., E =administering treatment A and F =administering treatment B) and
x € E is called an outcome from performing operation E. Furthermore X =
U{E|E € A} is the collection of all outcomes. If A = {X}, i.e,, A contains
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exactly one operation, then .4 is said to be classical in the Kolmogoroff sense. If
A={E, F} where ENF =10,1.e., E and F are incompatible operations, then .4
is considered semiclassical. Clearly .4 = {A, B} with A4 = {a, @} and B = {b, b}
from above is semiclassical. If A is semiclassical then a probability weight on A
isamap w: X — [0, 1] such that for z € X ), pw(z) =1 forall E € A.
Within an EL framework, the data from the execution of operations are absolute
frequencies. The number of times 2 € X has been observed is represented by N,

and the total number of observationson A is N =3 _ N,.

Where Q(.A) is the collection of all probability weights on .4, a MLE on A is

a mapping @ such that

H o) > H w(ﬂ:)N" (3)

zeX T€X

for all w € Q(A). I A is classical then @(z) = N;/N is the expected result.
If A is semiclassical, then &(z) = N;/Np, where E is a unique operation in A
with z € E, and Ng = Eye g Ny 1s the total number of observed outcomes from

performing operation E.

Lagrange multipliers are used frequently to solve MLE problems. Maximizing
P = Tl,ex w(z)¥s with respect to w € Q(A) is equivalent to maximizing the
expression ¢n P = ) . Nyfn w(z), subject to the conditions ) cpw(z)—1=
0= fg for all £ € A. By Lagrange-multipliers,

~VinP+ Y AgVfp=0,
EeAd

where differentiation is respect to the variables w(z). For each z € X we get

1
Nx'w_(m_):Z’\F 3

zeF

where the sum 1s to be taken over all F' € A4 such that z € F. We therefore find

the solution

N
szF ’\F
5
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To determine the coefficients A, observe that we have for each operation E € A

an equation

1=> dz)= Y

el teF

NI ]
EIEF /\F ,

where a solution is admissible only if } - Ar >0 forall z € X.

Suppose A= {E, F, G} where E = {a,b}, F = {b,c}, G={c,d},and X =
{a,b,c,d}. Given the data N,, Ny, N., Ny and N = the total number of observed

outcomes, using Lagrange-multipliers we find the solution for the coefficients to be

Jva N d

)\. :]\T'_""""'—"""" }\ :N.—
E N, + Ny’ ¢ N+ Ny’

and

Ny N
Nb""Nd Na,—l'-Nc

Ap=N
and we find for our given A = {E, F, G} the maximum likelihood estimators to be

_ No+ N,

Ny + Ny
N ’

&(a) = w(c) N

and @(b) =w(d) =
If N; =0 then the system of equations is consistent if and only if N, = 0, in which
case &(a) = ©fc) =0 and &(b) = &(d) = 1. A symmetric argument holds when
Ny =0.

SIMPSON’S PARADOX REVISITED

A viable method our physician might use to reason about which treatment to
give her patient is to first view her task within the context of a two-stage hierarchical
experiment. A typical two-stage experiment involves executing an operation E
from a semiclassical sample space A, then depending on the outcome z € E
executing an operation F; from a semiclassical sample space B, . The idea is that
the first stage of this experiment requires the physician to ask for the patient’s city
of residence. The sample space for this question is C = {{e¢,¢}}. Then depending
on the outcome of the patient’s answer, the second stage of the experiment involves

selecting the treatment, represented by the sample space A = {4, B} with 4 =
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{a,a} and B = {b,?}} . The complete experiment is then represented by the forward
operational product . . However, we have yet to give the essential steps of how
to construct a MLE over . from the MLEs for each C and A separately. The

details of these steps are given in [KLAS0].

Foreach r € X let B, be a semiclassical sample space with cutcome set Y¥; and

let zF denote the set of all pairs (z,y) with y € F'; then a two-stage experiment

U zF,

zel

where E € A and F; € B; forall z € E. Let wyq € QA) and for each = € X
let w; € §)(B;); then a probability weight on AB is a map

has the general form

w(zy) == wa(z) - w{y)

where the notation zy denotes the ordered pair (z,y) forall 2 € X andall y €Y.
The absolute frequencies observed over w; € (B;) are of the form (Nzy)zex yeys -

We use Np:=5>, .y Nz, to denote the number of observed outcomes = € X .

‘yEY:c

With wq € & A) and w; € Q(B;), by hypothesis

[ e 2 [ oo™ s J] a2 [T wuts™

TeX reX yEYr yeY:

It has been shown in [KLAY0] that from the above inequalities the following maxi-
mum likelihood estimator for 45 can be derived

™ I

[ [pa@) o) "2 II [0 o)

z€X,yEY: sEX,yc¥s

Given 4 = {{a,a},{b,f)}} and C = {{¢,c}} for our two-stage hierarchical

medical experiment, we find using the above MLE techniques that

N,

—, and
Ne + N

- _ Ny 2
OE 0A® = i
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N, N

oab) = ——, aa(d)= 21— .
N, + N .
» + : Ny + Nb

Now consider ;; which has the outcomes {ca, ca, cb,ch,ca,ca, ¢b,cb} and con-
tains the operations {ca,ca,%a,ca}, {ca,ca,cb,cb}, {cb,cb,2a,ca}, {cb, cb, ch, cb} .
Notice that this set of operations is not semiclassical because of overlapping oper-

ations. If we let N, and N_C denote the frequencies of observing ¢ and ¢ and let
N=N.+ N_, we find the MLE over ; to be

. Nz
Sey) = £ 8aly)

where ¢ € {¢,2} and y € {a,a,b,b}.

Now imagine a patient arrives at our physician’s office and 1s diagnosed as having
an illness that is treatable with either A or B. The patient is then asked for his
city of origin; based on the answer a treatment will be selected and the outcome
observed. This experiment is represented by . . Using the same data as [BLY72]
we find that

&(ea) = 0.0261 < &(cb) = 0.0521 and

Oea) = 0.2393 < &(ch) = 0.4547 (4)
and again we judge treatment B to be better than treatment A in each city. The

results in Equation 4 were derived by multiplying the results in Equation 1 by the

N
proportion %’- of patients in city c, respectively by proportion 4 of patients in

city ¢. To find the marginal probability weight on A we sum the probabilities for
both cities. That is, for any probability weight w on 7, we define the marginal
probability weight we(y) = w(cy) + w(ey) for all y € {a,a,b,b}. This result is a
true probability weight on the sample space A alone, and it is derived by averaging

over the factor C. To visit the numbers above once again, we find that
@e(a) = 0.2654 < &¢(b) = 0.5068 .

Treatment B still appears to be better and the paradox has been resolved. It is

shown in [KLAQO] that the construction of we, in general, can never display the
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paradoxical behavior of the typical calculations whatever the data. We characterize
the difference between the classical analysis methods of such data and an EL-based
analysis in that the former ignores the information contained in the partition of the

data according to their origin, whereas the latter averages over this information.

To summarize, we have shown that by taking into account explicitly the mech-
anisms of how the data is collected and the interdependence of such data, inconsis-

tencies of the typical calculations are avoided.
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