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Abstiract

The integration of information is a central issue for Artificial Intelligence
research and development. The inference process in Al is the fundamental
mechanism for combining information, and a significant aspect of most Al sys-
tems is the means by which they manage their overall workload by focusing
processing attention and controlling which inferences are drawn and when it
is appropriale to draw them. Several perspectives on the contral of inferential
processes and their access to information have evojved. One view of the problem
treats the task as a goal-driven perceptual process, where specific information is
explicitly sought from the world through selected sensor modalities, translated
into a common “vocabulary,” fused with other relevant information, and finally
translated back into an understanding of critical aspects of the environment.
Another view, centers on a flexible structure known as the blackboard archi-
tecture for enforcing control and communication activities. In this paper, we
first review briefly a variety of Al inference techniques, focusing primarily on
logical inference and uncertain reasoning methods. We conclude with a survey
of approaches used to control inference processes, to mediate their access to
real world information, and to schedule their activities.



1 Introduction and Overview

A motorist stops a pedestrian in a suburban area and asks for directions to a particular
address. The pedestrian tells the molorist to contimue down the street {or scveral
blocks, until he passes a shopping ceuter on the left, take the first right, then a left,
and his destinalion will be across from the train station. After repeating the directions
to ensure he has them, the motorist continues on his way. '

A cat hears a faint rustling in the tall grass a few feet away. Crouching down, she
continues to scan the area. When she sees the flash of motion out of the corner of
her eye, she springs.

The radar seecker head in a missile scans a wedge-shaped area in front of it. When
a significant return from the radar’s signal i1s detected, the radar processor analyvzes
the signal and, based on its amplitude and spatial extent, determines that it is a
target. It narrows its field of view to include just the area containing the target, and
begins a turn toward the target areca.

Eacli of these activities requires thal information from one or more sources be
integrated im order to provide a picture of the environment that can be effectively
used to accomplish the goals and objectives of the “system™ acquiring the information.
The motorist must integrate the sounds of the speaker into a model in order to
interpret the utterances; this may be aided by pointing gestures on the part of the
pedesirian. An interpretation of the utterances yields an abstract, specialized map of
the area which must, in turn, be integrated into the spatial model of the environment
already possessed by the motorist. The cat integrates sounds of movement with a
visual indication of motion. The sound provides cueing information which allows a
more precise system, with a narrower field of view, to be used effectively. The radar
seeker nmust integrate electromagnetic energy until it determines that a possible target
1s present. This information is then integrated with a file of target descriptions to
determine whether it is of interest.

An effective understanding of the environment based on the integration of infor-
mation 1s central to any sort of purposive behavior. Humians excel in their ability
to integrate information from a wide variety of sources, simple and complex, and
draw accurate and far-ranging conclusions from them. This is primarily due to their
ability to effectively integrate data from distinct sources into an all-encompassing
framework. Artificial intelligence (Al) researchers use human activities as models of
numerous types of intelligent behavior, including sensing and perceiving, interpreta-
tion and reasoning, planning and problem-solving, and language understanding and
speech. Ifach of these general areas involves the integration of information as a central
theme. Al approaches to problems in these areas typically use one or more inference
methods as the basic mechanism for integrating information.

Inference, a fundamental Al operation, is the process of drawing a new conclusion
from two or more pieces of information. The most fundamental logical inference
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technique, modus ponens, uses a statement of fact and a related implication statement,
to generalc a new statement of fact. For example, the integration of the statement,
SUNNY-DAY, and the rule (SUNNY-DAY imples GO-TO-THE-BEACH), asserts
GO-TO-THE-BEACH.

Complications arise when it is important to control which conclusions get drawn,
or more importantly, to ensure that certain conclusions get drawn when necessary.
One of the most important tasks in any Al system 1s to control the exploration of a
potentially huge space of possible inferences, by {ocusing towards “useful” ones.

In this paper we shall discuss some of the methods that Al practitioners use {or
drawing inferences, both boolean, where all conclusions will be either true or false, or
weighted by their likelihood of being true. We will then discuss general methods for
controiling an inference process. We will conclude with a brief discussion of system
1ssues.

1.1 The Role of Artificial Intelligence

An AT approach? oflers a number of benefits for problems involving tle integration of
various types of information, both in the development of a system and as a component
in the subsequent operation of the system. These benefits include:

e Flexibility - By making inferences and decisions explicit, an Al system is (typ-
ically) easier to change and update than a conventional system accomplishing
an equivalent task. Furthermore, if the target environment is highly dynamic or
complex (or poorly understood), an Al system can offer the flexibility necessary
to adapt to the particular conditions holding when it is employed.

o Ability to handle complex problems — Recognition and assessment of real-
world activities can result in highly complex interactions among pieces of data,
with multiple interpretations possible in general. Al offers effective representa-
tions and computational methods for managing this complexity.

¢ Understandability - By making decisions and chains of inference explicit, an
Al system is often able to provide explanations for its findings and actions that
are not {easible with algorithmic approaches.

The utility of Al techniques for use in a fielded systemn depends roughly on the
complexity of the sources of information that must be accessed and the environmental
states that may need to be recognized. These may be characterized as follows:

n this paper, we shall use the term A7 approach to indicate a solution method based primarily on
the use of explicit Al formalisms, which typically include inference and search. The terms algorithmic
approach and conveniional approach will be used interchangeably to mean non-Al methods.



s The sources of information and Lheir organization are well understood with
respect Lo the information provided and the types of errors expected. An engine
control system that monitored lemperature and pressure m order to regulate
fuel flow would fall into this category.

e The number and types of sources are bounded, but the specific data provided
and the possible types ol errors in the data are not predictable in detail. A
military battlefield information system would be an example of this.

o The sources of information and their errors are essentially unbounded. A system
for interpreting natural language utterances about widely varying topics would
fit into this partition.

In the first case, techniques for integrating information may generally be pre-
specified, along with methods necessary for eliminating noise and refining estimates.
Activities that are based upon this types of information may be thought of as instine-
tive. The role for Al is relatively small in these applications. In the third case, the
amount of background knowledge, and the uses to which it might be put are essen-
tially unpredictable. These problems, while certainly requiring intelligent behavior,
are significantly beyond the current operational state-of-the-art in Al In the second
case, however, there is enough prior knowledge about the environment and available
information sources to constrain the activities of the system, while requiring a flexi-
ble, intelligent capability for combining, manipulating, and interpreting information.
Problems in this class seem1 most appropriate for the application of Al techniques,
and will form the focus of tlus paper.

A number of other factors will influence the detailed choice of methods used to
acquire and integrate information. These include, for example, the use to which
the information will be put, the number, types and quality of information sources,
the degree to which the sources are understood in advance, the complexity of the
environment being monitored, the dynamics of the environment, and the degree and
quality of environmental knowledge available to the integration system.

1.2 Knowledge, Information and Representation

The types of knowledge and iuformation that may be available or useful to an
information-integration process are likely to be quite varied. Raw data in an image
might represent intensity, color, range, texture, surface shape, surface type, eleva-
tion, optical density, x-ray absorbance, and geometric relationships. Different types
of data will suggest different representations. For example: intensities are simply
represented as numeric values of continuous quantities; texture might be best rep-
resented as a certain statistical distribution of intensity; color might be represented
either as a vector of intensity values for the primary colors, red, green, and blue, or in
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terms of hue, saturation, and brightness; simple surface shapes might be represented
as superquadrics/rel pentland]; complex surlaces may be represented by collections
of small patches or by articulated combinations of simple surfaces; and surface type
might be represented by a set of symbolic names. The knowledge used {or understand-
ing the information in the image might he derived from a varjety of experience and
prior knowledge and include declarative statements such as, “The color RED signifies
danger,” imperative knowledge such as “To find intensity edges, convolve the image
with the Laplacian operator,” procedural knowledge such as that embodied (at a Jow
level) in an image-operator description, or {at a high level) in an analysis script, and
causal knowledge such as “The inteusity at a point is a combination of the incident
intensity, the local surface orientation, and the reflectance function of the surface.”

In addition, the information available may have a variety of other qualities. In
particular, information is often uncertain, incomplete, inaccurate, and ephemeral {i.e.,
it ages). 1t may be acquired out of sequence with other information. It will frequently
vary in “granularity” or level of abstraction. The sources of information may be ei-
ther dependent or independent, inconsistent with other sources, of varying reliability,
and few or numerous. The amount of information that must be handled may be
appropriate for the available processing resources and problem requirements, poten-
tially overwhelming, necessitating some means for throttling the data to a manageahle
level, or insufficient for the task, requiring some means for either inferentially filling
information gaps or an effective method for acquisition of additional information.

A wide variety of applications have information integration components where the
information sources and the necessary interpretations are hounded and amenable to
Al approaches. Examples include autonomous vehicle navigation, personnel identi-
fication systems, access-control and monitoring systems, business management sys-
tems; battle management systems, intelligence analysis; photinterpretation, cartogra-
phy and map-making, medical diagnosis, and military threat detection and warning
systems.

2 Generic System Architecture and Definitions

In general, we shall treat the architecture shown in Figure 1 as an informal, generic
perception/action model, that links sensing and effecting through an inferential infor-
mation integration module (IM). This model joins a collection of information produc-
ers to a set of information consumers (users). Each producer will be associated with a
single source of environmental information, but will have one or more distinct output
channels {a multi-channel producer will be said to be multi-modal). These channels
will be treated as distinct (although often highly correlated) information inputs to the
IM. Inputs to the producers from the IM will include control information, commands,
and parameters. In a multi-level or hierarchical system, each producer may itself be
composed of a complete perception/action process as described here.
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Figure 1: The Prototypical Perception/Action Process



Integrated outputs from the IM are provided to the consumers, who will deter-
mine their behavior based on the mformation they receive. Consumers may make
information requests of the IM. These requests are further processed by the IM, and
appropriate instructions will then be issued to the producers. A consumer may also
be a producer. Feedback occurs through adaptive information requests from the
colnsumers.

The IM may be functionally partitioned into two components, an integration and
interpretation part and a planning and control part. The integration and interpre-
tation component processes and combines information received from the producers
before updating appropriate databases and making the processed information avail-
able to the consumers. The planning and control unit interprets consumer information
requests in light of overall system goals and requirements, plans and schedules pro-
ducers’ activities, and closes the loop by feeding necessary control and processing
miormation back to the producers.

This simple architecture captures the essence of a wide variety of systems. Three
principle sub-architectures of the generic architecture cover most current and contem-
plated systems: the single-source, single-mode {channel) system, the single-source,
multimode system, and the multisource system.

A radar tracker for a missileis an example of the single-source, single-mode system.
It integrates reflections from a target into a model of the target’s motion dynamics.
1t continuously maintains its model by predicting a new position, comparing acquired
information with its predictions, and updating its model. Even this simple system
must control its access to information,” integrate the information into a model, and
adjust 1ts model to accept new information.

A radar system that computes both range and velocity information is an example
of a single-source, multimode system. In this case, signal processed information is
integrated into two separate dynamic models, which in turn yield two distinet (cor-
related) channels of information. These channels may then be used by completely
separate consumer processes. The human optic system is another single-source, mul-
timode system which produces several distinct cliannels of information providing spa-
tial, topological, and temporal information.

The multisource, multimode system is exemplified by many human organizations.®

Intelligence gathering and interpretation, both by Government and commercial or-
ganizations, is a key instance of this type of system. A simpler example would be a
combined threat warning system consisting of (say) a radar intercept receiver, a laser
warning receiver, and an 1R detector. The integrated results of processing could in-
clude information for warning a crew member of a possible threat, as well as detailed
information for use by an automatic countermeasures system.

2A common radar technique is to use a range gaie to limit when it looks for returned pulses.
3As well as by cats!
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Figure 2: The Primitive Information Integration Process

In Figure 2, we illustrate a prototypical view of an information integration process.
Two distinct information manipulation processes are shown: fusion (inlegration or
combination) processes and translation (interpretion)?! processes. This simple network
can be thought of as an inference module. Inputs come from producers; outputs got
to consumers. These modules may be combined by identifying the consumers for one
module as the producers for the next. A common view of the information integration
process as moving from “signal to symbol” emphasizes the concept of the data moving
through ever more complex (and abstract) interpretations.

2.1 The Information-Integration Process

Information acquired from external sources must normally be combined with a model
and wnterpreted in order to draw conclusions about the world. For example, a radar
system makes a direct measurement of the intensity of the electromagnetic field at its
antenna; an interpretation of the electromagnetic radiation may yield the conclusion
that a real radar pulse was received. A further interpretation of the pulse information

4Translation can also be thought of as a process of synchronizing information.



could lead to the determination that an aircrafl was the source of the energy. This
imterpreted information is the output typically provided to a user. It is rare that
raw information (particularly that which is received directly from sensors) describes
the world in ways Lhat are of direct inleresi to a user. ln one sense, the information
1s almost always in the wrong “language,” and a translation operation is required
to convert the information to a statements that are mcaningful; that is, to a form
thal can be integrated with the current model of the siluation. This leads Lo an
mmportant observation: information is not combined directly with other information,
bul 15 integrated into an evolving model of some aspect of the situation. The current
characteristics of the model are a funclion of information received earlier.

The process of integrating information, then, can be envisioned as one of first
translating the information to an appropriate framework, and then combining it with
other information in the same framework. This process is appropriate regardless of
the number and types of the sources. A key ingredient in the process of integrat-
ing information is the inferential framework which defines the inleractions between
different types and sources of data.

The process of acquisition and assimilation of information may require significant
eflort, and therefore, must be effectively managed to ensure adequate information
for achieving goals. Acquisition and integration of new information inlo a model
15 a goal-driven, purposeful process with attendant requirements {or planning and
reasoning capabilities, in order to be carried out effectively.

The information-integration process described above raises issues that must be
addressed in the design and implementation of such a system. First, based upon the
nature of the information available to the process and the uses to which the derived
information is Lo be put, the designer must select an appropriate representation of that
information (for example, information expressed as a series of precise statements will
be represented differently from information expressing weighted judgements). Second,
based on the information sources, the process goals, and the characteristics of the
environment, the appropriate means for controlling the process must be determined.
Third, the necessary means for manipulating the available information and drawing
inferences from it for interpretation and translation, as well as the means necessary
for converting {rom one representation to another as appropriate must be determined.
The remainder of this paper discusses these issues.

3 Inference

A fundamental Al computation is that of cornbining information in order to infer a
conclusion. Inference procedures are designed to work on a particular representation
of available information. A variety of representations and methods of inference have
proven useful for Al problems. The selection of a particular method is ordinarily



based on the type of information available to the reasoning process, the types of
outputs required, the computational complexity of the available mechanisins, and the
degree to which assumptions are necessary and possible in order to camry out the
computation.

The basic inferential modes addressed by Al researchers are logical inference and
uncertain inference. Formal logical inference methods center on propositional and the
predicate logics. They are particularly useful for reasoning about situations where
available information is boolean, that is statements are either true or false. Logical
methods are typically based on formal properties which make it possible to charac-
terize the results of their operations. Ior example, in a predicate calculus system,
it js guaranteed that any statement which can be deduced from axioms (statements
that are true by assumption or definition) using valid rules of inference is a theo-
rem, and therefore true. Formal logical systems are consistent; if a statement is a
theorem, its negation cannot be. They are also complete; any statement that can be
proved from a consistent set of axioms is a theorem in the system. At the same time,
predicate calculus is not decideable; there are statements which can be neither proven
or disproven. Logical systems traditionally have traded ease of expressiveness and
computational simplicity for formality.

Uncertain inference methods are based on various models of probability theory.
Such method typically have an underlying propositional structure which allows state-
ments to be made. In addition, they provide a means for representing uncertainty
about whether the statement is strictly true and sometimes provide ways of repre-
senting imprecision or ignorance.

3.1 Logical Inference

The style of logical reasoning most commonly emploved is deductive, and can be best
exemnplified by theorem proving. A proof of a theorem is derived by creating a chain
of inferences from axioms to the theorem of interest. In this regard, theorem proving
involves a search process, where candidate statements are combined in an attempt
to get “closer” to the target theorem. The key characteristic of deductive reasoning
i1s that the results, by the nature of the computations, are known to be valid and
consistent.

3.1.1 Propositional logic

The propositional calculus[27] deals with constant statements (or propositions), which
are known to be either true or false. Propositions may be either atomic propositions
consisting of a single statement, or more complicated statements composed of other
propositions joined by valid connectives. The legal connectives in the propositional
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calenlus are conjunclion (represented as AND or “v”), disjunction (OR or “A”),
negation (NOT or “=7), and implication (I or “=").

The fundamental rule ol inference in propositional logic is modus ponens, which
stales that B is a direct consequence ol 4 and A = 5. Thus, an indication {rom
a visual sensor, LIGHT-IS-RED, may be combined with an implication (LIGHT-1S-
RED = DANGER) to infer DANGER.

3.1.2 Predicate calculus

By virtue of its restriction to constant statements, propositional logic is limited in
its ability to express complex concepts|[10, 3]. While retaining the connectives from
propositional calculus, the first-order predicate calculus provides additional expressive
power, by permitting the use of terms, variables, functions, predicates, and quantifiers.

Predicates denote properties and relations among objects, and can take on a
value of true or false when their arguments are specified. An atomic formula is a
predicate witlr the terms that constitute its arguments. A literal is a single (negated
or unnegated) predicate and its terms. A ferm is either a constant, a variable, or a
function application. A wvariable is a symbol that stands for an unspecified object.
Functions represent arbitrary, fixed expressions whose arguments are terms.

For example, the expression BLU E(z) is a literal that states that x, an unspecified
variable, 1s blue. The expression, BLUL(SKY') is true (in general) for California
skies, while BLUE(TREFE) is false (in general). Quantifiers come in two fovms,
universal and existential. Universal quantifiers (written “¥” and pronounced “for
all”} permit the statement that something is true for all possible values of a variable.
IExistential quantifiers (written “3” and pronounced “there exists”) allow the assertion
that a statement is true for at least one possible value of a variable. Existential and
universal quantifiers may be combined in the same expression.

Thus, we may represent the statement, "Where there’s smoke, there’s fire,” by
the predicate calculus statement,

Va(SMOKE(z) = 3y(FIRE(y) A SAME.LOC(z,y)))

Predicate calculus uses the Rule of Universal Instantiaiion in addition to modus
ponens as its fundamental rules of inference. Modus ponens is exactly the same
for propositional and predicate logic. Universal instantiation merely states that
universally quantified variables may be replaced by constants in a theorem, and
a new theorem will result. Universal instantiation of x with MARY in the for-
mula Ve(HUMAN(z) = 3y(MOTHER-OF(z,y))) yields (HUMAN(MARY') =
Iy (MOTHER-OF(MARY,y))).
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Systems for aulomated theorem proving typically use a rule of inference called
resolulion. The resolution principle allows the deduction of the statement 4 V V
(the resolvent) from the two statements ~A VU and AV V, where 4,04, and V are
arbitrary, valid formulas. A and —.4 are the literals resolved upon.

In order to apply resolution to logical statements, one statement must contain the
literal Lo be resolved upon and the other the negation of the literal. The two literals
must contain the same predicate {otherwise, there is no possibility of resolving them),
however there is no guarantee that the terms of the predicates will be identical. In
order Lo determine whether there is a substitution which, when applied to each of the
literals, will make them identical (except for the negation), a process called unification
is performed. Unificalion atternpts to match the two literals by finding the most
general substitution that will render them identical. Once this substitution is applied
(using the rule of Universal Instantiation) to each of the statements involved (that
is to all literals in the staements, not just the ones resolved upon), resolution may
proceed, and the new resolvent computed.

Unification and resolution are another example of the basic information integration
principle mentioned in the beginning of this paper. That is, the process consists first
of a translation step, where the two “sources” are transformed so that they are both
concerned with the same thing. Second, an inference step is performed that completes
the integration. Planning[39] and robot control systems|9] have been developed using
formal theorem-proving techniques as the information integration mechanism.

The concept of programming a computer by specifymg goals as theorems to be
proven, situational facts as axioms, and rules as implications has been attractive
fo Al researchers ever since effective theorem proving procedures were developed.
Prolog[4] one of the most popular logic-programming languages currently available
makes this possible. Prolog uses a clause form of logical representation, contaming
only constant terms and universally quantified variables. While Prolog uses a simple
syntactic, top-down (discussed below) scheme to determine the order of processing
facts and rules as a default, the system provides built in procedures for altering the
flow of processing under programmer control.

3.1.3 Other logical representations

The basic logical representations as discussed above consist of formulas and state-
ments in propositional or predicate logic. Other representations of great value to
Al developers include production rules, frames, semantic nets, and slate transition
networks.

A production rule is the most common representation of information used in expert
systems development{2]. It is roughly equivalent to an implication in the propositional
or predicate logic. It consists of ewvidence (also called tle left-hand-side or LHS)



and a hypothesis (also called the right-hand-side or RHS). Establishing the existence
{i.e., the truth) of evidence enables a production rule system to infer the hypothesis.
Turthermore, a system that needs to establish the truth of the hypothesis can seek
to establish the truth of the evidence - this is termed backward-chaining, and will be
discussed below. Production rules with appropriate updating {formulas can be used
for uncertain reasoning; this will also be discussed below.

Frames group knowledge about particular objects and situations. Properties of
an object and interrelationships among objects are represented as slots in the frame;
values for the properties are stored in the slots. I'rames provide useful mechanisms for
focusing attention, as they collect relevant information into a single element. Default
values are often provided for slots.

Semantic nets are quite similar to frames in concept. A semantic net uses arcs to
represent properties and relations (which are slots in frames) and nodes to represent
entities and values (the contents of slots).

State transition nelworks are graphical representations of sequential machines.
States are represented by nodes; conditions for state change are represented as pred-
icates {expressions that evaluate to true or false) on the arcs connecting the nodes.
State transition networks provide useful computational mechanisms for handling tem-
poral changes. The evolution of a system may be expressed through changes in a state
transition network.

3.1.4 Other logics

The first-order predicate calculus does not allow relationships among predicates, be-
liefs, temporal relations, or statements of possibilities. In addition, there is no means
for deleting assertions from the database. I'or this reason, a variety of alternative
logics and inference methods have been explored. Al workers are actively researching
problem-solving and inference methods based on these logics, which we will briefly
describe here (for more details see [35]).

Modal logics are concerned with necessity and possibility. They are primarly used
to represent staternents of belief. A modal logic of particular interest is epistemic
logic, a formalism suitable for representing states of knowledge[29)].

Temporal logics deal with the representation of time and statements whose truth-
value is tied to the temporal interval over which it is evaluated. Temporal logic is
important for planning and interpreting situations where time is a critical factor.

Higher-order predicaie logics can express properties of predicates. Certain prob-
lems, particularly those involving concepts of equality, can be worked more easily in
a higher-order predicate logic.

Non-monotonic logics address the problem of non-monotonic changes in the database.
In a standard logical system, it is assumed that the axiom base is consistent (that is,
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it contains no contradictions), and therefore all theorems derived from the axiom sct
are true, In practical situations, it is common to treal the axiom base as the current
database of facts aboul the world. All consistent new facts that are added, then,
cause monotonic changes to the knowledge base (i.e., the “amount” of knowledge
is abways increasing). When a fact is inserted that contradicts an earlier axiom, a
non-monotonic change has occurred, and all thcorems derived {rom the invalidated
axiom must be updated. Non-monotonic logics assist 1n this updating process.

3.2 Uncertain Reasoning

Most real-world activities involve varying degrees of uncertainty about the true sit-
uation. This type of information 1s not well- or easily described in formal logical
terms. As a result, several schemes for representing and reasoning about uncertain
information have evolved. Most of these approaches begin with classical, Bayesian
probability theory as a base, and then extend it either formally or heuristically to
handle situations that are difficult or impractical to address using the pure theory.

Most systems that deal with uncertainty use a propositional framework to rep-
resent interrelated statements about situations of interest. The chosen uncertainty
representation is then overlaid on the propositions in this framework. Most developers
of uncertain reasoning system will follow some or all of the following steps: framing
the problem, creating a background knowledge structure representing key problem
elements and their interrelations, creating a structure for analysis of situational data
and, finally, using the system to interpret and analyze data acquired about the sit-
uation. Differences in approach arise primarily from particular assumptions about
the nature of the underlying information being interpreted. These assumptions mo-
tivate the choice of an updating mechanism for uncertain information which, in turn,
dictates the requisite infrastructure to support the choice.

In this section, we shall focus on several types of uncertain reasoning formalisms.
We shall highlight evidential reasoning as a particular form of uncertain reasoning
developed specifically to address problems in interpreting real-world information.

3.2.1 Statistical reasoning

The simplest form of uncertain reasoning is statistical inference. A primary motiva-
tion for the use of statistics 1s to summarize and describe populations of events and
situations, based on relatively small subsets of those events. An important statistical
method is the process for estimating population parameters with prespecified confi-
dence levels and intervals|28] . Such estimators are useful for determining whether
acquired data indicate a possibly significant event. For example, a radar detector
must accumulate and average several samples of possible radar pulses before deter-
mining (with acceptable confidence) that there is a target in its field of view. The
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integration process carried out by the radar {and by mosts statistical operations) com-
bines informadion into Lhe current model of the target. This model will, for example,
include information about the current position and vector velocity of the targei. The
model is predictive in nature, as it enables a new estimale ol position Lo be derived.
This information can be used to control acqnisition of mformation (by using a “range
gale,” {for example), as well as to verily the current model (see [34] for a detailed
discussion). Kalman filters integrate position data inlo a model of an objects’s state
parameters in order lo estimate future positions. This information is (typically) used
to track the object. ‘

A familiar {form of statistical inference is pattern recognition or pattern classification(6].

A typical approach to classifying input features as belonging to particular objects be-
gins by creating a partitioned {eature space. An ideal feature space would consist of
well-spaced, compact clusters; interpreted features would map to single clusters and
the recognition problem would be trivial. In real life, feature measurements associ-
ated with one object typically overlap the feature measurements for other objects.
To add to the difficulty, the measurements themselves may be corrupted, leading to
further imprecision. This situation requires the developer to select a partition of the
feature space that will minimize the likelihood and the costs of wrong decisions. This
transforms the problem into a statistical decision theory task.

3.2.2 Probabalistic inference

The primary means for estimating the probability of a hypothesis based upon the
measured probability of supporting evidence is the familiar Bayes’ Rule of Condi-
tioning. While formally defined using strictly a prieri probabilities and conditionals,
Baves’ rule is often used to update belief in a hypothesis based on new evidence.
Bayes’ rule is expressed mathematically as

o4 | By = 28 | A} p(4)
p(B)

This shows how observing the value of p(A) changes the prior value p(B) to the
a posteriori likelihood, p(A | B).

An interesting situation occurs when more than one piece of evidence has been
acquired, and a new a posteriori likelihood based on the combination is desired. In this
case, input descriptions typically consist of the individual conditional probahilities
and the individueal priors. For example, starting information might consist of the
following a priori specifications:

p(B):p(C),p(B | A),and p(C | A).
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New probabilities are measured lor events B and C, and p(A | BAC), the a posteriori
likelihood is desired. Bayes’ rule provides

PBAC|A)p(4)
p(BAC) '

pA|BAC)=

Note that in order to compute this expression, values for p(B A C | A) p(A) and
p(B A C) must be available or computable. Since determining all of the required
conditional and prior probabilities neeced to solve such updating problems exactly
is onerous if not impossible in complex situations, various assumptions are typically
made to facilitate the computation. Frequent assumptions are conditional indepen-
dence and the principle of insufficient reason. Conditional independence states that
p(BAC | A) = p(B | A)p(C | A). That is, given conditioning statement A, B
and ' are independent and their probabilities may be multiplied to compute the
joint conditional probability. If B and C are strictly independent, then by definition,
p(B A C) = p(B)p(C).® These independence assumptions allow us to rewrite the
above expression

p(B | A)p(C | A)p(A)
p(B)p(C) ’

pA|BAC)=

which is now composed of known quantities.

Often, necessary probability values are unavailable when computations are to be
performed. In such cases, 1t is common to emnploy the principle of insufficient reason
to assign missing probability values. Simply put, if the probability of a disjunction of
events is known, hbut the probabilities of the individual components is not, and there
is no particular reason to expect that one event is more likely than any other, then
the principle of insufficient reason dictates that equal probabilities, totalling to the
original probability, be assigned to the individual components. A more sophisticated
version of this approach is the mazimum entropy principle[20]. In this approach,
probabilily values are selected that maximize the entropy (or the “disorderedness”) of
the assignment. The use of a maximum entropy computation corresponds to making
a minimal commitiment in estimating unknown probabilities.

It is important to note that for many real-world problems, most uncertainty meth-
ods based on classical Bayesian probability will require information that is not avail-
able, and must be estimated. Often these estimates will turn out to be close to the
“correct” probabilities, particularly when the space of possibilities is well understood,
and the estimation procedure is matched to the situation. However, one must not
lose sight of the fact that they are only estimates, may well be incorrect, and must
be accounted for in the final results.

In most practical systems, rafios of quantities such as odds are used for the probability compu-
tations. This scheme avoids the need to handle jeoini, prior probabilities explicitly.
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3.2.3 Evidential reasoning

Information acquired about real-world situations provides evidence about the possible
states of the world that might have given rise to it[15, 16]. This evidential informa-
tion is typically uncertain, usually incomplete (that is, it contains residual ignorance),
and it may contain errors. Based on a formal theory, the Dempsier-Shafer Theory
of Evidence[32], evidential reasoning® makes a formal departure from classical prob-
ability to address these issues. In particular, evidential reasoning allows belief’ to be
associated directly with disjunctions of events. That is, rather than forcing probabili-
ties to be distributed across the set of possibilities, evidential reasoning maintains the
association between the measure ol belief and the disjunction. This approach avoids
the need for assumptious for values of missing data. When beliefs of components are
later needed, they are underconstrained as a result of the disjunction and an interval
representation is needed to capture the true constraints. This interval enables the
explicit modeling of both what is known (although with uncertainty) and what is
unknown.

The fundamental entity in evidential reasoning is the frame of discernment {com-
monly called the frame and indicated by “©7). © consists of a set of mutually ex-
clusive, exhaustive statements which represent concepts of interest to the developer.
Propositions are made up of elements of the power set (i.e., the set of all subsets) of
0, indicated by 2®. Belief can be assigned to any proposition, including to © itself;
any belief assigned to © expresses total ignorance to that extent. An evidential mass
function (or just mass function) represents the distribution of a unit of belief across
selected (focal) elements of 2°. A body of evidence is the frame of discernment and
a particular mass function.

For manipulating bodies of evidence, Evidential reasoning provides explicit for-
malisms for both combination and translation, the two aspects of the information
integration problem discussed in the beginning of this paper. Dempster’s rule of
combination 1s used to combine two distinct bodies of evidence over a common frame
of discernment to yield a new body of evidence. Compatibility relations are used to
translate statements from one frame to another. Because Dempster’s rule is both
comnutative and associative, multiple (independent) bodies of evidence can be com-
bined in any order without affecting the result. If the initial bodies of evidence are
independent, then the derivative bodies of evidence are independent as long as they
share no common ancestors.

Evidential reasoning supports a number of primitive operations for reasoning from
evidence. All of these operations have a formal basis in the Dempster-Shafer math-

® Evidential reasoning is a term coined by SRI International [24] to denote the body of techniques
specifically designed for manipulating and reasoning from evidential information.

"Although belicfs are not strictly probabilities, we will use the terms interchangeably in this
informal paper.
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ematical theory of evidence and have intuitive appeal as well. Thus, both flexibility
and understandability are retained without sacrificing validity.

¢ Fusion—This operation pools multiple bodies of evidence into a single body
of evidence that emphasizes points of agreement and deemphasizes points of
disagreement.

¢ Discounting—This operation adjusts a body of evidence Lo reflect its source’s
credibility. If a source is completely reliable, discounting has no effect; if it is
completely unreliable, discounting strips away all apparent information content;
otherwise, discounting reduces the apparent mformation content in proportion
to the source’s unreliability.

o Translation—This operation moves a body of evidence away from its original
conlext to a related one, to assess its impact on dependent hypotheses. Ior
example, a body of evidence pertaining to the activities of an object can be
translated to estimate observeables that ought to be associated with it.

e Projection—This operation moves a body of evidence away from its original
temporal context, to a related one. Ior example, evidence about an object’s
stale parameters can be projected to estimate future locations.

s Summarization—This operation eliminates extraneous details from a body
of information. The resulting body of evidence is slightlv less informative, but
remains consistent with the original.

e Interpretation—This operation calculates the “truthfulness” of a given state-
ment based upon a given body of evidence. It produces an estimate of both the
positive and negative effects of the evidence on the truthfulness of the statement.

o Gisting—This operation produces a single statement that captures the general
sense of a body of evidence, without reporting degrees of uncertainty.

Evidential reasoning techniques have been automated in a system called Gister®[26]. .
Gister provides graphical facilities for constructing a background knowledge base,
creating frames of discernment, defining compatibility relations among them, and in-
teractively creating and evaluating analyses of situational information. The steps in
using Gister to develop an evidential reasoning solution to a problem are exactly those
listed in the beginning of this section. First, background knowledge is structured. The
various “vocabularies” are selected and represented as frames of discernment. Com-
patibility relations linking these frames are specified next. In order to provide a
structure for analyzing situation data, an analysis graph is developed. The analyss

8Gister is implemented in Lisp on the Symbolics 3600-series Lisp Machines.
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graph describes exactly the evidential operations that arc to be performed on the
input bodies of evidence. Information Irom a body of evidence flows through the
network of operations specified in the analysis graph in a delaflow fashion, until all
operations are complete. Information computed for selected output frames may then
be examined in order to determine the results of the analysis.

Gister provides a graphical, interactive aid for argument consiruction(23], the cre-
ation of explanations for evidence received about the environment. An ergument can
be thought of as a way of explaining evidence. It i1s often the case, particularly in
highly complex domains such as intelligence analysis, that it is not obvious how to
interpret information until that information is in hand. Essentially, there is no single
styvle of explanation that can account for all possible inputs. Traditional expert sys-
tems, on the other hand, typically use models which can be thouglt of as the generic
argument for explaining all inputs to tlie system. Argument construction may be
viewed as the analogue to a logical prool in the field of uncertain reasoning. Gister
gives the developer flexibility in operating on evidence, in creating arguments, and in
evaluating alternative explanations until a suitable one is found.

[vidential reasoning relaxes some of the extensive information requirements of
classical Bayesian probability theory, while maintaining its formal appeal, and is
therefore more natural for a wide range of problems. In addition, a wide variety of
primitive evidential operations with a rigorous theoretical basis have been defined to
facilitate manipulation of evidence. Evidential reasoning has been implemented as
the basic computational mechanism in Gister, an interactive, graphical shell.

3.2.4 Heuristic methods

Early work in expert systems addressed the problem of reasoning from uncertain
data using the production rule formalism. The very nature of expert systems, which
attempt to suppress insignificant information and focus on the data deemed useful
by an expert, makes it effectively impossible to use formal probabilistic methods
to update hypotheses based on new evidence. The work on Mycin[33], an expert
system to diagnose and recommend treatment for certain blood diseases resulted in an
informal approach which used certainty faclors between —1 and 1 to represent degrees
of beliel. A goal of the early research that led to the Prospector mineral exploration
consultant[7] was to formalize the updating process, using classical probability.

Prospector was forced to assume conditional independence in order to update
hypotheses. Although it led to an inconsistent (that is, non-invertible) procedure,
this was an acceptable compromise because of the nature of the probability values
which were typically associated with the presence of ore bodies. These probabilities
tend to be very small, and errors due to the updating rule were minimal[5].
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4 Control of the Integration Process

Inference procedures are typically quile simple and straightlorward to perlorm. In
general, cach inference generates a new picce of information to add back into the data
base. Since it is simple to fill a database with nrelevant dala from uncontrolled in-
ference, a key problem in Al is to control these processes effectively in order to reach
correct, useful, and desireable conclusions. This means that the processing frame-
work thal controls the acquisition of information and the selection and applicalion
of inference procedures is of critical importance. In this section, we discuss certain
basic Al control paradigms along with architectures which have evolved specifically
to address problems of real-world, real-time information system control.

In order {or a system to behave purposively, it must know what its (or its devel-
oper’s) goals are. These goals which may be well understood by the developer must
be made explicit and meaningful to the system itself. In addition, the system must
have some means for recognizing when it 1s making progress towards its goals. Typi-
cal informational goals include detecting the presence of certain activities, identifying
the activity and the actors, measuring interesting features of an activity (such as its
location, status, and state variables), discriminating among possible identifications,
and predicting future activities. In addition, however, meta-goals may be operative.
These might include requirements for real-time operation, a need for explanation of
results, a requirement for effective man-machine interaction, a need for “quiet” (i.e.,
passive) operation, and a desire for the system to learn and adapt to new situations.
These meta-goals will likely have as great an impact on the selection of an approach
as do the nominal informational goals.

4.1 Top-down/Bottom-up Methods

Two basic control paradigms used in Al are top-down and bottom-up methods. Top-
down methods are also termed goal-driven, model-driven, or backward-chaining tech-
niques. Bottom-up methods are also called data-driven or forward-chaining tech-
niques.

Top-down methods begin with a statement of the problem or goal and attempt to
solve it by finding subproblems that can be solved. For example, an expert system
may contain a rule that states, “If a fruit is red and round then it is an apple.”
Inverting the rule provides a means for finding apples — try to find fruits that are
both red and round. This is the source of the word “back-chaining;” the system
chains backward through its rules, until it finds a subgoal it can solve. Hierarchical
methods are top-down (typically) methods that break a problem into ever finer parts,
solving problems at one level before filling in details at the next.

Since certain subgoals may be impossible to achieve, failure of the solution proce-
dures must be expected from time to time. In this case, the system (usually) has no
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recourse except to backlrack to an earler choice point (normally the most recent) and
try another alternative. Should it exbaust all of its options. then the procedure fails
and the top-level goal also fails. Ttach time the system chooses a new alternative to
consider, 1t typically must switch its evalnation context to that of the new alternative.
Context switching, a direct result of backtracking, can be an extremely costly opera-
tion and a typical design goal is to minimize the number of times it occurs. Efleclive
procedures try to use knowledge to make good choices in the first place and to learn
enough from those failures that do occur to eliminate alternatives that might have
otherwise been considered.

Clearly, top-down processing can involve searching a potentially huge database of
possibilities. Much of early Al research was concerned specifically with controlling
search. A numiber of formal and heuristic search techniques such as alpha-beta search
were developed and are still part of the Al developer’s tool kit.

Bottom-up processing draws conclusions by reasoning forward {rom data to con-
clusions. Using the same rule.about apples mentioned above, a system could infer
that it had an apple once it had determined that it had a {ruit that was also red
and round. Data-driven methods are useful for determining the implications of new
information, however, by their nature they are difficult to focus.

A typical approach to interpreting real-world information is to use a combination
of top-down and bottom-up techniques. This, for example, was the procedure used
in Prospector. The user would enter data that liad been collected in the field. Im-
plications derived from this data in a forward-chaining manner provided an initial
context of hypotheses for evaluating the likelithood of ore bodies of interest. This
initial context helped Prospector, in a top-down fashion, to frame queries to the user
in order to refine its initial hypotheses. At any time, tlie user could enter new data
to be interpreted in a data-driven fashion. This hybrid method facilitated an inter-
active paradigm known as mized initiative, where the system has the initiative part
of the time and can ask questions; other times the user would take the initiative and
volunteer information.

Generally speaking, top-down, model-driven approaches are useful when the mod-
els are restrictive and the data is noisy. Noisy data causes problems to a data-driven
system. If there are no safeguards for data quality (and in a data-driven mode there
is rarely enough information to ensure quality in a noisy environment) it is quite
likely that corrupted data will generate errors which may be costly to rectify. Noisy
data requires effective data acquisition and data management techniques based on an
understanding of the system’s goals and its environment.

4.2 Perceptual Reasoning

As mentioned previously, the acquisition and interpretation of information may be
considered a percepfual task and, therefore, is a purposeful activity, undertaken to
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support definite system goals. In that regard, a perceptual system must be capable
of interpreting system objectives and using themn to focus the system’s resources in
order to optimize the collection and interpretation of information. By updating the
underlying model of the situation from new information, and altering its detailed
information goals, a system can adapt to new situations.

A straightforward architecture designed to control a perceptual process in a top-
down mode is the perceptual reasoning loop(25, 13] shown in Figure 3. This archi-
tecture consisls of three functional modules, ANTICIPATE, PLAN, and INTERPRET.
This architecture was first elaborated for use in a stimulation of an electronic warfare
(EW), multisensor situation assessment system[14, 12], but it serves as a general,
functional architecture for perception.

The ANTICIPATE module attempts to predict aspects of the situation that might
be expected, but for which there is no direct evidence. These include events that will
take place due to the passage of time or due to interactions among actors. Other
anticipated events include activities associated with previously identified events. The
goals of the EW system were to detect, identify, aind locate possible threats to the
aircraft. Examples of the types of events anticipated included undetected components
of identified systems and system mode changes due to actions of the platform. For
instance, the fact that certain types of surface-to-air missile systems were defended
by anti-aircraft guns enabled the system to consider looking for the guns before they
became a threat. Similarly, knowledge of the standard operating procedures of the
missile systems allowed the system to predict likely mode changes (say from an ac-
quisition mode to a target-tracking mode - definitely an interesting development)
based on the computed range to the missile. A state-transition network was used to
represent a process model; anticipation of mode changes was made on the basis of
state changes in the network, which were in turn predicated on the satisfaction of
conditions placed on the arcs. Based on the predicted events likely to be of interest,
the ANTICIPATE module would make up a set of information requests for the PLAN
function.

The PLAN module was given the task of determining an optimal plan for satisfying
as many information requests as possible. There was always competition for sensor
resources, so it was, in general, impossible to satisfy all the requests made. The first
step in the PLAN function was to order the information requests by their priority.
This priority was computed based on two key parameters, a determination of the
overall effect that acquiring the information would have on the system’s goals, and
the degree of inportance of the information (which was typically based on the lethality
of the threat being considered). For each available sensor a probability model of its
performance (modified for the current environment) was used to determine the utility
of using that particular resource to acquire the desired information. The utility
values were used by a lheuristic, dynamic-programming allocation routine to make
the ultimate assignment of sensor resources to information requests. In the course of
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Figure 3: The Perceptual Reasoning Loop

computing utility values, a determination was made of the optimal control parameters
for the sensors. These control data were communicated to the (simulated) sensors,
and they were operated in the simulated environment to acquire their data.

The INTERPRET module analyzed the acquired sensor data in terms of the ex-
pected information. Information that matched expectations typically resulted in in-
creased likelihoods, while information that was expect, but not acquired typically
resulted in decreased likelihood. Evidential reasoning was used to integrate new in-
formation into the situation model. In addition, data which was recetved that was
unanticipated was interpreted in a data-directed mode to determine possible unex-
pected threats. The updated situation model was the primary, shori-term database,
used in turn by the ANTICIPATE module.

This system was highly adaptive and could adjust to varying environmental con-
ditions by altering its selection of sensors. It exhibited various interesting behaviors,
but one of the most useful was a cueing capability that use information recetved from
one sensor to point another sensor.



4.3 The Blackboard Architecture

The blackboard architeclure provides a very flexible control structure for interpretation
and problem solving. The name “blackboard” attempts to capture the notion of a
collection of asynchronous processes writing messages on a blackboard which are in
turn read by anvone looking at the blackboard, and acted upon by those able to do
s0. A less anthropomorphic view would characterize the architecture as a mediated,
limited-broadcast communication structure.

As shown in Figure 4, the three basic components of a blackboard system (as
implemented in AGE[30, 18]) consist of the blackboard itself, a controller, and the
knowledge base. The blackboard 1s a hierarchical data structure organized to repre-
sent the problem domain as a hierarchy of analysis levels. Facts about objects are
stored in the knowledge base; production rules represent the knowledge for using
these facts and information on the blackboard. Related rules are grouped together
mto krowledge sources.

The controller selects knowledge sources for activation, based on the contents of
the blackboard. By specifying different control structures, the developer can explore
different problem-solving strategies. The default control mechanism has two distinct
{unctions, inference generation and focus of atlention.

The primary contents of the blackboard are organized into one or more hierarchical
hypothesis structures. These structures are oriented toward particular parts of the
problemi. Each level in a hypothesis structure is integrated with levels above and
below by links joining hypothesis elements in the various levels. Links that represent
support from above are called ezpectation links; those representing support from below
are called reduction links. Hypothesis elements can be thought of as abstractions or
summarizations of lower level elements, and components of higher level ones.

A solution is built incrementally by rules that add or modify the hypothesis ele-
ments or relationships among them. Hypothesis formation is a process where the rules
do one of the following: interpret data at a lower level, instantiate a more general
model at a higher level, or generate expectations that must be verified by data.

Blackboard systems have been developed for a variety of applications including
speech and natural-language processing{22, 8], multi-sensor signal analysis[31], and
image understanding(17].

4.4 Planning Methods

Early Al work addressing the integration of information from multiple sources focused
on the task of locating objects in unregistered range and color images[11]. This
research resulted in a system that developed plans for locating specific objects based
on their expected appearance in each sensor modality (the information used was hue,
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saturation, intensity, surlace ortentation and extent, and reflectance at the wavelength
of the laser used in the range sensor) and its expected relation to other objects.

More recent work(36, 38, 37] has taken the view that planning itsellis an evidential
process. That 1s, a system does nol know for sure whal the outcome of using a
particular procedure in a plan will be, and can only estimale the likely outcome
based on evidence aboul the operation. This is particularly true of processes that
acquire information from the environment. The work uses evidential reasoning to
draw conclusions about which process to invoke next in a scene interpretation task.

4.5 Local/Global Methods

Information in an image is both local and global. Local information includes point
properties suclt as intensity and range and properties of small patches such as texture
and surface orientation. Global information may include facts such as several pixels
appear to be in a single line or that surface slope is constant over a wide area. It
is clear to vision researchers that being able to recognize such global concepts and
bring them to bear on the local computations would make the overall interpreta-
tion more robust. Unfortunately, detecting global similarities is quite expensive and,
furthermore, requires certain local determinations to be made first.

Relazation[19] methods provide a control architecture that introduces global infor-
mation into a local interpretation in an iterative manner. They do this by computing
local properties from a combination of current interpretations for a pixel and its imme-
diate neighbors. These local computations may be hoolean or probabilistic. A single
iteration involves performing local computations and updating at each pixel in the
image. A number of iterations are performed until the system “relaxes,” and further
changes will be minimal. Relaxation has been shown to be equivalent to constrained
optimization, and offers particular utility for enhancing certain image features.

Another method that attempts to bring global information to bear on local inter-
pretations is simulaied annealing[21]. In this approach, an energy function is defined
that is (typically) based on local interpretations and an overall, global interpretation.
In effect, the initial system of data is brought to a very high “temperature,” generat-
ing disorder in the possible Jocal interpretations. Very slowly, the system is “cooled”
and the energy of the system is reduced. This occurs by randomly selecting pixels
and making local changes in interpretation that reduce the overall energy. Changes
that will result in a slight increase in overall energy are made on a probabilistic basis,
wlhere the probability is a function of the system temperature — when the system is at
a high temperature, there is a greater likelihood that energy-increasing changes will
be permitted. What this means is that an interpretation of a pixel that leads to a local
energy minimum may yet be changed, allowing it to “pop” out ofthe local minimum
and continue seeking the true minimum. Over time, the system converges toward
interpretations that result in a minimal, ground energy state. Simulated annealing
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is being explored as a technique for computing sterco disparity in two images|1], and
for many other applications.

5 Summary and Conclusions

In common to all purposive activities is a continuing need for up-to-date environ-
mental inflormation. Directly perceived information is used to detect new events, to
monitor dynamic events, and to measure parameters of the environment. By exploit-
ing redundancy, a situation “mosaic” may be created from a diverse collection of
information sources each with a partial view of the situation. In addition, the combi-
nation of information from multiple sources will provide a means for overcoming the
imprecision, inaccuracy, and occasional errors inherent in most sensing processes. As
situations in which such activities occur become more complex, greater quantities and
greater diversity of information sources are typically needed. The integration of in-
formation by inference, is a fundamental process in intelligent systems —~ both natural
and artificial. In this brief survey, we have discussed a number of Al representations,
inference methods, and control strategies for inference procedures.
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