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Real-Time Reasoning:

The Monitoring and Control of Spacecraft Systems

Michael P. Georgefft
Australian Al Institute
1 Grattan Street
Carlton, Victoria 3053
Australia

Abstract

This paper describes research ! concerned with
automating the monitoring and control of space-
craft systems. In particular, the paper examines
the application of SR1's Procedural Reasoning Sys-
tem (PRS) to the handling of malfunctions in the
Reaction Control System (RCS) of NASA's space
shuttle. Unlike traditional monitoring and control
systemns, PRS is able to reason about and perform
complex tasks in a very flexible and robust man-
ner, somewhat in the manner of a human assis-
tant. Using various RCS malfunctions as exam-
ples (including sensor faults, leaking components,
multiple alarms, and regulator and jet failures), it
is shown how PRS manages to combine both goal-
directed reasoning and the ability to react rapidly
to unanticipated changes in its environment. In
conclusion, some important issues in the design
of PRS are reviewed and future enhancements are
indicated.

1 Introduction

As space missions increase in complexity and frequency, the
automation of mission operations grows more and mote crit-
jcal. Such operations include subsystem monitoring, preven-
tive maintenance, malfunction handling, fault isolation and
diagnosis, communications management, maintenance of life
support systems, power management, monitoring of experi-
ments, satellite servicing, payload deployment, orbital-vehicle
operations, orbital construction and assembly, and control of
extraterrestrial rovers. Automation of these tasks can be ex-
pected to improve mission productivity and safety, increase
versatility, Jessen dependence on ground systems, and reduce
demands for crew involvement in system control.

It is very important that any system designed to perform
these tasks be as flexible, robust, and interactive as possible.
At the minimum, it should be capable of responding to and
diagnosing abnormalities in a variety of configurations and
operational modes. It should be able to integrate information
from various parts of the space vehicle systems and recognize
potential problems prior to alarm limits being exceeded.
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The system should suggest and execute strategies for con-
taining damage and for making the system secure, without
losing critical diagnostic information. It should be able to
utilize standard malfunction handling procedures and take ac-
count of all the relevant factors that, in crisis situations. are
easily overlooked. False alarms and invalid parameter read-
ings should be detected, and alternative means for deducing
parameter values should be utilized where possible.

In parallel with efforts to contain damage and temporarily
reconfigure vehicle subsystems, the system should be able to
begin diagnosis of the problem and incrementally adjust re-
configuration strategies as diagnostic information is obtained.
The system should also be capable of communicating with
other systems to seek information, advise of critical condi-
tions, and avoid harmful interactions. Throughout this pro-
cess, the systemn should be continually reevaluating the state
of the space vehicle and should be capable of changing focus’
1o attend to more sericus problems should they occur.

Finally, the system should be able to explain the reasons
for any proposed course of action in terms that are familiar
to astronauts and mission controllers. 1t should be able to
graphically display the system schematics, the procedures it
is intending to execute, and the critical parameter values upon
which its judgment is based.

Achieving this kind of behavior is well bevond the capa-
bilities of conventional real-time systems. It requires, in con-
trast, mechanisms that can reason in a “rational” way about
the state of the space vehicle and the actions that need be
taken in any given situation. Moreover, the system should
be both goal directed and reactive. That is, while seeking to
attain specific goals, the system should also be able to react
appropriately to new situations in real time. In particular, it
should be able to completely alter focus and goal priorities as
circumstances change. In addition, the system should be able
to reflec! on its own reasoning processes. It should be able to
choose when to change goals, when to plan and when to act,
and how to use effectively its deductive capabilities.

A number of system architectures for handling some of
these aspects of real-time behavior have been recently pro-
posed e.g., [Firby, 1987; Kaelbling, 1987; Hayes-Roth, 1985].
Some of these approaches are evaluated elsewhere [Georgeff
and }ngrand, 1989; Georgefl and Lansky, 1987, Lafley et al.,
1988j.

The system to be discussed in the paper is called a Proce-
dural Reasoning System (PRS). It has been developed over
a number of years at SRI Internatiopal and has been re-
ported, in part, in previous publications [Georgeff and In-
grand, 1989; Georgefl and Ingrand, 1988; Georgeff, 1988;
Georgefl and Lansky, 1986a; Georgeff and Lansky, 1986b;
Georgeff and Lansky, 1987).
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Figure 1: Structure of the Procedural Reasoning System

2 Procedural Reasoning System

PRS is designed to be used as an embedded, real-time rea-
soning system. As shown in Figure 1, PRS consists of (1) a
database containing current beliefs or facts about the world;
(2) a set of current goals to be realized; (3} a set of plans, called
knowjedge areas (KAs), describing how certain sequences of
actions and tests may be performed to achieve given goals or
to react to particular situations; and (4) an intention siruc-
ture containing all KAs that have been chosen for execution.
An interpreler (or inference mechanism) manipulates these
components, selecting appropriate plans based on the sys-
tem’s beliefs and goals, placing those selected on the intention
structure, and executing them.

The system interacts with its environment, including other
systems, through its database (which acquires new beliefs in
response to changes in the environment) and through the ac-
tions that it performs as it carries out its intentions.

Goals and Beliefs

The beliefs of PRS provide information on the state of the
space vehicle systems and are represented in a first-order logic.
For example, the fact that a particular valve, v1 say, is closed
could be represented by the statemnent (position vi cl).

The goals of PRS are descriptions of desired tasks or behav-
iors. In the logic used by PRS, the goal to achieve a certain
condition C is written {! C); to test for the condition is writ-
ten {7 C); to wait until the condition is true is written (= C);
and to conclude that the condition is true is written (= C).
For example, the goal to close valve v1 could be represented
as (! (pesition v1 ¢l}, and to test for it being closed as
(? (position vi cl)).

Knowledge Areas

Knowledge about how to accomplish given goals or react to
certain situations is represented in PRS by declarative pro-
cedure specifications called Anowledge Areas (NAs) (see. for
example, Figure 10}. Each KA consists of a body, which de-
scribes the steps of the procedure, and an inrocation condi-
tion, which specifies under what situations the KA is useful
and applicable. Together, the invocation condition and hody
of a KA express a declarative fact about the resuits and util-
ity of performing certain sequences of actions under certain
conditions [Georgefl and Lansky, 1986a).

The body of a KA can be viewed as a plan or plan schema.
It is represented as a graph with one distinguished start node
and possibly multiple end nodes. The arcs in the graph are
labeled with the subgoals to be achieved in carrying out the
plan. Successful execution of a KA consists of achieving each
of the subgoals labeling a path from the start node to an
end node. This formalism provides a natural and eflicient
representation of plans involving any of the usual control con-
structs, including conditional selection, iteration, and recur-
sion.

The invocation condition contains a friggering part describ-
ing the ewenfs that must occur for the KA to be executed.
Usually, these events consist of the acquisition of some new
goals (in which case, the KA is invoked in a goal-directed
fashion) or some change in system beliefs (resulting in data-
directed or reactive invocation) and may involve both.

The set of KAs in a PRS application system not only con-
sists of procedural knowledge about a specific domain, but
also includes metalevel KAs; that is, information about the
manipulation of the beliefs, goals, and intentions of PRS itself.
For example, typical metalevel KAs encode various methods
for choosing among multiple applicable KAs, modifying and.
manipulating intentions, and computing the amount of rea-
soning that can be undertaken, given the real-time constraints
of the problem domain.

The Intention Structure

The intention structure contains all those tasks that the sys-
tem has chosen for execution, either immediately or at some
later time. These adopted tasks are called infentions. A sin-
gle intention consists of some initial KA together with all the
sub-KAs that are being used in attempting to successfully
execute that KA. It is directly analogous to a process in a
conventional programming system.

At any given moment, the intention structure may contain
a number of such intentions, some of which may be suspended
or deferred, some of which may be waiting for certain condi-
tions to hold prior to activation, and some of which may be
metalevel intentions for deciding among various alternative
courses of action.

For example, in handling a malfunction in a propulsion sys-
tem, PRS might have, at some instant, three tasks (intentions)
in the intention structure: one suspended while waiting for,
say, the fuel-tank pressure to decrease below some designated
threshold; another suspended after having just posted some
goal that is to be accomplished (such as interconnecting one
shuttle subsystem with another); and the third, a metaleve]
procedure, being executed to decide which way to accornplish
that goal.

Execution

Unless some new beliel or goal activates some new KA, PRS
will try to fulfill any intentions it has previously decided upon.
This results in focussed, goal-directed reasoning in which KAs
are expanded in a manner analogous to the execution of sub-
routines in procedural programming systems. But if some
important new fact or goal does become known, PRS will re-
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Figure 2: System Schematic for the RCS

assess its current intentions and perhaps choose to work on
something else. Thus, not all options that are considered by
PRS arise as a result of means-end reasoning. Changes in
the environment may lead to changes in the system goals or
beliefs, which in turn may result in the consideration of new
plans that are not means to any already intended end. PRS
is therefore able to change its focus completely and pursue
new goals when the situation warrants it. In many space op-
erations, this may happen quite frequently as emergencies of
various degrees of severity occur in the process of handling
other, less critical tasks.

Multiple Systems

In some applications, it is necessary to monitor and pro-
cess many sources of information at the same time. Because
of this, PRS was designed to allow several instantiations of
the basic system to run in parallel. Each PRS instantiation
has its own data base, goals, and KAs, and operates asyn-
chronously relative to other PRS instantiations, communicat-
ing with them by sending messages.

The system described above has been implemented on Sym-
bolics 3600 Series LISP, Sun Series 3, and Mac Ivory machines.
A more complete description of PRS can be found elsewhere
[Georgeff and Ingrand, 1989; Georgeff and Ingrand, 1988).

3 'The RCS Application

The system chosen for experimentation with PRS is the Reac-
tion Control System (RCS) of the space shuttle. The system
structure is depicted in the schematic of Figure 2 (left part).
One of the aims of our researth is to automate the malfune-
tion procedures for this subsystem. A sample malfunction
procedure is presented in Figure 3.

The RCS provides propulsive forces from a collection of jet
thrusters to control the attitude of the space shuttle. There
are three RCS modules, two aft and one forward. Each mod-
ule contains a collection of primary and vernier jets, a fuel
tank, an oxidizer tank, and two helium tanks, along with
associated feedlines, manifolds, and other supporting equip-
ment. Propellant flow, both fuel and oxidizer, is normally
maintained by pressurizing the propellant tanks with helium.
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Figure 3: A RCS Malfunction Procedure

The helium supply is fed to its associated propellant tank
through two redundant lines, designated A and B. The pres-
sure in the helium tanks is normally about 3000 ps; this is re-
duced to about 245 psi by regulators that are situated between
each helium tank and its corresponding propellant tank. A
number of pressure and temperature transducers are attached
at varjous parts of the system to allow monitoring.

Each RCS module receives all commands (both manual
and automatic) via the space shuttle flight computer soft-
ware. This software resides on five general purpose computers
(GPCs). Up to four of these computers contain redundant
sets of the Primary Avionics Software System (PASS) and
the fifth contains the software for the Backup Flight System
(BFS). All of the GPCs can provide information to the crew
by means of CRT displays.

The various valves in an RCS module are controlled from a
panel of switches and talkbacks (Figure 2, right part). Each
switch moves associated valves in both the fuel subsystem
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and the oxidizer subsystem.? Switches can be set to OPEN,
CLOSE, or GPC, the last providing the GPCs with control
of the valve position. The talkback provides feedback on the

- associated valve position. The talkback reading normally cor-
respontds with the associated switch position, except when the
switeh is in GPC; in this case, the talkback shows whichever
position the GPC puts the valve in. The talkbacks may not
correspond if a valve has jammed or if the control or feedback
circuit is faulty. I the valves in both the fuel and oxidizer
subsystems do not move in unison, because of some fault, the
talkback displays a barberpole.

As with most dynamic systems, transient faults are com-
mon. For example, in the process of changing switch posi-
tion, there will be a short time (about 2 seconds) when the
positions of the talkback and the switch will differ from one
another. This is because it takes this amount of time for the
actual valve to change its position. Furthermore, during this
transition, the talkback will also pass through the barberpole
position. Thus, a mismatched talkback and switch position or
a barberpole reading does not always indicate a system fault.

4 System Configuration

Two instances of PRS were set up to handle the RCS ap-
plication. One, called IRTERFACE, handles most of the low
level transducer readings, effector control and feedback, and
checks for faulty transducers and effectors. The other, called
somewhat misleadingly RCS, contains most of the high-level
malfunction procedures, much as they appear in the malfunc-
tion handling manuals for the shuttle. To test the system, a
stmulator for the actual RCS was constructed.

The complete system configuration is shown in Figure 4.
Each of these parts is described in the following sections.

4.1 The Simulator

During operation, the simulator sends transducer readings
and feedback from various eflectors (primarily valves) to
IRTERFACE and communicates alarm messages as they appear
on the shuttle system displays to RCS. The simulator, in turn,
responds appropriately to changes in valve switch positions as
requested by INTERFACE. The simulator can be set to model
a variety of fault conditicns, including misread transducers,
stuck valves, system leaks, and regulator failures.

A future implementation of the system will be connected
to the more sophisticated shuttle simulator used at Johnson
Space Center.

4.2 The RCS
The top-level PRS instantiation, RCS, contains most of the
malfunction handling procedures as they appear in the oper-

2Because the two propellant subsystems are identical, only one
system is represented in the left part of the figure.

ational manuals for the space shuttle. RCS takes an abstract
view of the domain: it deals in pressures and valve positions.
and does not know ahout transducers, switches, or talkbacks.
For example, whenever RCS needs Lo know the pressure in
a particular part of the system, it requests this information
from INTERFACE, which is expected to deduce the pressure
from its knowledge of transducer readings and transducer sta-
tus. Similarly, RCS will simply request that IRTERFACE moves
a valve to a certain position, and is not concerned how this
is achieved. In this way, RCS can represent the malfunction
handling procedures in a clean and easily understandable way,
without encumbering the procedures with various cross-checks
and other details.

4.3 The INTERFACE

The PRS instantiation INTERFACE handles all information
concerning transducer readings, valve switches, and valve
talkbacks. It handles requests from RCS for information on
the pressures in various parts of the system and for rates of
change of these values. Determination of this information can
require examination of a variety of transducers, as readings
depend on the status of individual transducers, their location
relative to the region whose pressure is to be measured, and
the connectivity of the system via open valves.

IRTERFACE also handles requests from RCS to change the
position of the valves in the RCS. This involves asking the
astronaut to change switch positions, and waiting for confir-
mation from the talkback.

While doing these tasks, INTERFACE is continually check-
ing for failures in any of the transducers or valve assemblies.
When it notices such failures, it will notify the astronaut or
mission controller and appropriately modily its procedures for
determining pressures or closing valves. It will also consider
the consequences of any failures, such as are prescribed in
various flight rules for the shuttle.

5 Sample Interactions

In this section, we examine different scenarios illustrating the
capabilities of PRS.

5.1

The following example illustrates the capacity of the system to
reason about more than one task at a time. Consider the situ-
ation where INTERFACE gets a request from RCS to close some
valve, say frcs-ox-tk-isol-12-valve (Forward RCS, OXi-
dizer TanK, one-two ISOLation VALVE). RCS achieves this by
sending INTERFACE the message (request RCS (!(positien
frcs-ox-tk-isol-12-valve cl))). Responding to this re-
quest, IRTERFACE calls a KA that, in turn, asks the astronaut
to place the switch corresponding to this valve in the closed
position (see Figure 5). Once the astronaut has done this,
INTERFACE will wait until the talkback shows the requested
position and will then advise RCS that the valve has indeed
been closed (Figure 5).

However, while this is taking place, IRTERFACE wil] also no-
tice that, just after the switch is moved to the closed positicn,
there is a mismatch with the talkback indicator (which will
still be showing open, because of the normal delay in the valve
starting to move). Furthermore, a fraction of a second later,
the talkback will move into the barberpole position, another
indication that things could be wrong with the valve.

Each of these events will trigger a KA and thus initiate exe-
cution of a task (intention) that seeks to confirm that the talk-
back moves to its correct position within a reasonable time;
Figure 6 shows the KA which monitors the barberpole posi-
tion. At this point, the system is dealing with three different
tasks, one responsible for answering the request, one checking
tbe miscomparison between the switch and the talkback, and

Changing Valve Position
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IHVYOCATION:

(zFRCT (REQUEST SASKER (I (POSITION $V $POS))))
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Figure 5: KA for Closing a Valve

one checking for the barberpole position. Each of these last
two tasks immediately suspend themselves (using the “wait-
until” (7 ) operator} while awaiting the specified condition to
become true.

For example, the task concerned with monitoring a talk-
back barberpole reading will suspend itself unti] either the
positions of both the switch and the talkback agree, or 10 sec-
onds elapses. When either of these conditions become true,
the task (intention) will awaken and proceed with the next
step. If the talkback is still in the barberpole positicn, the
astronaut or mission controller will be notified of the prob-
lem. Otherwise, the KA fails, and simply disappears from
the intention structure.

Notice that the KAs that respond to the request from RCS
to change the valve position, that monitor for possible switch
dilemmas, and that check the barberpole reading are all estab-
lished as different intentions at some stage during this process.
Various metalevel KAs must therefore be called, not only to
establish these intentions, but to decide which of the active
ones to work on next. ’

A typical state of the intention structure is shown in
Figure 7. It shows a number of intentions in the system
INTERFACE, ordered for execution as indicated by the arrows.
The intention labeled Meta Selector is a metalevel KA (Fig-
ure 8). The other intentions include two that are checking po-
tential switch problems (Switch Dilemma (Barberpole) and
Sewitch Dilemma (Closed)) and ome that is responding to
the request to close the valve (Open or Close Valve). The
metaleve] intention, in this case, is the one currently execut-
ing. Although not clear from the figure, it has just created
and ordered the new intentions resulting from the talkback
and the barberpole problems.

5.2 Handling Faulty Transducers

In this scenario, we show how two PRS agents cooperate and
control the execution of their intentions so as to handle faulty
transducers and the resulting false warning alarms.

We will assumne that transducer fres-ox-tk-out~p-zder
fails and remains jammed at a reading of 170 psi. This causes

a number of things to happen. First, it causes a low-pressure
alarm to be activated. This will will be noticed by the PRS in-
stantiation RCS, which will immediately respond to the alarm
by initiating execution of the KA {Pressurization Alarm"
(Propellant Tank)). This KA will, in turn, request a pres-
sure reading from INTERFACE to ensure that the alarm is valid.

While this is happening, INTERFACE by itself has noticed
that the two transducers on the oxidizer tank disagree with
one another (in this case, the other transducer is reading the
nominal value of 245 psi). This invokes a KA that attempts to
determine which of the two transducers is faulty. 1t does this
by first waiting a few seconds to ensure that the mismatch is
not simply a transient, and then testing to see if one of the
readings is outside normal limits. 1f so, it assumes this is the
faulty transducer; this is indeed the procedure used by astro-
nauts and mission controllers. Other KAs, capable of more
sophisticated acts such as checking the values of downstream
or upstream transducers, are used if there is no corresponding
transducer with which to do the cross-check.

Notice what could happen here if one is not careful. Having
more than one thing to do, INTERFACE could decide to service
the request for a pressure reading for the suspect tank. If it
does so, it will simply average the values of the two trans-
ducer readings (yilelding 207 psi) and advise RCS accordingly.
Clearly, this is not what we want to happen: any suspect
parameter readings should be attended to before servicing re-
quests that depend on them.

In the examples we have considered, it has been sufficient to
handle such problerns with a relatively simple priority scheme.
We first ascribe the property of being a so-called “safety han-
dler” to all those KAs that should be executed at the earliest
possible time, Then we design the metalevel KA that chooses
between potentially applicable KAs to order all safety han-
dlers for execution prior to other intentions. In the example
given above, the KA that detects the faulty transducer is a
safety handler, and thus is executed prior to servicing the re-
quest from RCS. When INTERFACE eventually gets around to
servicing the request from RCS, it disregards the faulty trans-
ducer reading and thus advises RCS that the pressure is 245
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IKVOCATION:
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Figure 6: KA for Monitoring Talkback in Barberpole

psi. RCS then determines that the alarm was activated in error
and that the pressure is within normal operating range.

Even with all this going on, other things are happening
within the INTERFACE system. For example, the fact that the
transducer is determined to be bad, together with the fact
that it is the very transducer that informs the shuttle com-
puters of overpressurization probiems, causes the invocation
of another KA. This KA refiects a flight rule that states that
overpressurization protection is lost while the transducer is
inoperative.

As before, metalevel KAs are invoked to determine which
KAs to adopt as intentions and how to order them on the in-
tention structure. The development of the intention structure
during this process is shown in Figure 9.

5.3 Failed Regulator

Let’s now consider the operation of the top-level PRS instan-
tiation, RCS. The case we first examine occurs when the reg-
ulator on the feed line between the helium tank and its asso-
ciated propellant tank fails. In this example, we will assume
that the fres—fu-he-tk-A-reg has failed. We will focus pri-
marily on RCS (INTERFACE is, of course, working away during
this process as discussed above).

The first thing that happens when the regulator fails is
that pressures throughout the fuel subsystem begin to rise.
When tbey exceed the upper limit of 300 psi, certain caution-
warning (cw) alarms are activated. These events trigger the
execution of a KA that attempts to confirm that the system
is indeed overpressurized.

Note that this process is more complicated than it first
appears. ‘The high transducer readings that gave rise to the
caution-warning alarm will also trigger KAs in the PRS sgys-
tem INTERFACE. These KAs will proceed to verify that the cor-

responding transducers are not faulty (as described in subsec-
tion 5.2 ); that is, that the reading of the transducers is indeed
accurate. While doing this, or after doing this, INTERFACE will
get a request from RCS to advise the latest pressure readings.
If INTERFACE is in the process of checking the transducers,
it will defer answering this request unti] it has completed its
evaluation of transducer status. But eventually it will return
tc answering the request and, in the case we are considering,
advise that the pressure is indeed above 300 psi.

On concluding that the system is overpressurized, another
KA (Overpressurized Propellant Tank) is activated and
this, eventually, concludes that the A regulator has failed (see
Figure 10). Note that this KA establishes subgoals to close
both the A valve and the B valve, as there are cases when
both are open. For the A valve, this involves a request to
INTERFACE as discussed above. However, for the B valve, the
system notices that the B valve is already closed. Thus, its
goal is directly achieved without the necessity to perform any
action or request,

The final goal of this KA activates another KA that opens
the valve of the alternate regulator (B). Having opened the
valve, it is desirable to then place it under the control of
the on-board computers. However, this cannot be done until
the pressure in the system drops below 300 psi, as otherwise
the GPC will automatically shut the valve again. Thus, the
malfunction handling procedures specify that the astronaut
should wait until this condition is achieved before proceeding
to place the valve switch in the GPC position. RCS achieves
this by asking INTERFACE to monitor the pressure and advise
it when it drops below 300 psi. While waiting for an answer,
the task is suspended, and RCS gets on with whatever else it
considers important.

When the pressure eventually drops below that threshold,



The Intention Graph is:

Switch Dilemma (Barberpole)
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Figure T: Intention Structure during Switch Operation
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Figure 8: The Metalevel KA Meta Selector

The Intention Graph is:
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Figure 9: Intention Structure Development




Overpressurized Propellant Tank

IHVDCATION:
(3FACT (OVERFRESSURIZED §TK $P-5YS))

(1 {(PCRITION $VA CL))

COHTERT:
(RND (*FACT {TYPE PROPELLRNI-TANK $TK)}

LFACT {PART-OF $RCS $P-SYS)) ¢! (PEEITION $VB CL))

tFACT {TYPE R-REGULATOR $REGA))

xFRCT {TYPE B-REGULATOR $REGE))

sFRCT (PART~DF $P-SYS $REGA) (T (7 (== 3PQSA SPOSED))

xFRCT (PARY~DF $P-SYS $REGB) o]

sFACT {ASSOCIATED-REGULATOR $VR $REGA) (7 (== $POSA OF) IS8 OR))

*FRET (ASSOCIRTED-RECULATOR $VB $REGB)

tFRCT (PDSITION SUA $POSA) - A $P058))

TFACT (PDSITION $VB $P0SB))) m 522

€1 (= $REC $RE )-;. /(- BREGC $RECE))
GOAL ACHIEVER?: 516 ,
T <1 CPRIHT-UARNING
(PRINT=WARHIMHG (FORTAT HIL
EFFECTS: (FORHAT HIL “Regulator im ~A r_y:tcn Talled|open® $P=5Y5))) *Regul atar in “A system Tailed open®
HIL . $P=-5v5)))
PROPERTIES: 518
{ (SRFETY-HANDLER T)) 317
{1 (TESTED |[{STATUS RECULRTORS $P-5Y5)))

DOCUNEHTATION:
*This fact-invoked KA {s used ¢=» (STATUS $RES] FAILED-OPEH))

when thare i3 an overpressurired systen,

The first thing is to close both regulstors.
Than, deternine which were

open and depending on the result,

call the appropriate

reprassurization procadure.”

520

1 (REPRESSURIZED

$TE $P-5YS))

Figure 10: KA for Overpressurized Propellant Tank

the task (intention) is awakened, and execution continued.
Thus, the valve switch is finally piaced in the GPC position
and the overpressurization problem resolved.

5.4 Isolating a System Leak

Let’s assume that there is a leak in the RCS. Usually, the
leak will cause a pressure drop in the system that will trigger
a caution-warning alarm. The KA that responds to this alarm
will first try to differentiate between a failed regulator and a
leak in the system. If it determines that the system has a
leak, it will then establish the goal to isolate that leak. This,
in turn, triggers another KA that first attempts to secure the
system This involves requesting that the astronauts close all
valves in the leaking system.

Again, the PRS system INTERFACE will, throughout each
process of closing a valve, check that the valve has indeed
closed and that the corresponding talkbacks are registering
closed.

As s00n as the system has been secured, PRS identifies the
leaking section by checking for decreasing pressure in each
section of the RCS in turn.

6 Conclusion

The experiments described above provided a severe and posi-
tive test of the system's ability to operate proficiently in real

time, to weigh alternative courses of action, to coordinate its
activities, and to modify its intentions in response to a contin-
uously changing environment. In addition, PRS met every cri-
terion outlined by Laffey et al. [1988] for evaluating real-time
reasoning systems: high performance, guaranteed response,
temporal reasoning capabilities, support for asynchronous in-
puts, interrupt handling, continuous operation, handling of
noisy (possibly inaccurate) data, and shift of focus of atten-
tion.

We believe that the following features of PRS played an
important role in achieving these results.

Procedural reasoning: The representation of procedural
knowledge using KAs is a very powerful way to describe the
actions and procedures that should be executed to accom-
plish specific goals or to respond to certain critical events.
One essential feature of the representation is that the ele-
ments of these procedures are described in terms of their be-
haviors rather than in terms of arbitrarily named actions or
subroutines, For example, to achieve the goal “close all af-
fected manifolds,” it is essential to be able to reason about
the intended set of manifolds and how the goal is then to be
achieved; a call to a specialized procedure for every variant of
this goal is simply too complex and too prone to error. Fur-
thermore, a descriptive (declarative) representation of goals
provides robustness as different procedures (KAs) can be used
to accomplish the goal depending on the mode of operation,



the availability of resources, or the time required to perform
the task. Moreover, because the purpose of each step in the
procedure is so represented, other processes can independently
decide how to achieve their own goals without thwarting that
plan; indeed, they may even decide to assisl.

Reactive and goal-directed reasoning: The capability
of being simultaneously data- and goal-driven is a critical fea-
ture of PRS. PRS provides goal-driven reasoning when explicit
goals must be achieved, such as closing a valve, or repressur-
izing a system. At the same time, the reactive capabilities
of PRS allow it to respond to critical events that occur, even
when PRS is itself attending to some other task. This ca-
pability of reacting to new events makes the system highly
adaptive 10 situation changes: anyv plan can be interrupted
and reconsidered in the light of new incoming information.

Real-time reasoning: One of the most important mea-
sures in real-time applications is reaction time; if events are
not handled in a timely fashion, the process can go out of
control. PRS has been designed so that such a guarantee can
be furnished. Although PRS can execute complex conditional
plans, the inference mechanism used in PRS guarantees that
any new event is noticed in a bounded time [Georgefl"and In-
grand, 1989; Georgefl and Ingrand, 1988]. While the system
is executing any procedure, it monitors new incoming events
and goals. Given that the real time behavior of the metalevel
KAs used in a PRS application can be analyzed, the user can
prove that his application can operate in real time: any new
event is taken care of in 2 bounded time.

Reasoning about multiple tasks: The intention struc-
ture used in PRS enables the system: to attend to more than
one task at a time. These multiple intentions are usually
tightly coupled and the order in which they are executed can
be very important. Some may require immediate execution
on the basis of urgency; others may have to be scheduled later
than others because they depend on the results produced by
the earlier tasks. Potential interactions among concurrently
executing intentions can alsc be critical in deciding the most
appropriate ordering of tasks. PRS provides the mechanisms
Lo examine and manipulate the intention structure directly;
the user can thus specify any kind of priority or scheduling
scheme desired.

Metalevel reasoning: The provision of metalevel KAs
allows the system to control its problem solving strategies in
arbitrarily sophisticated ways. These metalevel KAs {ollow
the same syntax and semantics as application KAs, except
that they deal with the control of the execution of PRS itself.
Thus one can write metalevel KAs that can reason efficiently
and effectively about the problem selving process being used.
For example, one can have a KA to control in which order
the applicable KAs are going to be executed. In the exam-
ple presented in the subsection 5.2, the metaleve] KA makes
sure that the system carries on the testing task before the
pressure update task, thus allowing the false alarm to be cor-
rectly recognized. Similarly, one can use metalevel KAs to
choose among different ways to perform a given task, or how
best to meet the real-time constraints of the domain given
information on the expected time required for task execution.

Distributed reasoning: PRS 1s designed for distributed
operations. Thus, different instances of PRS can he used in
any application that requires the cooperation of more than one
agent. The different PRS agents run asynchronously; their
activity is therefore unconstrained a priori by that of their
colleagues. A message passing mechanism is provided to make
possible communication between the different PRS agents as
well as with external modules such as simulators or monitors.

A number of critical research problems remain to be solved
before the system will be reliable enough for use in actual
space operations. The system is currently being extended to
cover all malfunction handling procedures and flight rules con-

cerning the RCS and is to be tested against the main shuttle
simulators at Johnson Space Center in future work.
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