Localized Search

Technical Note 476

November 30, 1989

By: Lode Missiaen
Artificial Intelligence Center
Computer and Information Sciences Division
and
National Fund for Scientific Research (Belgium)

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED

This research has been made possible in part by the National Science Foundation
under Grant JRI-8715972 and the National Aercnautics and Space Administration
under Contract NCC2-494. The views and conclusions contained in this paper
are those of the author and should not be interpreted as representative of the
official policies, either expressed or implied, of NSF, NASA, or the United States
Government.

SR ternationsl

e
7 7 TN

SRE

International

LA AV,
SN A

333 Ravenswood Ave. = Menlo Park, CA 94025
(415)326-6200 « TWX: 910-373-2046 & Telex: 334-486

Abstract

In this report, we describe the search algorithm of the GEMPLAN multiagent
planning system. The search algorithm is based upon the GEMPLAN domain
description and its localized constraint representation. The problem domain
is structured into regions of activity, and each region has its own set of local
constraints. The search is a constraint-satisfaction process; it tries to find a plan
in each region by satisfying the region’s constraints. Therefore, the search space
is subdivided into regional search trees. Unfortunately, these search trees cannot
be searched independently. However, the situation is much better than global
search because GEMPLAN’s constraint localization, together with the domain
structure, precisely define when the search in one region can affect another region,
and hence how control must shift from one search tree to another.

To avoid any confusion, this report does not describe GEMPLAN, but only
its generic localized search algorithm. We only explain and abstract features of
GEMPLAN on which this search algorithm is based. As a result, this algorithm
is applicable to any other constraint-satisfication problem with characteristics
similar to GEMPLAN.

Contents

1 Introduction * ' 4
2 Domain description 4
2.1 Terminology« o 0 i e e e
22 Example oL

3 Search Space

3.1 Regionalsearchtree 8
3.2 Incarpation e e e e e e e e e e e e 9
33 Branching 11

4 Overlap 12
41 Definition o e e e e e e e e e e e 12
4.2 Consistency o i i e e e e e e e e e 12
4.3 Consistency vs. satisfaction 15
44 Sharednodes @ i e e e e e 16

5 Shift fixes 17
51 Orderofsubregions 18
5.2 Applicationofashiftix 19

6 Implementation 21
6.1 searchomain e e e e e e e e e 23
6.1.1 searchdncarnaflont 23

6.12 applyfix i e 26

6.1.3 check.incarnations [P 29

6.14 Motivation. e e e 33

6.2 searchmode e e e 33
62.1 idofmode 34

6.22 planofmode. e 34

6.23 expandofmode 34
6.24 checkofnode 35
6.2.0 branchesofmode 36
6.2.6 fatherofmnode 37
6.2.7 subnodesofmode L. 37
6.2.8 incarnationofnode 37 .
6.2.9 sharednodesofnode 38
6.3 searchuserctl e 38
6.3.1 preparefix 39
632 Nodeguards., 40
6.3.3 Nodeselection. 41
6.3.4 Constraint and fix generation 42
6.4 searchincarnation. e 42
6.5 search fix e e e 43 .
6.6 gemfixoconstraint it e e 44
7 Extensions 47
7.1 Satisfaction e e e e 47
7.1.1 Recordingsatisfaction 47
7.1.2 How to achieve satisfaction. 48
7.2 Prolog implementation details L o o0, 49
7.21 Abstract datatypes. e e e 49
7.2.2 Transitiveclosures i it v et it e 51
723 Associationlists 52
7.24 Incarnationrevisited 52
8 Conclusion - 53

1 Introduction

This report describes the search algorithm of the multiagent planning system GEM-
PLAN [1] [2] [3] [4]- The search algorithm is based upon the GEMPLAN domain
description and its use of localized constraints. A GEM problem doinain is structured
into regions of activity with each region having its own set of local constraints. Basi-
cally, the search i1s a constraint-satisfaction process that tries to find a plan for each
region by satisfying the region’s constraints. _

In Section 2 we extract the concepts of a GEM domain description that are important
for the search and introduce our terminology. Section 3 describes the regional search
trees and the flow of control among these trees. Section 4 discusses the implications
of regional overlap, and how to deal with it. In Section 5, we study the details of
shifting control from a region to its subregions. Section 6 gives a detailed account
of the implementation of the search algorithm in Quintus Prolog. Finally, Section 7
reports on curreut and future extensions to the search algorithm.

To avoid any confusion, this report does not describe GEMPLAN, but only its generic
localized search algorithm. We only explain and abstract those features of GEMPLAN
upon which this search algorithm is based. As a result, this algorithm is applicable to
any other constraint satisfication problem with characteristics similar to GEMPLAN.

2 Domain description

This section explains the structuring of a problem into regions, and introduces some
of the terminology that will be used throughout the rest of the report. In the first
subsection, we describe these aspects, and in the second subsection, we illustrate them
with an example.

2.1 Terminology

A GEM domain is described as a collection of regions.! Regions are structured by the
relation partof(Region,SubRegion), which states that SubRegion is a direct component
of Region, called a subregion. Partof/2 must define a partial ordering among the
regions so that no circularities occur if we construct the transitive closure of partof/2.
Let us call this transitive closure t_partof/2. If t_partof(HRegion,LRegion) holds, then
LRegion 1s a lower-level region of HRegion, and conversely, HRegion is a higher-level
region of LRegion. There exists one region with a level higher than any other region:
-this region is called the global region.

Fach region has a set of constraints and fizes associated with it. In GEMPLAN these
constraints are GEM-constraints expressed in first-order modal temporal logic. For
each type of GEM-constraint, several alternative methods exist to satisfy a violated
constraint of that type; such a method is called a GEM-fiz.? The search algorithm is
based on some of the properties of regional GEM-fixes and -constraints, which we will
describe later. A full account of the GEM-fixes and -constraints is not needed for the
purposes of this report; it is enough to know that a constraint in a given region imposes
both temporal relations among events and properties that have to hold at certain times,
and that a fix introduces new events to establish properties, orders events to satisfy
temporal requirements, and binds variables. A local plan of a given region consists of
the events that occur in that region, together with the relations among these events,
and also the relations among events of different subregions and of the region itself.> A
local plan of a region is satisfied if all the constraints of that region are satisfied by
the plan. A regional plan of a region: consists of its local plan, together with all the
regional plans of its subregions, which are called subplans. A regional plan is satisfied
if its local plan and all its subplans are satisfied. The regional plan of the global region
is called the global plan.

The search will be based on the following important property of fixes and constraints:

1GEM makes a distinction between two types of regions, elements and groups. An accessibility
relation defines how elements and groups can affect each other. The search algorithm itself does not
rely on this distinctjon and treats both elements and groups as regions. However, test for accessibil-
ity between these regions occur within GEMPLAN’s constraint satisfaction algorithms, which then
provide the search algorithm with appropriate control flow information.

2We prefix fixr with GEM because there is also a search fiz, which is related to but quite distinctive
from a GEM-fiz. We use simply fiz when the meaning is clear from the context. The term consiraint
can be used unambiguously.

3A plan also contains variable bindings.

If a fix changes a local plan of a given region, then only constraints in the
given region and constraints in the next-higher-level regions can possibly
be influenced directly.

Let us call this property search consiraint localizalion.®

What does the search consist of 7 The search has to find a satisfied global plan. Be-
cause of search constraint localization, finding a satisfied global plan cannot solely be
achieved by searching the regions independently. However, search constraint localiza-
tion together with the partof/2 relation define precisely when the search in one region
can affect another region, and hence how the search control has to shift from one region
to another. In fact, the search constraint localization ensures that subplans are unaf-
fected by fixes at the local plan of a given region, and therefore the search constraint
localization hints for a bottom-up construction of a regional plan. As we will see in
the following sections, the search will be mainly local, and therefore we call it localized
search.

2.2 Example

In Figure 1, a problem domain is represented. A is the global region, with B and C as
its subregions. D is a subregion of C, but not of A. Clearly, D is of a level lower than
both C and A. From the search constraint localization property, we derive that local
changes in D will possibly affect only the constraints in I and C directly, but not in
A and B. Similar conclusions can be made for the other regions.

The event e; belongs to A; the events e; and e; belong to B; e4 belongs to C; and
es belongs to D. The arrow — represents the temporal precedence relation among
events. The relation e; — ¢, belongs to the local plan of A because e; belongs to the
subregion B. Similarly, e — e4 belongs to the local plan of A, and e — e4 belongs
to the local plan of C. In Figure 1, the local plans of the regions are

A: { €31, €3 —* €3, €3 — 64]'

B: { €3, €3, — €3 }

4 Search constraint localization should not be confused with constraint localization defined in GEM.
The main semantic purpose of constraint localization is to limit the scope of constraints. As a result,
constraints can be checked and fixed more efficiently. This naturally led to the notion of localized
seerch.

B C partof(A, B)

partof(A, C)
7 partof(C, D)

Figure 1: Problem domain

C: {es, 65— ¢4}
DZ{65}.

Constraints in a region can refer only to their own local plan. However, constraints
in a region can be affected by changes in the plans of its subregions. For example,
if an event e is added to B and a constraint in A states that e; — eg, then this
constraint in A is violated because of a change in B. Moreover, changes in the local
plan of a region can change the local plans of its subregions if relations are transitive.
For example, suppose in Figure 1 that e3 — e; was not present and e; —+ e; was
added to the local plan of A. Because — is transitive, e —+ €5 must be added to the
local plan of B.> However, the search constraint localization requires that this should
not affect the constraints of the subregion B.

How the search flows from one region to another in this example is illustrated in Figure 2
and is the subject of the next section.

5In GEMPLAN this is true because adding temporal relations never violates constraints; only
adding events does. GEMPLAN’s constraint algorithms make sure any execution will be correct, and
adding — limits only the possible executions.

3 Search Space

In this section we introduce the basic data structures and describe how the search
operates on them. In the first section, we associate a regional search trec with each
region in the problem domain. In the second section, we explain how an incernation
limits the search space within a regional search tree. Finally, we describe how search
fizes account for branching.

3.1 Regional search tree

We associate a regional search tree with every region in the problem domain. Each
node in this tree represents a unique regional plan of that region. Except for the root
node of the tree, every node is derived from a father node through the application of
a search fiz. At this point, we make a distinction between two types of search fixes:
a local fiz and a shift fiz. The local fix affects only the local plan of the father node
to obtain a new son node. The shift fix affects the regional plan of the father node by
constructing new subplans, i.e. by searching for new nodes in the subregional search
trees; these nodes then become subnodes of the father node to obtain the son node.
This implies that the search has direct access only to the region of the current search
node and to its subregions: In a given node, there can be at most one subnode for
every subregion. '

Figure 2 represents these notions graphically and refers to the domain example of
Figure 1. In the regional search tree of A, @, and ¢; are obtained from the root
node ag via local fixes I; and L;. The node @, is derived via a shift fix S,. 5; shifts
control to the subregional trees of B and C. In B we find 5, via the local fix L3, and
in C we find ¢; via the shift fix S;; both & and ¢; become subnodes of a3, represented

as a3(b,¢). ¢ contains d; as its subnode, obtained in the subregion D of C via the
local fix Ly:

In general, at any node, many alternative fixes will be available which account for the
branching in the regional search trees. Because of this branching, a shift fix can be
iried over and over until the corresponding subregional trees are exhausted. How this
process can be controlled is the subject of the next section.

A B C D
L Lz La| 52| L4
S |

Figure 2: Regional search trees

3.2 Incarnation

As we have seen in Section 2, a plan consists of events and relations among these events.
Plans are the objects upon which GEM-fixes and -constraints act. A local search fix
corresponds to a local GEM-fiz, and a shift search fix corresponds to a foreign GEM-fiz.
We use the following properties of GEM-fixes: “

A local GEM-fix changes only the local plan of a region.

A foreign GEM-fix can change the local plan and the local subplans of a
region.

A simple situation is depicted in Figure 3, and its corresponding search trees in Figure 4.

In the global region A, we perform a local fix L; to obtain a;. At that node, a shift
fix Sy triggers the search in B. However, before the search in region B can start, a
root node by is generated. Hence, this operation is called a generate operation. The
plan of b, corresponds to the initial local plan of B. The information to generate a
root node for B is contained in the foreign GEM-fix that corresponds to 5;. In B, a
local fix produces 8. The search stops at b; and control is returned to the regional

10

B partof(A, B).

Figure 3: Simple domain

Global Region A Subregion B

l penarate
4 ™

Figure 4: Incarnations of a regional search tree

11

tree of A.% In A, S; is complete and results in a; with b; as its subnode. At a; a local
fix produces az; b; remains the subnode of 3. At a3, the shift fix S, tries to find a
new subnode in B. However, before the search can restart in B, a new son node b5 is
derived from b;, possibly by adding new events and relations to the local plan of ;.
This derivation is called an incarnate operation, as opposed to the generate operation;
subregion B is reincarnated as I,. The information to perform an incarnate operation
1s contained in the foreign GEM-fix that corresponds to S,. At by, a local fix gives b;.
In A, S, is completed and results in a4 with a new subnode b;.

As this example shows, every time a generate or an incarnate operation is performed, a
new subtree is created. Such a subtree of a regional search tree is called an incarnation
of the region. In B, we have two incarnations, I; and I, which have as root nodes
respectively by and b,.7

The partitioning of a regional search tree into incarnations reduces thie search space
when a shift fix is retried. When a shift fix is retried, it only makes sense to search for
an alternative solution node within the same incarnation that was created when the
shift fix was applied for the first time. We call this first application of a shift search
fix a new shift search fiz and call any subsequent retrial a retry shift search fiz. If, as
is shown in Figure 4, control goes back to a3, and S, is retried to find an alternative
subplan for region B, indicated by E,, then the search in B for a new node b, is
constrained to the same incarnation I; that was initiated by the new shift fix S;. The
global region A has only one incarnation which equals the whole search tree; we call
this incarnation the global incarnation.

A new shift fix can generate and incarnate multiple incarnations for different sub-

regions. In Section 5, we explain the details of applying and retrying such complex
shift fixes.

3.3 Branching

The first source of branching in a regional search tree follows from the shift fixes which
can be retried. However, retry shift fixes were possible only as a result of branching
itself, and hence there must be a basic reason for branching. Every node has a unique

®Why the search stops at b, is not important in this discussion and will be explained much later
in Section 6.3,

7In Section 4, we will see that the incarnations do not completely partition all of the nodes of the
search space because some nodes do not belong to any incarnation.

12

plan, and for that plan any of the regional constraints can be checked. This checking
discovers bugs in the plan. These bugs trigger GEM-fixes that might be tried to solve
these bugs. There can be multiple fixes for each constraint as well as multiple ways to
apply the same fix.

4 Overlap

In this section we discuss the problem of overlapping regions, and describe how this
problem complicates the search considerably. In the first section, we define overlap. In
the second section, we explain how overlap demands a special mechanism to maintain
consistency. In Section 4.3, we show there is a trade-off between consistency and
satisfaction. Finally, we introduce a data structure to represent consistency.

4.1 Definition

Overlap between two regions is defined as follows:

overlap(R1, R2):- t_partof(R1, Shared },
t_partof(R2, Shared),
R1\==R2.

In words, two different regions R1 and R2 overlap if there is a region, Shared, at a level
lower than both R1 and R2. The region Shared is called a shared region.

In the regional structure of Figure 5, the partof/2 relation determines that region D is
a subregion of both B and C and therefore is shared by B and C. As a result, every
plan in D is a subplan of both B and C.

4.2 Consistency

A search node is inconsistent if (1) it has different lower-level nodes for the same region
or (2) if it has a lower level node for a shared region that is not present on all paths
from the given node to that shared region; these paths are constructed via the subnodes
with the partof/2 relation. If there is no overlap then all nodes are guaranteed to be
consistent. However, in the case of overlap, a special mechanism is needed to maintain
consistency.

13

C partof(A, B).

partof(A, C).

B partof(B, D).
D partof(C, D).

Figure 5: Domain with overlapping regions

Figure 6 represents part of the search trees for Figure 5. At a certain point during the
search, we have node a; in A, b, in B, ¢ in C, and d, in D, where d, is a subnode
of both &; and ¢;, and 5 and ¢; are subnodes of ;. A performs a shift fix 5; to B
creating a new incarnation with root node b;(d;). At b, a shift fix S; to D is performed,
creating a new incarnation for D with root node d;. Searching this incarnation gives
da. This results in an new node b3 with d; as its subnode. Control goes back to A to
complete S;. Subnode b, is replaced by b; found in B. However, ¢;(d;) can no longer
be included as a subnode of a;, otherwise a; would have two different lower-level nodes,
dy and dz, for the shared region D. Therefore, c; is added to C and, together with bs,
is included as as subnode of a,. The construction of ¢; is called a completion operation,
and we associate a complete search fiz Cy with it. This completion forces the search to
follow consistent paths if the search shifts from A to C and from C to D. Thus, after
a shift fix is performed at a node, new subnodes explicitly calculated by the shift fix
are added to the node, and the other subnodes of the node are completed.

Moreover, a completion operation can even introduce new subnodes. Figure 7 and its
search trees in Figure 8 illustrate this. C is a subregion of B but also of A, and B
is subregion of A. Hence, C is a region shared by A and B, and therefore A and B
overlap. A performs a shift fix 51 to B, and B performs a shift fix S; to C. In C, ¢; is
found, and in B, b;(¢) is found. To obtain a, in A, we include the explicitly calculated
subnode b;, but completion also must include the indirectly created subnode ¢, as a
subnode of a;. In this case, no complete search fix is performed during completion.
The mechanism described implies that a completion operation will create at most one
complete fix in every subregion.

14

Figure 6: Search trees for domain with overlapping regions

B partof(A, B).
partof(A, C).
partof(B, C)

Figure 7: New subnodes by completion

15

l ganerate i generate

i) (i

S1 S2
" J : L

Figure 8: Search trees

The son nodes that result from complete fixes do not belong to any incarnation, and
hence they will never be selected as search nodes, as we can explain with the example
in Figure 6. There are only two ways to shift control back to region C: via a retry
shift fix of S; at a; or via a new shift fix at a;. In the case of a retry, the previous
application of S; is no longer valid, and hence the complete fix C; that originated from
S) 1s no longer valid. Therefore, ¢; should not belong to incarnation I;. In the case
of a new shift fix, a new incarnation will be created, together with a root node for
that incarnation. That root node will have ¢; as its father node, but ¢; should not be
included in this new incarnation.

Finally, completion operations are performed during the application of a shift fix that
generates and incarnates multiple regions, some of which can be shared by others. We
postpone the explanation of this mechanism to Section 5.

4.3 Consistency vs. satisfaction

So far, we have not explained why the search stops at a node in an incarnation. We
shall describe that in full detail in Section 6.3. One obvious criterion is to stop when
a node is satisfled. A node is satisfied if two conditions hold:

1. The local plan of that node satisfies the regional constraints

16

2. All of its subnodes are satisfied .

The search constraint localization property suggests that if shift fixes produce satisfied
subnodes, then a node is satisfied if its own constraints are satisfied. Unfortunately,
the condition of this statement does not hold in general; it holds only if there is no
regional overlap, that is, if the regional structure is hierarchical. In Figure 6, the plan
of node a; might satisfy all constraints of A, but it may well be that the completed
node ¢; is no longer satisfied. The replacement of the subnode d, by subnode dsz in
¢ can introduce bugs in the regional constraints of C. The definition of a local plan
in Section 2.1 implies that regional constraints can refer only to events and relations
in the local plan of a region. However, relations of a region can hold among events of
that region and its subregions, and among events of different subregions. Therefore,
the replacement or addition of a subnode in a given node, can introduce bugs in the
local plan of that node. For example; suppose that ds contains an event get® that is not
contained in d;. Suppose the local plan of ¢y contains an event provide, and that there
is a constraint in C that states that provide must happen before get. This constraint
is satisfied in ¢;(d,) but violated in ¢;(d3) because there is no temporal relation in the
local plan of ¢, that orders the event provide before get. As a result, the shift fix 5; at
a, introduces a subnode ¢; in @, that is not satisfied. If there were no overlap, then all
subnodes produced by shift fixes would be satisfied. However, in the case of overlap,
subnodes may in general be inconsistent and constraint satisfaction cannot be assured.
Satisfaction is fairly easy to deal with, and therefore completion is always performed so
that consistency is maintained throughout the search. A straightforward mechanism
to deal with this satisfaction problem will be explained in Section 7.1.

4.4 Shared nodes

In this section we introduce a representation for consistency of a node. We define the
shared nodes of a node as the set of its shared subnodes together with the shared nodes
of its subnodes. If a node has no subnodes, then its shared nodes are empty. Every
time a shift fix is performed, either a new shift fix or a retry fix, a new set of shared
nodes is obtained. If this set differs from the shared nodes of the father, the new son
node must be completed. Moreover, the difference between the old and the new set
of shared nodes provides the necessary information on how the completion has to be

8In general, events are parameterized with times and objects.

17

performed. A set of shared nodes can contain at the most one node {or every shared
region.

In Figure 6, node a; will have {d;} as its set of shared nodes. During the application
of 81, this set will change to {d;}. Comparing these two sets tells us that the shared
node d; changed to ds;. Since d; is not a subnode of a;, d; must be a shared node of
one of its subnodes. This can be determined statically from the domain structure (see
also 7.2.2). In this case, we find that d; is shared by ¢, and therefore the completion
must be applied recursively to the subnode ¢; with respect to the change d; ~ da.
At ¢; we find that d; is 2 subnode, and therefore the complete fix C) replaces it by
ds. - In Figure 8 the situation is a little different. The set of shared nodes of ag is
empty. During the application of S;, ¢; is added to the set of shared nodes. Now, the
comparison shows that ¢; is a new shared node of a,. Since C is a subregion of A, ¢
is added as a new subnode of a,, which performs the completion in one step.

From the examples we derive the following completion algorithm. First, we replace
or add the subnodes that were explicitly calculated by the shift fix: in Figure 6, b
is such a subnode. The application of a shift fix guarantees that these subnodes are
consistent and hence that they need no further attention for completion. A shift fix
will always transform the set of shared nodes at a given node, into a new set. This
new set of shared nodes will also be consistent. We compare these two sets and obtain
a set of replacements and a set of new shared nodes. Every member of these sets has
a unique region associated with it. No two members have the same region. Next, we
take the replacements and new shared nodes whose region is a subregion of the given
node, and respectively replace or add them as subnodes. Finally, we complete the
remaining subnodes, i.e. the subnodes that were not added or replaced, with respect
to the set of replacements and the set of new shared nodes. We cannot remove the
members from these sets that were already replaced or added as subnodes because
partof/2 defines a partial order and not a total order. As a result, théy might still be
needed in the completion at lower levels. The completion of the rema.ining subnodes
is done recursively and adds complete fixes. If there are no remammg subnodes, the
cornpletion stops.

5 Shift fixes

The shift fixes are the most complex search fixes. In this section we study the semantics
of shift fixes and their application.

18

generate generate

._
Sq
"

~ —

Figure 9: Search trees

5.1 Order of subregions

As we saw in Section 3, there are two types of shift fixes: the new shift fix and the
retry shift fix. In general, both shift control to multiple subregional search trees. The
order in which these subregional trees are explored is important. We illustrate this
in Figure 9, which corresponds to the domain in Figure 7. At a; we perform a new
shift fix S to both B and C. This is possible, since both B and C are subregions of
A. C is explored first, ¢ is generated, and some local searching results in ¢;. Next,
we explore B. The root node b is generated. b, is not consistent as a result of the
previous search in its subregion C. Therefore, by is replaced by a new root node b (¢,)
that contains ¢; as its subnode.® Local search in B gives b;. In A, S; results in a4
without a completion operation. In Figure 10, subregions are visited in the reverse
order, first B and then C. First, from the generated root node 4, we perform a local
fix and obtain ¥ . Next, we search C-and obtain ¢;. As explained in Section 4.2, before
a) is constructed, a completion operation is performed which applied a complete fix at
b] to obtain ¥(c;). In general, the plan constructed via constraint satisfaction at
will be different from that at b, and hence a, will be different from a}. This shows
that the order in which the subregions of a shift fix are visited must be specified to
determine its precise meaning. '

9This completion operation during the application of a shift fix was mentioned at the end of
Section 4.2. ' :

19

I genearate

Figure 10: Search trees

‘From the above examples, we learn that, in general, completion is performed at two
places: first, before we start the search in a new incarnation, we complete the root node
of this incarnation; second, after all of the subregions have been visited, we complete
all of the subnodes that were found. In general, completion can recursively affect
lower-level search nodes. '

5.2 Application of a shift fix

In Section 4.4 we saw that consistency is maintained with respect to a set of shared
nodes. Every search node has its set of shared nodes. When a new shift is performed
at a given node, we start with the shared nodes of that node. During the shift, we
incrementally update this set of shared nodes as we go from one incarnation to the
next, and use this current set of shared nodes to complete the root node. After all
of the subregions have been searched, the subnodes are completed with respect to the
final set of shared nodes.® These final shared nodes become the new shared nodes of

Y The completion algorithm explained in Section 4.4 was based on the assumption that the caleu-
lated solution subnodes were consistent with respect to the new set of shared nodes.

20

the new son node that resulted from the new shift fix.

The application of a retry fix is more involved. A retry fix exists because the incar-
nations created by a (new) shift fix can be explored in multiple ways to find different
solutions. [Every new application of a retry fix will further explore these incarnations.
Hence, every retry fix will start from a previous stafe of these incarnations, obtained
by the last shift fix. As we saw in the previous section, these incarnations cannot be
searched 1ndependently Let us denote a sequence of incarnations as I,..., I,. These
incarnations correspond to the different subregions that were visited by the shlft fix. In
general, the incarnation I, depends upon the sequence I, ..., It_,. Therefore, if aretry
fix is applied starting from the sequence of incarnations obtained by the previous shift
fix, then we will first explore I,,, keeping the solutions already found in I1,...,I,—;. If
a new solution is found, I, will be in new state I, and the sequence I;,...,1,,, I} will
be kept for the next application of a retry fix. However, if I, is exhausted, and no new
solution is found, we reinstall the initial incarnation that was incarnated or generated
by the corresponding new shift fix, call it 2, and explore I,,_;. In general, a shift fix,
either a retry shift fix or a new shift fix, will be in a state of execution represented
by the sequence I,...,Ix, Ig,1,...,13. I is the incarnation currently being searched,;
either a solution is found, in which case we go forward to Ij,,, or I is exhausted, in
which case we reinstall I] and go back to J;_;. If ¥ = n and we must go forward, then -
we find a solution for the shift fix; 1f k = 1 and we must go back, then the shift fix
fails.

This application mechanism for shift fixes performs a depth-first, left-to-right search
in the complete search space of incarnations for the subregions in a shift fix. As
a result, it is enough to keep the information about the last applied shift fix. The
following information is stored at the node at which the shift fix can be retried. The
initial incarnations If and their root nodes ry are stored. These were incarnated or
generated by the shift fix, and are independent of each other; hence, this information
will remain the same for every application of a retry fix. The incarnations Ix and
their solution nodes s; are stored. These were found by the previous application of
the shift fix. We call such an incarnation a incarnation state. Finally, the set of
shared nodes SN, is stored. This was the current set of shared nodes when I? was
explored the last time. Whenever we have to go back to I, we reinstall SN, as the
current set of shared nodes. These three data structures together form a context:
context(I3(rx), Ix(st), SN.). Thus, what we keep at a node where a shift fix can be
retried is a sequence of contexts.

21

6 Implementation

In this section, we describe the implementation of the localized search. The imple-
mentation is in Quintus Prolog and uses Quintus’s module facility. We will specify the
modules and highlight some important implementation aspects. We assume that the
reader has an understanding of logic programming. This section is meant as a basic
explanation for those who want to integrate this search algorithm in their system and
tune the search. In addition, it gives an introduction to those who want to extend and
maintain the code, but eventually, these people will have to study the complete code
and its comments.

Figure 11 gives the dependency diagram of the modules. All data types are imple-
mented with terms: we make no use of the Prolog data base to represent data, and
hence operations on data types never cause side effects.

Search_main is the highest-level procedural module and implements the search algo-
rithm. This algorithm is generic, and a considerable amount of particular control and
heuristic tuning of the search is obtained from the predicates defined by the user in
search_userctl. The procedural modules search_main and search_userctl operate on dif-
ferent data types: seerch_node implements regional search trees, search_incernation
implements a search incarnation which groups nodes of a regional search tree, and
search_fiz abstracts the different search fixes that cause branching in the search trees.
Gem represents a collection of procedures and data types.)! First, it checks constraints
and applies methods to solve unsatisfied constraints in a plan. Second, it implements
GEM-fixes, GEM-constraints, plans, and the regional description of the problem. Gem
will not be explained in depth, because it is not really part of the search. Search_userctl
uses gem to construct the search fixes and check the constraints, and gem asks ques-
tions to search.node about the search space. Gem_fiz_constraint defines the interface
between the search and gem. Interface represents a group of modules that define a
graphical interface between the user and the entire system. Finally, there are some .
lower-level modules that are not represented in Figure 11, like queues, association lists,
etc. and which will not be discussed in this section.

'We do not capitalize gem to distinguish it from the GEM description language. Gem implements
the GEM-constraints and -fixes, the plan representation and the problem domain. However, gem is
not part of the search. In fact, it already existed before the present search algorithm was implemented.
Search_main and search.userct! make calls to functions of gem to modify plans.

22

search_fix

search_inc

search_userctl
gem_fix_constraint
-~ |
.
.
.

Figure 11: Module dependency diagra.m

23

search_node

6.1 search_main

This procedural module implements the search control. For that it uses other data
modules and the procedural module search_userctl. In this section, we outline the
high-level search algorithm. '

6.1.1 search_imcarnation

As explained in Section 3.2, the regional search at one level is limited within a given
incarnation of that region. We initialize the search, by setting up an initial incarnation
for the global region. The global region is the highest-level region of the problem
domain at hand. There will never be a shift fix to this global region, and hence, the
global incarnation will coincide with the complete global regional searchtree. All other
incarnations are created during the search, and overall, they constitute a subset of their
regional searchtree. One search step is performed at an incarnation as follows'?:

:- use_module(’search_incarnation.pl’, |
expunge.successors/3,
put_node.inc/3 |).

:- use_module(’search-node.pl’, | void node/1]).

:- use_module(’search_userctl.pl’, |
prepare fix/3, '
postpone_node/1,
put_and_select node/4,
prune.node/1,
satisfied _node/1,
select.node/3).

:- mode search_incarnation(+, +, —, —).

search.incarnation(Inc, Node, Inc, Node):-
satisfied_node(Node), I

search_incarnation(Inc, Node, NewlInc, NewNode):-
postpone_node{ Node, NewNode), !,

12The definitions presented here are slightly different from the actual code defined in search_main
because we eliminated the calls to the inierface that perform tracing. Also, we mention only the
imported predicates used in the predicate definitions being discussed.

24

put_node.inc(NewNode, Inc, NewInc).
searchincarnation(Inc, Node, NewInc, NewNode):-
prune_node(Node), },
expunge_successors(Inc, Node, ExpInc),
select_node(Explnc, NextNode, NextInc),
search_incarnation(Nextlnc, NextNode, NewInc, NewNode).
search_incarnation(Inc, Node, NewInc, SolNode):-
prepare.fix(Node, Fix, FixNode),
apply.fix(Fix, FixNode, Father, Son),
son_orfather(Inc, Father, Son, FixInc, PutNode),
put_and_select node(PutNode, Fixlnc, NextNode, NextInc),
search_incarnation(Nextinc, NextNode, NewInc, SolNode).

Intuitively, the predicate search.incarnation(Inc+, Node+, NewInc—, NewNode—)
tries to expand the regional searchtree starting from the node Node. The search is
performed within a given incarnation starting from a state Inc. Inc is a collection of
search nodes already visited by the search. The data type of Inc will be explained in
Section 6.4. Search_incarnation/4 will add at most one node to Inc, and it can remove
several nodes from Inc to obtain NewInc; NewlInc represents the new state of the search
incarnation after the search has been performed. Logically, Node is part of Inc, and
NewNode is part of Newlnc, but, for efficiency, Node does not belong to the incarnation
Inc. NewNode is called a solution node found in an incarnation that changed its state
from Inc to Newlnc. This predicate fails if no NewNode can be found.

The first two clauses are not recursive. They catch the simple cases corresponding to
the following conditions:

satisfied_node/1 Node is satisfied. However, this does not necessarily mean that the
regional plan of that node is satisfied, as we explained in 4.3. The search can
never be continued from this node within the same incarnation, and hence it is
not added to Inc. -

postpone_node/2 We postpone the search in the given incarnation at Node, and
replace it by NewNode. Later, the search should be able to continue from NewN-
ode, and hence we add it to Inc to obtain NewInc. NewNode may not be equal
to Node, so the search will not be postponed forever at Node in Inc. -

The third clause pruneé a N_od_é, ﬁ"om_ the regional searchtree. This means that the whole
subtree with root Node will not be considered any more. Therefore Nodeis not added to

25

Inc, and all successor nodes of Node are removed from Inc to obtain ExpInc. Then, we
select another Node from Explnc, NextNode, and continue the search from NextNode
within NextInc. Nextlnc is equal to Explnc without node NextNode: If no Node can
be selected from Explnc, e.g. because Explnc is exhausted, then select_node/3 fails,

and hence search_incarnation/4 fails. This the only way in which search_incarnation/4
can fail.

Finally, the last clause is the non-trivial one. Prepare_fix/3 investigates Node and pro-
duces a search fix Fix. It also changes Node to FixNode to reflect the investigation.
Prepare_fix/3 is specified in Section 6.3.1. Applyfix/5 is studied in detail in Subsec-
tion 6.1.2: It applies Fix, which changes FixNode to Father, and produces Son, the son
node of Father. The predicate son.or father/5 is defined as :

son.orfather(Inc, Node, Son, Inc, Node):-
void_node(Son), !. % RED CUT

son_or_father(Inc, Father, Son, NewInc, Son):-
put_node_in¢(Father, Inc, NewInc).

If Son is a void node, it is discarded, and we select Node. In that case, Inc doesn’t
change. The second clause puts Father in Inc to obtain Newlnc, and returns Son. The
call to put_and_select_node/4 selects the node from which the search has to continue:
in the case of a depth-first search strategy within an incarnation, the last visited node
FixNode is selected as NextNode, in which case NextInc equals FixInc!®; however,
the search can continue from any node NextNode from FixInc, and therefore, NextInc
equals FixInc to which FixNode is added and from which NextNode is deleted.

This high-level description of the search already reveals some important properties.
First, search.incarnation/4 is deterministic: this follows from the cuts and from the
determinism of its subgoals. The cuts are red', but not scarlet: the first call in the
body of the first three clauses acts as a guard, and logically they are mutual exclusive;
the last claiise has no such guard, and therefore the cuts are red.!® Determinism is
necessary to have full control over the search, and to allow for a general search strat-
egy. For example, the predicate pi'epa.re_ﬁx/ 3 logically could be indeterminate, because
multiple fixes can be prepared at a gwen -node. If prepa.re_ﬁx/ 3 were indeterminate,

13This is the current search strategy (Bee Sectlon 6.4).

14 Red cuts prune away solutions as well as proofs. Green cuts prune away proofs but no solutions.

13]f the last call had a guard, the cuts would be green. Because we abstract the node representation,
we cannot dispatch on tbe node parameter using Quintus’s first parameter mdexmg scheme, and
therefore green cuts would still be needed for efficiency.

26

it would not need a third parameter. If a fix failed, the search would backtrack to
preparefix and try another one. (The reader can try to modify the search in that
way. He will find that his algorithm degenerates into a depth-first search.) Second,
search_incarnation/4 is generic, and comprises all possible search strategies within an
incarnation. The particular strategy is determined by the imported predicates from
search_usercil. At the node level, preparefix/3 determines which branch to chose.
Al the incarnation level, put_and_select_node/4, select_node/3, and prune_node/1 de-
termine the flow of control among the nodes within an incarnation. Finally, at the
interincarnation level, postponenode/2 and satisfied-node/1 transfer control to the
next-higher-level incarnation. How we can go to a lower-level incarnation will be ex-
plained in the next subsection.

6.1.2 apply.fix
The definition for applyfix is as follows:

:- use.module(’search fix.pl’, |
fail_searchfix/1,
local searchfix/1,
new.shift_searchfix/1,
genandincs_of_searchfix/2,
retry_shift_searchfix/1,
retry.of_searchfix/2,
void searchfix/1).

:~ use_module(’search node.pl’, |
add_fail branch/3,
contexts_of retry/2,
sharednodes_of_context/2,
init_inc_of_context/2,
state_inc_of_context/2,
sharednodes_of_node/2,
voidnode/1]).

‘apply fix(Fix, Node, Father, Son):-
fail_searchfix(Fix), |, '
~ void-node(Son),
add fail_branch(Fix, Node, Father).

27

apply fix(Fix, Node, Node, Son):-
void_searchfix(Fix), !,
void.node(Son).
apply fix(Fix, Node, Father, Son):- .
local searchfix(Fix), !,
local _branch(Fix, Node, Father, Son).
apply fix(Fix, Node, Father, Son):-
new _shift_searchfix(Fix), !,
genandincs_of_searchfix(Fix, GenAndlIncs),
sharednodes_of node(Node, SharedNodes)},
make_incarnations(GenAndlIncs, InitIncs),
checkincarnations(InitIncs, RevContexts, SharedNodes, NewSharedNodes),
shift_branch(Fix, Node, RevContexts, NewSharedNodes, Father, Son).
apply fix(Fix, Node, Father, Son):-
retry_shift_searchfix(Fix), I,
retry_of_searchfix(Fix, Retry),
contexts_of retry(Retry, [LastContext| AccRevContexts]),
sharednodes_of_context(LastContext, SharedNodes),
init_inc.of_context(LastContext, LastInitInc),
state_inc_of context(LastContext, LastStatelnc),
acc_check.incs(LastStatelnc, LastInitine, [],
AccRevContexts, RevContexts,
SharedNodes, NewSharedNodes),
shift_branch(Fix, Node, RevContexts, NewSharedNodes, Father, Son).

Apply fix(Fix+, Node+, Father—, Son—) has the following meaning. The search fix
Fix is applied to the search node Node. The input node Node changes to Father, and
the application results in a child node Son of Father. The five clauses dispatch on
the type of fix. These types are defined in search_fix (Section 6.5); they are mutually
exclusive, and therefore the cuts are green. A very important invariant for the son
node Son is that the plan of this node is consistent with its shared nodes (see definition
of shared nodes of a node in Section 4.4). This guarantees that throughout the search,
every node will be consistent with its own set of shared nodes. '

The first clause corresponds to a failed fix. At first, it may seem strange that pre-
parefix/3 has prepared a fail fix.’® As we will see in Section 6.3, prepare_fix/3 is more

18In the actual implementation, prepare_fix has five parameters: two extra parameters are used for
tracing and are not presented here.

28

involved than just selecting a fix at a given node: in general, a GEM-fix is chosen and
applied to the plan, and a result search fix is returned. There is a clear distinction
between GEM-fixes and search fixes: GEM-fixes are applied to a plan, whereas search
fixes are applied to a search node. The application of a GEM-fix, which corresponds to
a call to the procedure fix_bugs/5 from prepare_fix/3, is abstracted in gem_fiz_constraini
(Section 6.6) and is defined in gem. Fail searchfix/1 corresponds to a failed GEM-fix
on the plan of the given node Node. Father is obtained from Node by adding the fix
as a fail branch. The son node Son is void. '

The second clause corresponds to a void fix, which means that no fix has been prepared
by preparefix/3. Again, this may seem strange at first, but it is not. As we will see
in Section 6.3, prepare_fix/3 does not only return a search fix, it also changes the
node from which the fix is prepared. A void search fix means that preparefix/3 has
manipulated the node, but that no search fix has been extracted, e.g. only constraints
have been checked at the node.!™ In this case, the search tree doesn’t change, and a
void son is returned. ‘

The third clause catches a local fix. Fix contains all of the information necessary to
calculate Father and Son and add them to the regional searchtree. The definition of
local.branch/4 is straightforward and is not presented here.

The fourth clause applies a new shift fix. Shift fixes were explained in Section 5.
GenAndlIncs is the sequence of generate and incarnate operations that constitute the
new shift fix prepared by prepare_fix/3. The elements of GenAndIncs are either of type
generate_foreign or incarnate_foreign and are abstracted in search.fiz. They contain all
of the information to set up the corresponding initial incarnations to which a shift will
be performed: make_incarnations{ +, —) is fairly straightforward and not presented
here. Check_incarnations/4 tries to find a sequence of solutions by searching the initial
incarnations, InitIncs, using SharedNodes as the initial set of shared nodes used for
completion. NewSharedNodes is the final set of shared nodes, and RevContexts is the
reversed sequence of contexts of the incarnations to which a shift has been performed.
This operation is rather involved and is the subject of the next section. Finally, a shift
branch is added to the search tree: shift_branch/6 transforms Node to Father using
Fix and RevContexts, which are both used to construct a retry shift fix. This retry
fix is added to Father as an alternative fix that can be tried if Father is revisited.
NewSharedNodes are the new shared nodes for Son, and the subnodes of Son are

17This is the case for the current implementation of prepare_fix/3. Constraints are checked via a
call to check_constraints/5 from prepare_fix/3: check_constraints/5 is abstracted in gem_fix_consiraini
(Section 6.6) and defined in gem.

29

constructed from the subnodes of Father (or Node) together with the solution nodes
found in the incarnation states of RevContexts. All of the subnodes are completed
with respect to NewSharedNodes before they are added as the subnodes of Son. This
completion operation and shift bla.nch/ 6, which calls this completion operation, are
not presented here.

Finally, the fifth clause applies a retry shift fix. Contexts_of_retry/2, sharednodes.-
of _context /2, init_inc_of_context/2, and state_inc_of_context/2 extract the information
from the retry fix necessary to start the search acc-check.incs/7. Acc_checkines/7
tries to find a new sequence of contexts for the incarnations of the shift fix, as will be
explained in the next subsection. Finally, a shift branch is added to the search tree, in
the same way as for the new shift fix.

6.1.3 check_incarnations

As we saw in Section 5, a great deal of information is needed to execute a shift fix and to
construct a retry fix from a previously applied shift fix. An initial incarnation, together
with its root node, is represented in the data structure init.inc. A incarnation state,
together with its solution node, is represented in state_inc. The data types initinc and
state_inc are abstracted in search_node. An init_inc and its corresponding state_inc,
together with the shared nodes at this incarnation, form a context. The contexts of
the icarnations of a shift fix form a component of a retry fix and are kept in reverse
order because our depth-first strategy will recheck the last incarnation first. Context
and retry are also abstracted in. search_node.

:- use_module(’search_node.pl’, |
sharednodes_of_context/2,
init_inc.of_context/2,
state_inc.of_context/2)

ch_eck_incainations([FirstInitInc| RestInitIncs], RevContexts,
SharedNodes, NewSharedNodes):-
acc_check_mc.s(FirstInitInc, FirstInitInc, RestImtIncs,’ 3
[, RevContexts, g
SharedNodes, NewSharedNodes).

: a.cc_check_incs(CurlIne, Curlnitlnc, RestInitIﬁcs,
AccRevContexts, RevContexts,

30

#

SharedNodes, NewSharedNodes):-
check.nc(Curlne, Statelnc, SharedNodes, AccSharedNodes), |,
sharednodes_of_context(Context, SharedNodes),
init_inc_of_context(Context, CurlnitInc),
state_inc_of_context(Context, Statelnc),
cont_acc_check.incs(RestInitIncs, [Context| AccRevContexts], RevContexts,
AccSharedNodes, NewSharedNodes).
acc_check incs(_OldInc, OldInitInc, RestInitIncs, -
[NewContext| AccRevContexts), RevContexts,
_0ldSharedNodes, NewSharedNodes):-
'
sharednodes_of_context(NewContext, SharedNodes),
init-inc_of_context(NewContext, InitInc),
state.inc.of_context{ NewContext, NewInc),
acccheck.incs(Newlnc, InitInc, [OldInitInc| RestInitIncs],
AccRevContexts, RevContexts,
SharedNodes, NewSharedNodes).
acc_check_incs(FirstInc, FirstInitInc, RestInitIncs,
(], fail check,
SharedNodes, SharedNodes).
cont.acc_check_incs([], RevContexts, RevContexts, SharedNodes, SharedNodes).
cont.acc_check incs([NextInitInc| RestInitIncs], AccRevContexts, RevContexts,
SharedNodes, NewSharedNodes):- '
acc_check incs(NextInitInc, NextInitInc, RestInitIncs,
AccRevContexts, RevContexts,
SharedNodes, NewSharedNodes).

The meaning of check.incarnations/4 follows from acc_check_incs/7, so we will explain
only the latter.”® The heading of acc_check_incs/7 is

acc-check incs(Curlne+, CurlnitIne+t, RestInitIncs+,
AccRevContexts+, RevContexts—, SharedNodes-+, NewSharedNodes—)

Curlnc is either a statedinc or an init-inc, and is the current incarnation under in-
vestigation. CurlnitInc is the init_inc that corresponds to Curlnc. RestInitIncs is a

183 This specification is imprecise and incomplete. A rigorous specification would take several pages.
The author believes this predicate can be better explained procedurally, rather than declaratively.

31

list of initial incarnations that remains to be checked in the order they appear in the
list. The accumulating list parameter AccRevContexts is the sequence of contexts in
reverse order constructed so far. SharedNodes is the accumulated set of shared nodes.
The list RevContexts is the final sequence of contexts. The tail of RevContexts corre-
sponds to AccRevContexts, but is not necessarily the same. This tail is preceded by
a context corresponding to CurlnitInc. The head list of RevContexts is constructed
from the incarnations of RestInitInc in reverse order. If no such solution can be found
for RevContexts, RevContexts will equal the constant fail_check.

The first clause tries to construct a (new) incarnation state Statelnc from Curlnc by
calling check_inc/4. As we will see, check_inc/4 may need SharedNodes for completion,
and transforms it into AccSharedNodes. Context is constructed, and accumulated
in AccRevContexts. In cont.acc_check.incs/5, either there are no remaining initial
incarnations, in which case a solution for RevContexts and SharedNodes is found, or the
first element of the remaining initial incarnations is installed as the current incarnation
under investigation. If check.inc/4 failed, the second clause of acc_check.incs/7 tries to
backtrack by reinstalling the first context of AccRevContext as the current incarnation
to be investigated. If no backtracking is possible, the third cla,use of acc_checkincs/7
returns fail_check as RevContexts.

Finally, let’s look at the definition of check_inc/4%.

:- use_module(’search_node.pl’, |
sharednodes_of node/2,
merge_sharednodes/3,
initinc/1,
state_inc/2,
node_ofinitinc/2,
incarnation_of_init.inc/2,
node_of state_inc/2,
incarnation_of state_inc/2]).

:- use.module(’search_userctl.pl’, [select-node/1 §).

check_inc(Inc, StateInc, SharedNodes, NewSharedNodes):-

19The actual definition is more complicated than the one presented here because we make a dis-
tinction between incarnations that are initially satisfied and those that need to be checked. This
mechanismn is mentioned in Section 6.6. For this reason, init_inc/1, state_inc/2, and add.sharednode/3
do not actually exist.

32

init_in¢(Inc), |,

node_of_init_inc(Inc, Node),

complete_root_node(Node, SharedNodes, CompNode),

incarnation_of.init.inc(Inc, Incarnation),

search_incarnation(Inca.rnatxon CompNode, NewIncarnatmn NewNode),

node_of state_inc(Statelnc, NewNode),

incarnation_of_state.inc(Statelnc, NewIncarnation),

sharednodes_of_node(NewNode, SubSharedNodes),

merge _sharednodes(SubSharedNodes, SharedNodes, TSharedNodes),

cond.include_sharednode(NewNode, TSharedNodes, NewShared Nodes).
check_inc(Inc, Statelnc, SharedNodes, NewSharedNodes):-

state_inc(Inc), !

incarnation.of_state_inc(Inc, Incarnation),

select_node(Incarnation, Node, TempIncarnation),

search.incarnation{ TempIncarnation, Node, NewIncarnation, NewNode)s

node_of_state_inc(Statelnc, NewNode), :

incarnation_of_state_inc(Statelnc, NewIncarnation),

sharednodes_of node(NewNode, SubSharedNodes),

merge_sharednodes(SubSharedNodes, SharedNodes, TSharedNodes),

cond.include_sharednode{ NewNode, TSharedNodes, NewSharedNodes).

The definition dispatches on the first parameter Inc, which is either an initial incarna-
tion or an incarnation state. In the first clause, the root node Node of Inc is completed
with respect to SharedNodes to obtain CompNode. This completion will put nodes
from SharedNodes into the subnodes of Node and complete the remaining subnodes of
Node with respect to SharedNodes. This operation is the same as the completion per-
formed in shift_branch/6. A recursive call to search_incarnation/4 tries to find a new
solution NewNode, If it is successful, i.e. if NewNode is not a fail node, Statelnc and
NewSharedNodes are constructed. Merge_sharednodes/3 puts the new nodes of Sub-
SharedNodes into SharedNodes, and NewNode is also included into NewSharedNodes
if it is a shared node. The second clause is similar to the first, except that a search
node is selected from the incarnation state, and therefore no completion is necessary.

33

6.1.4 Motivation

Why did we describe the high-level search control in such detail? First, in order to
give a complete definition of search_.incarnation/4, we had to refine to a level that
includes all recursive calls to search.incarnation/4. Second, the search must be very
well understood by someone who devises the module search_userct! for a particular
application. For example, let us consider the shift fixes. The precise mechanism of
check incarnations and acc_check_incarnations must be well understood, not only to
generate semnantically correct fixes, but also to generate efficient fixes by taking the
depth-first, left-to-right mechanism into account. We did not include the definitions
for the completion mechanism, because they do not matter for search_userctl.

6.2 search_node

Search_node implements the fundamental data type of the search, a node of a regional
searchtree. Nodes are created and modified during the search by search_main, modified
and consulted by search_userctl, and consulted by gem. Search_node implements all
node-related high-level predicates. The specification of these predicates is independent
of the particular node representation. These predicates will not be described here but
can be found in the declaration of the module itself.

The node term is defined as follows:

void_node(voidnode).
id_of_node(voidnode, Voidld }:- voidid{ VoidId).
id_of node(node(1d, _, , -, -, - -y -, =), Id }.

plan_of node(node(-, Plan, ., -, , -, -, -, -}, Plan).

expand._of node(node(, -, Expand, , -, -, -, -, -}, Expand).
check_of node(node{_, -, -, Check, _, ., _, -, -}, Check).
branches_of node(node(_, -, -, -, Branches, _, _, -,), Branches).
father_of node(node(-, -, -, -, -, Father, , _, .}, Father).

subnodes_of_node(node(_, _, -, -, -, -, Subnodes, .,), Subnodes).
incarnation_of_node(node(-, -, -, -, -, -, -, Incld,), IncId).
sharednodes_of_node(node(_, , ., -, -, -, -, -, SharedNodes), SharedNodes).

34

6.2.1 1d_of_node

Every node in the complete search space has a unique identifier associated with it.
However, this identifter is never used by the search and is only for the sake of gem.
The fact void.id/1 is defined in search.constants, which is not described in this report.

6.2.2 plan_of_node

Every node represents a unique plan. The actual plan representation is implemented
by gem. In fact, the plan information is never used by the search, only by gem.
However, the search will modify plans during the search, and therefore gem provides
two functions:

% replace_subplan(Plan+, SubPlan+, NewPlan—)
% replace.or_put_subplan(Plan+, SubPlan+, NewPlan—)

Intuitively, NewPlan is obtained from Plan by replacing or putting SubPlan in it.
However, gem represents plans using global data base facts, and as a result these
functions cause side effects.

6.2.3 expand_of node

This component contains all of the information upon which search_userct! bases its de-
cision how to continue the search at that node. The expand term has two components:

fixbugs_of_expand(expand(FixBugs, -}, FixBugs).
retrys_of_expand(expand(., Retrys), Retrys).

Fixbugs is a list of procedures that are still untried to satisfy constraints for the plan
of that node. The data type fixbug is a 4-term:"

gemconstraint_of fixbug(fixbug(GemConstraint, , -, _}, GemConstramt).
gemfixof fixbug(fixbug(-, GemFix, _, .}, GemFix).

bugs._of fixbug(fixbug(., -, Bugs, .}, Bugs).

solutions_of fixbug(fixbug(, -, -, Solutions), Solutions).

GemFix identifies a procedure to fix Bugs for the constraint GemConstraint. Solutions
represents different ways by which the given GemFix procedure can be tried to solve

35

the bugs. The particular representation of these four parameters is part of gem and
1s unknown to the search. The interface between gem and the search is specified in
gem_fiz_constraint.

Retrys is the list of shift fixes that have already been performed at that node and for
which alternative solutions might still be found. The data type retry is implemented
as a 2-term:

creatorfix_of vetry(retry(Fix,), Fix).
contexts_of retry(retry(-, Contexts), Contexts).

The creator fix of a retry is the new shift fix that originated this retry fix. Contexts is
a list with members of type context:

sharednodes_of_context(context(SharedNodes, _, .}, SharedNodes).
init_inc_of_context(context(_, InitInc,), InitInc).
state_inc_of_context(context(., -, StateInc), Statelnc).

A context was described in Section 6.1.3. The particular term structure of the types
init_inc and stateinc will not be described. It is enough to know that initinc has a
search incarnation and a search root node and that state_inc has a search incarnation
and a solution search node. These components are selected by node_of init.in¢/2, incar-
nation_of init_inc/2, node.of state inc¢/2, and incarnation.of state_inc/2 in the defini-
tion of checkinc/4 (Section 6.1.3). Both the incarnations of a state.inc and an init_inc
can only contain nodes that belong to a subregion of the given node, and because of
the partial ordering among regions, no circularities will occur in these components of
node.

6.2.4 check_of node
Check-of node has the following components:

satisfieds_of_check(check(Satisfieds, -, -, -}, Satisfieds).
visiteds_of_check(check(_, Visiteds, , .), Visiteds).
constraints_of check(check(_, _, Constraints, _), Constraints).
checkeds_of check(check(., -, ., Checkeds), Checkeds).

36

Satisfieds, Visiteds, and Checkeds are lists of constraints, and Constraints is a queue
of constraints.?? All of these constraints are associated with the region of the node.
Satisfieds are the constraints satisfied by the plan of the node; Visiteds are the con-
straints already checked, but not necessarily satisfied; Constraints is the queue of con-
straints waiting to be checked; and, finally, Checks are the constraints that were actu-
ally checked at this node. The particular representation of a constraint is part of gem
and is unknown to the search. The interface between gem and the search is specified in
gem_fizx_constraint. The following invariant is true of every node: Satisfieds, Visiteds,
and Constraints form a partition of the set of regional constraints. Checks is a subset
of the union of Visiteds and Satisfieds; every constraint of Check that is satisfied must
also belong to Satisfieds; and every constraint that has been checked at this node but is
not yet satisfied must belong to Visiteds. However, not all constraints of Visiteds were
actually checked at this node: some can be derived from the Visiteds component of the
father node through the partially affected mechanism, which will not be described here.
The component Checks, together with father_of node (Section 6.2.6), is necessary to
implement the following functions used by gem?!:

% check from_node(Node+4, GemConstraint+, GemPlan—)

% check_before node(Node+, GemConstraint+, GemPlan—)

% GemPlan is the plan of the closest ancestor node of Node at

% which GemConstraint was checked.

% If no such ancestor exists, then GemPlan is the empty list.

% The ancestors all belong to the same region, and

% hence it only makes sense if GemConstraint is a local constraint
% of the region to which Node belongs.

% In the case of check from.node, Node is itself mcluded in

% its ancestors; in the case of last_checked._before.node, it is not.

6.2.5 branches_of_node

Branches represents the methods that determine how the son nodes were obtained from
the given node. It is a 2-term of success branches and fail branches, which are both
lists:

empty_branches(branches([], [])).

20 We use the quene data type implemented in the Quintus package library{queues). This module
is implemented using difference lists, and therefore node is an incomplete data structure.
21'There are more functions implemented in search_node, similar to those specified here,

37

successes_of_branches(branches(Successes,), Successes).
fails_of_branches({ branches(_, Fails), Fails).

A successful branch corresponds to the application of a local fix, a new shift fix, or a
retry shift fix. However, a fail branch corresponds to a failure of such an application.
We explained how failure can occur in Section 6.1.2. Currently, a branch is equivalent
to the applied search fix. The search fixes are defined in search_fizx (Section 6.5).

6.2.6 father_of.node

Father is the link from the given node back to its father node. It is defined as:

void father(voidfather).
node_of father(father(Node, _), Node).
branch_of father(father(_, Branch), Branch).

If a node is the root node of a regional search tree, then its father is void as defined
by the fact voidfather/1. All other nodes have a compound father with a father node
and the branch that produced the given node. If the given node is a root node of an
incarnated incarnation, then the branch equals the incarnate_foreign that initiated this
incarnation. :

A search node only has a link to its father and not to its son nodes. Hence, we can
only trace a regional search tree bottom-up.

6.2.7 subnodes_of_node

Subnodes were explained in Section 3. They are implemented as an association list in
which the key is the region of the subnode and the value is the subnode itself.?2? A
subnode is of type node. A node can never be a subnode of one of its own subnodes,
and therefore the component subnodes will never become circular.

6.2.8 iIncarnation_of_node

This component represents the unique identifier of an incarnation. The data type
incarnation, which is defined in search_incarnation (Section 6.4), corresponds to the

22 Association lists are implemented in the module assoc.pl which is described in Section 7.2.3. This
is not the same module as the one defined in the Quintus package library(assoc). :

38

incarnation concept described in Section 3.2. An incarnation is a data structure serving
to group nodes and to limit the search. In fact, a node does not need to know to which
incarnation it belongs. Moreover, as we mentioned in Section 3.2, it is possible for
some nodes to belong to no incarnation. For such nodes, incarnation_of node becomes
ambiguous. The search never uses this information directly, but uses it only to derive
the region of a node via the function provided by gem?*:

% location_of_incid(Incld+, Region— } .

Only gem uses this component. However, the search guarantees only that location.-of -
incid/2 will transform this component to the unique region to which the node belongs.
In a nutshell, for the search, incarnation.of .node/2 acts as region_of .node/2.

6.2.9 sharednodes_of node

Sharednodes were explained in Section 4.4. A shared node of a node 1s either a shared
subnode or a shared node of one of its subnodes. They are implemented as an as-
sociation list in which the key is the region of the shared node and the value is the
shared node itself. A shared node is of type node. A node cannot belong to its own
set of shared nodes, and because of the partial ordering relation among regions, the
component shared nodes will never become circular.

6.3 search_userctl

This procedural module allows the user to fine tune the search. Who is the user? The
user is the designer of the fixes and constraints in gem for a given problem. S/he knows
the characteristics of these fixes and constraints for the given problem, and hence s/he
is the right person to determine the search control. We saw that the search algorithm
is generic, i.e. that many predicates were left undefined. These predicates must be
defined in search_userctl.

We overview the required predicates, give their specification, and for some, give an
example of how they can be defined. However, the deﬁmtlons are not fixed and are
meant to be changed by the designer. :

The following predicates are exported, and must be defined by the module:

23 The need for the unique identifier of an incarnation in gem is historical and is of no importance
here.

39

- module(search_userctl, |
prepare fix/3,
satisfied node/1,
postpone_node/2,
prune_node/1,
put.and_select_node/4,
select_node/3,
derive_check_and _fixbugs/5,
generate_gemconstraints/4 |).

6.3.1 prepare fix

The function of prepare fix/3 follows from the definition of search incarnation/4 (Sec-
tion 6.1.1). Preparefix(Node+, Fix—, NewNode—) investigates Node, and returns
a search fix Fix. NewNode is derived from Node and reflects the investigation: pre-
parefix/3 may only change the check and expand components of Node to obtain NewN-
ode. These components are explained in detail in Section 6.2. They record information
about the constraints and the fixes at that node. Logically, NewNode represents the
same node in the regional search tree as Node, and therefore other node components
may not be changed. Fix should be one of the types defined in search_fiz (Section 6.5).
The type is used to dispatch the clauses of apply_fix/4, as defined in Section 6.1.2.%
Prepare_fix/3 should never fail.

As an example we present the high-level definition of preparefix/3 currently used in

GEMPLAN:

:- use_module(’search node.pl’, [
expand._of node/2,
replace_expand /3,
check_of node/2,
replace_check/3]).

:- use.module(*search fix.pl’, [voidsearchfix/1]).

prepare fix{ Node, SearchFix, NewNode }:-
expand_of_ node{ Node, Expand),

34To add 2 new type of search fix, define this new type in search_fiz, extend the specification of
preparefix/3 in the obvious way, and add one clause to the definition of applyfix/4 in search_main.

40

explore. expa.nd(Node, Expand, Sea.rcth NewExpand), I
replace_expand(Node, NewExpand, NewNode).
prepare fix(Node, SearchFix, NewNode)
check. of.node(Node, Check),
expand .of node(Node, Expand),
~ explore_chieck(Node, Check, Expand, NewCheck, NewExpand),
replace_expand(Node, NewExpand, TempNode), ‘
repla,cé-check(TempNode, NewCheck, NewNode),
void searchfix(SearchFix).

This definition states that we first try to explore the expand component of Node.
The definition of explore.expand/4 is not presented here, and it is up to the user
to design it. In its current implementation, explore_expand/4 first tries to select a
retry shift fix. If there are no retry fixes at Node, it will investigate Node and, if
possible, generate either a local, a new shift, or a fail search fix, depending on the
result of the call to fix bugs/5 defined in gem. If there is no expand information in
Node, explore_expand/4 fails, and the second clause of prepare.fix/3 tries to explore the
check component of Node. Again, explore_check/5 should be defined by the user. In
the current implementation, explore_check/5 checks the remaining constraints at Node
in a circular strategy and produces expand information. The checking of a constraint
is performed by a call to check_constraints/4 defined in gem. In this case a void search
fix is returned.” An important requirement of preparefix/3 is that it should not
fail, or search.incarnation/4 will fail erroneously. This means that the node guards
in search_incarnation/4 should catch the nodes for which prepare_fix/3 logically would
fail. These node guard predicates are discussed next.

6.3.2 Node guards

The predicates satisfied node/1, postpone.node/2, and prune.node/1 are called as the
first predicate in the body of respectwely the first, second and third clauses of search_-
mca.rnatmn /4. The guards were specified in Sectlon 6.1.1. They must be defined by the
user in search_userctl. We expla.m how they are currently implemented in GEMPLAN

satisfied_node/1 It succeeds if a.Il constraints at the given node are satisfied by the
- plan at that node. This is determined by the check component of node via

5]t would make sense to explore NewExpand after Check has been explored. Not doing this allows
search_userctl to stop or postpone the search at the given node and shift attention to another node.
This can be interesting because explore.expand/4 can be expensive, e.g. fix.bugs/5.

41

a function provided by search.node, satisfied_check/1. Satisfied node(Node)
implies that the local plan of Node is satisfied, but not necessarily the regional
plan of Node.

postpone_node/2 Postpone(Node+, NewNode-) is defined to fail. This means that
GEMPLAN currently never postpones a node. In general, however, a NewNode
should be returned that will replace Node in the search incarnation for future
selection. NewNode should reflect the postpone decision at this node,?® e.g.
postponenode/2 could check some constraints and return a node that records
the bugs in these constraints to be fixed later. ‘

prunenode/1 We prune a node if there are unsatisfied constraints left for which
all fixes have been exhausted. In GEMPLAN it will never be possible to find a
satisfied node starting from this node, and therefore we discard the corresponding
search tree.

Prune_node/1 has an important side purpose of making memory space available for
garbage collection. You want to keep the search space small enough so that the set of
pages actively used fits into your workstation’s physical memory, otherwise the search
will perform very poorly. Prune_node/1 forces the search to remove the given node and
all of its successors from the current incarnation. The whole subtree with the pruned
node as root node becomes inaccessible by the rest of the regional search tree, because
there are only links from son nodes to their father, and not from a father node to its
child nodes, as we will see in Section 6.2. However, not all of the successor nodes of
the pruned node are available for garbage collection, because some of them can still be
subnodes and shared nodes of nodes in other regions.

6.3.3 Node selection

The predicates put.and_select_node/4 and select.node/3 determine the flow of con-
trol within a search incarnation. Their effect follows from the definition of search._-
incarnation/4 in Section 6.1.1. Currently, incarnations are implemented as stacks and
the search in an incarnation is depth first. Therefore, put_and select_node/4 simply
returns the given node and does not change the incarnation. Select_.node/3 calls se-
lect_node_inc/3 which returns the top node of the stack mca.matlon Select.node_inc/3
is defined in search_incarnation (Section 6.4).

26We come back to this point in Section 7.1.

42

6.3.4 Constraint and fix generation

The predicates derive_check_and_ fixbugs/5 and generate_gemconstraints/4 are called
at lower-level definitions of the search which were not explicitly presented in Sec-
tion 6.1. Derive_check_and_fixbugs/5 is called in local_.branch/4 and shift_branch/6 to
derive the check component and the expand component of the new son node. Gener-
ate.gemconstraints /4 is called in make_incarnations/2 to set up the constraints of the
root nodes of the initial incarnations.

derive.check_and_fixbugs(Plan+, Fix+, Node+, Check—, FixBugs—)

Fix is the search fix that is being applied to Node. Plan is the new plan that
corresponds to the application of Fix and is derived from the plan of Node. Check
is of data type check, which is a component type of node. It describes the state
of constraints at a given node. Check describes the initial state of constraints at
the son node being derived from Node via Fix. Fixbugs, which is 2 component
of expand, and hence a subcomponent of node, is the initial set of procedures
to fix bugs for constraints in Check: Fixbugs will be the fixbugs subcomponent
of the son node that is derived from Node via Fix. The current definition in
GEMPLAN is too elaborate to present here. However, things will become clearer
when we explain the node data type in Section 6.2.

generate_gemconstraints(Region+, Plan+, CheckCs—, SatCs~—)
CheckCs and SatCs are both lists of constraints associated with Region. Region is
the name of a region. SatCs are the constraints that are satisfied with respect to
plan, and CheckCs are constraints that might not be satisfied and therefore need
to be checked for Plan. The current definition for GEMPLAN is not presented
here.

6.4 search_incarnation

The concept of an incarnation was described in Section 3.2 and used extensively in
‘Section 6.1. This data structure groups a subset of nodes of the same regional search
tree. The following procedures are exported by this module ?

T Actually, two more procedures are exported that are related with the identifier of an incarnation
and with the difference between a location and a region. See also footnote 23 on p. 38 and footnote 31
on p. 43.

43

:- module(search_incarnation, [
expunge_successors/3,
make_empty_inc/2,
putnode_inc/3,
region_of_inc/2,
select_node_inc/3).

It is not difficult to guess their meaning. Currently, an incarnation is implemented as
a simple stack, i.e. put_node.inc/3 and select_node_inc/3 act as push and pop respec-
tively. The select node/3 procedure, which is exported by search_userctl, is defined
using select node.nc/3 and implements a simple depth-first search strategy. For this
same reason, expunge_successors/3 is currently implemented as

expunge-successors(Inc, Node, Inc).

because we know that Inc has no successor nodes of Node. A more complicated search
strategy may be implemented by select_node/3. Therefore, a data structure other than
a stack will be needed: Section 7.2.4 gives some hints.

6.5 search_fix

This module implements the data type search fix. We will not present the concrete
representation here because it might change as gem changes. However, search_fiz does
not depend directly on gem and even not on gem_fiz_constraint (see Figure 11). Search
fixes are constructed by search_userct! after calls to gem using the interface module
gem_fiz_constraint. For example, an tncarnate GEM-fiz defined in gem_fiz_constraint
(see Section 6.6) corresponds to a foreign incarnate defined in search_fiz. Although
both have the same concrete representation, search_userct! will select the components
of the generate GEM-fiz and then (re)construct the corresponding foreign incarnate.
These inefficiencies result from abstracting data and are discussed in Section 7.2.1.

Currently, there is only one fix that is created by the search itself and which does
not appear as one of the guards in the definition of apply fix/4 in Section 6.1.2. This
fix corresponds to a completion operation as described in Section 4.2. These fixes
are created as part of the completion operation performed within shift_branch/6, a
predicate called by the last two clauses of apply.fix/4. '

6.6 gem_fix_constraint

This module describes the interface between gem and search.userctl Essentially, it
abstracts the data types of the parameters of the two predicates fix_bugs/5 and check_-
constraint/4 defined in gem and used in search_userctl® ' % Here is the heading of
fix_bugs/5, and the definitions of its parameters 3°: '

% fix_bugs(Selector+, Bugs+, Solutions+, Nodelnfo+, GemFix— }
selector_gemfix(fix(Region, Constraintld, FixId), Region, Constraintld, FixId).

gembugs_of_bugs(bugs(GemBugs, -}, GemBugs).
status_of_bugs(bugs(_, Status), Status).
just_checked status(justchecked).
recheck_status(recheck).

make_gemsolutions(make).
% list_gemsolutions(Solutions).

nodeinfo_gemfix(nodeinfo(Node, NewNodeld), Node, NewNodeld).

fail_gemfix(fail).
local.gemfix(local(NewPlan, NewBugs, NewSclutions), NewPlan, NewBugs, NewSolutions).
foreign_gemfix(foreign(GensAndIncs, Plan, Bugs, Solutions),
GensAndlIncs, Plan, NewBugs, Solutions).

incarnate.gemfix(incarnate(ShiftIncld, Father, ShiftPlan, Status),

ShiftIncld, Father, ShiftPlan, Status).
generate_gemfix(generate(ShiftIncld, ShiftPlan, Status),

ShiftIncld, ShiftPlan, Status). -

check foreign status(check).

22 Gem does not use this module but uses the concrete term representation instead.
.. ®There are other predicates of gem which are currently called by the search modules. Most are
related to the plan representation which is defined in gem. They are not abstracted in this interface,
because ultimately, a plan should have its own data abstraction, and gem should be solely a procedural
module. Gurrently, gem is not defined as a Quintus module and belongs to the user module by default.
Hence, all the calls from the search modules to predicates defined in gem are prefixed by user:.

30You will notice that we don’t have binary selector/constructor definitions. Using binary definitions
is a better way to abstract.

45

satisfied foreign_status(satisfied }.

The first parameter selects the correct fix_bugs/5 procedure using the region®' Re-
gion, the constraint Constraintld, and the fix FixId, which should all be instantiated
upon calling fix_bugs/5. We wrapped these selectors to make use of Quintus’ indexing
scheme.®? Bugs and Solutions provide information for fix_bugs/5. GemBugs of Bugs
are the remaining bugs present in the plan of Node with respect to constraint Con-
straintld. Status is either recheck or jusichecked. It is justchecked if the constraint has
just been checked and the fix is now being applied to the first bug. Solutions is the
set of solutions untried by fix_bugs/5 to fix the bugs for the given constraint. If there
are no solutions yet present, Solutions should be instantiated to the constant make.
The members of Solutions represent different alternatives by which the given fix can
be executed. Node is the search node at which fix_bugs/5 is called, and NewNodeld
is a unique identifier of the possible son node of Node that might eventually result
from this call to fix.bugs/5. Finally, GemFix is returned as the result of the fix_bugs/5
procedure, and is of one of the following types:

fail: the fix failed

local(NewPlan, NewBugs, NewSolutions): the fix performed a local change to
the plan of Node, resulting in NewPlan. NewBugs represents the remaining bugs
in NewPlan. NewSolutions gives the remaining solutions that are left untried
and might be an empty list.

foreign(GenAndIncs, NewPlan, NewBugs, NewSolutions): The fix resulted
in the sequence of shifts to newly generated regions and to existing regions. This
sequence is represented by the list GenAndInes and should be interpreted left to
right. A single shift is represented respectively by:

generate(ShiftInc, ShiftPlan, Status): The fix resulted in a shift to a newly
generated region with an initial incarnation identification Shiftlnc and an
initial local plan ShiftPlan. Status, which is either satisfied or check, repre-
sents whether the local ShiftPlan is satisfied or the constraints need to be
checked.

3! In fact, this is not the region but the location_info.name of a region. A location.info.name is
defined in gem. ‘
32Quintus Prolog only indexes on the first parameter.

46

incarnate(ShiftInc, Father, ShiftPlan, Status): The fix resulted in a shift
to a new incarnation of an existing region with identification ShiftInc and
an initial local plan ShiftPlan. Father is the father node of the future root
node of the new incarnation.

The list GenAndIncs may not contain more than one generate or incarnate to
the same region.®® ' 3 NewPlan is the update of the plan of Node, such that
the ShiftPlan of every generate and incarnate of the GenAndlIncs of foreign are
included as subplans. NewBugs and NewSolutions have the same meaning as in
the case of a local fix.

The following is the heading of check.constraint/4>® and the definition of its first pa-
rameter:

% check_constraint(Selector+, Node+, Plan+, Bugs—)‘

selector_gemconstraint(constraint(Region, Constraintld), Region, Constraintld).
Region of Selector is the region®® in which the constraint Constraintld is checked.
We wrap both parameters with a functor constraint/2 to make use of Quintus’s first
parameter indexing scheme. Node is the search mode at which the constraint is
checked. Plan is the plan against which the constraint should be checked. The re-
sult of check_constraint/4 is Bugs, a list of bugs. If the constraint is satisfied in the
given plan, Bugs is the empty list.

*3The region can be derived with user:location_of incid(Incld, Region), which is defined in gem.

#This statement is not precise. The GenAndlncs component of a new shift search fix may not
contain more than one incarnale_foreign or generale_foreign to the same region. However, this com-
ponent of a new shift search fix is derived from the GenAndIncs component of a foreign GEM-fix in
search_userctl,

351n fact, the actual definition of check_constraint/4 has one more input parameter, i.e. BadParams.
Prior to each call of check.constraint/4, we call another procedure of gem that calculates this parameter
for a given Region, a given Constraint and a given Plan. BadParams contains information with respect
to parameterized constraints. BadParams should probably be calculated within c.heck -constraint /4 so
that it would not visible. Therefore, we do not present it here. -

%65ee footnote 31

47

7 Extensions

This section describes the extensions that are currently being made to the system and
possible additions to improve the system. :

7.1 Satisfaction

In Section 4.3 we saw that the completion operation was necessary to maintain consis-
tency, but that this completion can make previously satisfied nodes unsatisfied. There
is also a second reason why a solution node found in an incarnation can be unsatisfied.
The user can postpone the search in an incarnation with the predicate postponenode/2
that he defines in search_userct! (6.3). The returned solution node can then be included
as the subnode of some higher-level node. If this occurs, it is possible that all of the
regional constraints of the higher-level regions are satisfied, but that its subnodes are
not.?7

The definition of safisfied node, given in Section 4.3, implies that a node cannot deter-
mine locally if it is satisfied. The goal of the search is to find a satisfied and consistent
node in the global regional search tree. Whenever we find a solution node in the global
incarnation, we know that it is consistent and that we could apply the definition of
satisfied node recursively to its subnodes to check whether it is satisfied. This, however,
is a bad idea; it would be very expensive because it would entail constantly rechecking
all of the constraints of the given problem. This approach also tells us nothing about
how to achieve satisfaction from an unsatisfied node. .

7.1.1 Recording satisfaction

We will add one component to the node data structure that records whether a node
is satisfied, unsatisfied or potentially unsatisfied. From the check component of a node
(see Section 6.2.4), we can easily determine if a node satisfies its regional constraints.
A node is unsatisfied if one of its regional constraints is unsatisfied or if any of its
subnodes are unsatisfied. A node is potentially unsatisfied if it is not unsatisfied and
if at least ome of its subnodes is potentially unsatisfied. A node becomes potentially

370n the other hand, a postponed node that is completed later can become satisfied. In fact, this is
our motivation for providing the user with the ability to postpone the search at an unsatisfied node.
We will see that this changes the status of an unsatisfied node to a potentially unsatisfied node.

48

Figure 12: Achieving satisfaction

unsatisfied because of a completion operation. Since the completion operation is re-
cursively applied to subnodes, this node property can be determined for every node
involved in the completion process. The nodes completed with a complete fix and all
of the nodes including a completed subnode or a new potentially unsatisfied subnode
are tagged as potentially unsatisfied.

7.1.2 How fo achieve satisfaction

Figure 12 corresponds to the example presented in Figure 5 and Figure 6. After 5; has
been applied, the completion operation will tag ¢; and a; as potentially unsatisfied,
represented in Figure 12 as shaded nodes. The search control in A is at a; and decides to
make ay satisfied. Therefore, it performs a shift fix 53 to C, creating a new incarnation
I, with root node ¢;. In most of the cases, this root node will be a copy of the

49

potentially unsatisfied node ¢;, except for its branches and father. The search in I,
finds a solution node ¢4 which is possibly satisfied. Control goes back to A, where
S3 produces a3 which is no longer potentially unsatisfied. In this case, satisfaction in
A is achieved with a shift fix to C. Achieving satisfaction can be done in multiple
ways. In the example, S3 must not necessarily copy c; to create the root node c3
but can introduce new events to obtain ¢z, combining further plan construction and
achieving satisfaction within the same shift fix 53. Also, satisfaction might be achieved
at regions other than the global region. The conclusion is that the search mechanism in
itself does not achieve satisfaction automatically, but that it calculates and updates the
satisfaction properties of the node during the search. To allow for domain dependent
control, the search gives full control to search_userctl as to when and how to achieve
satisfaction. By investigating the nodes, prepare fix/3 is able to propose the right fixes
which eventually must achieve satisfaction for a global solution node.

7.2 Prolog implementation details

Prolog is a wonderful programming language, but it is not a magic tool that solves
problems without effort. A Prolog programmer still must use clever techniques and
efficient algorithms. The big savings always come from choosing an inherently efficierit
algorithms, and not from choosing one language over another [5]. Prolog, however, is
well suited for developing prototypes by running specifications as programs. This sec-
tion describes some ways of optimizing our prototype of the localized search algorithm.

7.2.1 Abstract data types

Good Prolog programs are extremely easy to maintain, but large Prolog programs
suffer from the same maintenance problems as all other large programs. Abstracting
data and procedures is the only way to control this complexity. In our program, the
particular term structure of a data type is hidden, selection and construction are done
with unary and binary predicates®®, and modification is done with tertiary predicates.
Unfortunately, abstracting data in Prolog is inefficient. The following code is actually
used to set up a root node in search.main. --

:- use_module(’search.node.pl’, [
id_of_node/2,

3BThe module gem_fiz_consiraint is an exception.

50

incarnation_of_node/2,
plan_of node /2,
expand._of_node/2,
nofixbugs/1,
no_retrys/1,

check_of node/2,
no_visiteds/1,
empty.constraints/1,
put_front_constraints/3,
constraints_of_check/2,
empty _satisfieds/1,
put._satisfieds/3,
satisfieds_of_check/2,
no.checkeds/1,
no_branches/1,
subnodes_of node/2,
father_of_node/2,
sharednodes_of_node/2]).

- use_modu_le(’sea.rch_userctl.i)l’, [generate_gemconstraints/4]).
%:~ use_module(’gem’, [location._of_incid/2]).

make root_node(Incld, Nodeld, Plan, Father, SubNodes, SharedNodes, Node):-
id_of_node(Node, Nodeld),
incarnation_of node(Node, Incld),
plan_of node(Node, Plan),
expand_of_node(Node, Expand),
nofixbugs(Expand),
no_retrys{ Expand),
check of node(Node, Check),
no_visiteds(Check),
user:location_of incid(Incld, Region),
generate_gemconstraints(Region, Plan, GemConstraints, GemSatisfieds),
empty.constraints{ Constraints),
put_front_constraints(GemConstraints, Constraints, NewConstraints),
constraints.of_check(Check, NewConstraints),
empty satisfieds(Satisfieds),
put_satisfieds(GemSatisfieds, Satisfieds, NewSatisfieds),

51

satisfieds_of_check(Check, NewSatisfieds),
no_checkeds(Check },

no_branches(Node),

subnodes.of node(Node, SubNodes),
father_of node{ Node, Father),
sharednodes_of node(Node, SharedNodes) .

Without the node data abstraction this same predicate would have the following defi-
nition.

%:- use_.module(’gem’, [location_of incid/2]).
:- use.module(’search_userctl.pl’, [generate_gemconstraints/4]).

make_root_node(Incld, Nodeld, Plan, Father, SubNodes, SharedNodes,
node{ Nodeld,
Plan,
expand(], [}),
check{ Satisfieds, [}, Constraints, []),
branches([}, [})
Father, '
SubNodes,
Incld,
SharedNodes)):-
user:location_of_incid(IncId, Region),
generate_gemconstraints{ Region, Plan, GemConstraints, GemSatisfieds).

The second definition may run ten times faster. Certainly, this is worth of concern.
However, the clarity and maintainability advantages of the first definition are com-
pelling. We have no simple solution to this dilemma.?®

7.2.2 Transitive closures

The regional structure of the problem domain is described with the partof/2 facts. We
defined t_partof/2 as its transitive closure.*® The definition that is used by gem is:

3Unfolding is only a partial solution.
48 A1l of these region structure definitions are in gem. T_partof does not actually exist, but similar
transitive closure operations are defined.

52

t.partof(R1, R2):- partof(R1, R2).
t_partof(R1, R2):- partof(R1, R3), t_partof(R3, R2).

This is superior as a specification, but it is also amazingly inefficient. There are two
possible solutions. First, the Quintus package library(graphs) implements Warshall’s
algorithm which calculates the transitive closure of a graph in (Q(N?). Second, we
can pre-calculate t_partof and assert it as facts because the regional structure is static.
Transitively closed predicates are used extensively during completion of a node and
during updating of the shared nodes. An efficient implementation such as this will
speed the search. '

7.2.3 Association lists

Association lists are implemented in the module assoc.pl. Shared nodes, subnodes and
some other temporary structures constructed during completion use association lists.
Association lists are represented as lists of (Key—Val) pairs. This is advantageous be-
cause potentially many library predicates are applicable to them. We didn’t choose
the Quintus package library(assoc) that represents association lists using binary trees
because our application of association lists is dynamic; the tree would quickly become
imbalanced, and the overhead of keeping it balanced would be too great. The best
implementation would be to order association lists on their keys, since frequently used
operations, like merging lists and selecting values with given keys, could be imple-
mented more efficiently. Association lists can be ordered with the built-in predicate
keysort /2. ‘

7.2.4 Incarnation revisited

Section 6.4 showed that a search inca.rn:ation is currently implemented as a stack.
A stack is the best choice if the search strategy in an incarnation is depth first. If
we want to allow the user to define other strategies via the predicates select_.node/3
and put_and. select node/4,! then a more complex representation must be developed,
possibly one with an indexing scheme on the plan and the identification component of
the nodes in the incarnation. Moreover, for almost any strategy other than depth-first,
the definition of expunge._successors/3 becomes nontrivial. In Section 6.2, we saw that
a regional search tree only has bottom-up links, and hence it is impossible to trace

411t is very likely that arguments will have to be added to these predicates.

93

down the successor nodes from a given node. Hence, the incarnation must record these
links so expunge_successors/3 can be implemented efficiently.

8 Conclusion

This report describes a generic localized search algorithm that makes constraint local-
ization possible. The algorithm was explained in detail by including the top-level Prolog
code. The search is generic and allows a multitude of search strategies determined by
the particular implementation of a user-defined module. The current prototype uses
Quintus’ module facility and abstracts data types to make maintaining and future
modifications tractable. Finally, some clues were given to improve the efficiency of the
current system.

References

(1] Lansky, A.L. “Localized Representation and Planning,” The 1989 Stanford Spring
Symposium-Workshop on Planning and Search (March 1989).

(2] Lamsky, A.L. “Localized Event-Based Reasoning for Multiagent Domains,” Com-
putational Intelligence Journal, Special Issue on Planning, Volume 4, Number
4 (November 1988). Also appeared as Technical Note 423, Artificial Intelhgence
Center, SRI International, Menlo Park, California (1988).

[3] Lansky, A.L. “A Representation of Parallel Activity Based on Events, Structure,
and Causality,” in Reasoning About Actions and Plans, Proceedings of the 1986
Workshop at Timberline, Oregon, M. Georgeff and A. Lansky (editors), Morgan
Kaufmann Publishers, Los Altos, California, pp. 123-160 (1987). Also appeared as
Technical Note 401, Artificial Intelligence Center, SRI International, Menlo Park,
California (1986).

[4] Lansky, A.L. and D.S. Fogelsong. “Localized Representation and Planning Meth-
ods for Parallel Domains,” in Proceedings of the Sizth National Conference on
Artificial Intelligence (AAAI-87), Seattle, Washington, pp. 240-245 (1987).

[6] O’Keefe, Richard A. “Prolog Compared with .Lisp,” SIGPLAN Notices, Volume
18, Number 5, May 1983, pp. 46-56.

