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ABSTRACT

This report presents an informal review of current research trends in planning and, in
particular, my own views on multiagent planning. A short description of the GEMPLAN
research project is provided, including both the current state of the system and my future
research plans.



1 Multiagent Planning

The primary motivation underlying all of my work in planning has been to handle the
complexities and special properties of domains with inherent parallelism - i.e., multia-
gent domains. Given that humans are notoriously bad at creating coordinated multiagent
plans, automated planners for such tasks are clearly necessary. Applications are innu-
merable. They range from scheduling of already generated plans (for example, creating
a schedule for a factory floor where the processes are already well defined) to actual cre-
ation of coordinated plans to meet goals (for example, generating a plan for constructing a
building that properly coordinates contractors and in which the actual construction steps
are not given a priori — they are generated from underlying domain knowledge) to dynamic
(execution time) creation and/or modification of coordinated plans for multiple agents (for
example, coordinating multiple rovers on the moon as they go about their tasks).

The specific focus of my work has been the development of the GEM multiagent domain
model and the GEMPLAN planner based on this model [10, 11, 12, 13, 14]. This work will
be described in more detail in Section 3.

Because of the unique properties of multiagent domains, many traditional approaches to
planning are inadequate. For example, traditional planning formalisms are not sufficiently
expressive. Traditional planners are unable to scale-up to face the formidable complexity
challenges of multiagent domains. Like other forms of planning, multiagent planning and
coordination must also deal with the problem of reasoning in dynamic environments. How-
ever, the task of coordinating multiple agents has special needs and characteristics that
make otherwise suitable new planning techniques (e.g., situated actions or other reactive
techniques) less suitable. We describe several of these multiagent domain characteristics
below.

1.1 Correctness

Probably the most essential and difficult problem faced by multiagent planners is maintain-
ing correctness in the face of conflict. There are two aspects to this problem: its criticality
and its inherent costliness and complexity.

When several agents are operating in the world and can potentially conflict, avoid-
ing dangerous situations becomes a critical priority. The philosophy behind reactive ap-
proaches — essentially, to react as the situation warrants and, hopefully, to get out of danger-
ous situations reactively as well — may be suitable for single agent problems or multiagent
domains in which conflicts are minimal, relatively unimportant, or avoidable. However,



such approaches are too shortsighted to be adequate for full multiagent coordination.?
In general, more complete plans of action must be analyzed in order to assure correct
hehavior.

This can be seen by examining how people function in the world. We do not need
to plan in advance when our actions do not interfere with others or when we can “work
around” any potential problems that might arise. However, when the actions of many
people must be coordinated (e.g., setting up a meeting, scheduling a factory, setting up a
plan of action for a large organization), advanced planning becomes the norm. There are
at least two reasons for this:

1. Interagent conflicts tend to propagate and may therefore affect the entire plan of
action for each agent. Once execution begins, it might be too late to change agent
plans adequately.

2. Interagent conflicts may have disastrous consequences. Imagine the case of an air-
plane that runs out of fuel because it did not anticipate landing conflicts and delays
caused by other aircraft.

As far as complexify goes, it 1s well known that enforcing correct conflict-free behavior
in the face of parallel activity is, for most forms of conflict, at least NP-hard.

Of course, not all multiagent planning can or should be done in advance. For all
the reasons that have been discussed repeatedly in the recent planning literature, some
domains are inherently dynamic in nature. Some decision making and planning must be
done during execution. The trick is to maintain correctness as much as possible in the
face of this. The approach that I have recently been exploring is the use of run-time
“synchronizers” or constraint satisfaction mechanisms. Examples of this from everyday
life include traffic lights, lines in stores, and dispatch rules on the factory floor. Such
mechanisms are also the most common means of coordination and resource allocation
used by operating systems (for example, priority queues for controlling access to processor
cycles). The distinction between run-time synchronizers and the reactive methodologies
recently advocated by others is that synchronizers can have well-defined semantic effects
on plans. Thus, they can be integrated into plans and reasoned about in advance, as well
as used during execution. I will discuss this more in Section 3.

1Recent work by Drummond on situated control rules [4], however, is one attempt to reason about the
possible effects of reactive techniques and to limit possible executions based on desired effects. However,
this approach cannot creatively generale new actions or reactions — and therefore has somewhat limited
capability for true coordination. '



1.2 Higher Level of Reasoning

Most interagent coordinative problems are high level in nature. That is, they deal with
actions at a relatively high grain of detail. For instance, a robot wouldn’t need (and
probably shouldn’t even try) to coordinate its low-level motor actions with those of another
robot. This is true partly because low-level actions tend not to interfere. But it is also
due partly to necessity — coordinative reasoning on a low level of detail would be highly
intractable.

Because coordinative reasoning tends to be high level in nature, it is less subject to
the dynamic pressures that characteristically appear in domains that involve low-level
control. It is simply natural that low-level phenomena change more quickly than liigh-level
phenomena. For example, low-level motor control for robots is often strongly influenced by
the changing state of the environment. Thus, situated or reactive approaches make most
sense. In contrast, much high-level coordinative reasoning can safely be done in advance.
This lends support to the notion of a reasoning architecture (for coordination) that extends
from preplanning toward dynamic/reactive reasoning, rather than trying to start with
low-level reactive mechanisms and extending them to deal with higher-level coordination
problems. As discussed earlier, reactive mechanisms also do not have adequate temporal
context to correctly synchronize agents in the fullest sense.

1.3 Expressiveness

It has been repeatedly established that domain modeling techniques based on the situa-
tion calculus (typically, STRIPS-based rules [6]) are inadequate for expressing the complex
domain requirements of multiagent domains. Most obvious is their inability to express de-
sired forms of simultaneity (e.g., cooperation) and the potentially desirable consequences
of performing interacting actions simultaneously rather than sequentially [12]. Represen-
tations such as the interval calculus [2] and my own event-based GEM representation are
attempts to attain expressive adequacy. In GEM, a wide variety of properties can be
naturally described, including priority requirements, simultaneity requirements, desired
patterns of behavior expressed as regular expressions, and interval constraints, as well as
the more traditional STRIPS-based properties.

Despite the obvious need to grow beyond STRIPS-based descriptions in order to handle
multiagent domains, the Al community has been slow to meet this challenge. Most systems
still assume that all potentially concurrent actions do not interact in any way. GEMPLAN
is one of the few planners that faces this problem head on.



1.4 Locality: Partitioned Reasoning and Scaling Up

Another obvious requirement of multiagent domains® — from both a representational point
of view and an efficiency point of view - is the need to explicitly partition a domain
according to its naturally occurring structures. For example, both agents and resources
should be represented as regions or localilies of activity, each of which has its own own
localized requirements. Certainly, humans could not deal with the complexities of the
world unless they partitioned their internal world models into smaller, more manageable,
parts.

Localized domain descriptions are modular and easier to understand. They also pave
the way to localized forms of reasoning — i.e., planning localities individually [10, 11]. It
is clear that the cost of expensive planning algorithms can be alleviated by applying them
to smaller, localized plans. Localized plans that potentially interact (as determined by
domain structure) may then be combined and interactions resolved. GEMPLAN is the
only planner I know of that utilizes localized reasoning. It is my hope that the use of
domain structure to partition the reasoning space will result in a planner that is able to
scale up to large, real-world domains.

1.5 Summary

In summary, the unique properties of multiagent domains suggest a planning architecture
(for purposes of multiagent coordination) with the following properties:

¢ The ability to represent and reason about complex coordination requirements. This
will require going beyond traditional planning techniques based on the modal truth
criterion (achievement of STRIPS-based conditions) and hierarchical action decom-
position. Of course, any multiagent planner should certainly include the traditional
planning techniques as well (as does GEMPLAN).

¢ The ability to partition the domain and planning space into smaller localities and
combine localized plans effectively.

¢ The ability to preplan as well as conduct some forms of coordination dynamically.

e The ability to maintain as much correctness as possible, in the face of dynamic,
potentially reactive, forms of reasoning.

The GEMPLAN planning architecture described in Section 3 tries to meet these goals.

?And, indeed, complex single agent domains.



2 Problems of Past Approaches

In my view, past work in planning has suffered from a myopic view of what planning és.
Essentially, “planning” has become equated with what traditional planners (e.g., STRIPS
[6], NOAH [15], NONLIN [16], SIPE [17], TWEAK [3]) are actually capable of doing, rather
than with some more abstract (and more general) view of the task. This has manifested
itself in a number of ways.

¢ The planning process has become equated with the attainment of state-based con-
ditions that are described in terms of STRIPS-like operators. Recent traditional
hierarchical planners have also allowed operators to include information about pos-
sible action decompositions, and perform planning at increasing levels of detail.

In my view, planning should be viewed as general purpose constraint satisfaction.
Here, I am taking the notion of “constraint” to be very broad - essentially, it is
any expression the planner is trying to make true. Thus, the “constraint satisfac-
tion” abilities of a planner might include the attainment of state-based conditions,
decomposition of actions into subactions, satisfaction of interval-based constraints,
assignment of values to variables subject to constraints (CSP-like constraint satisfac-
tion), enforcement of behavioral patterns expressed as regular expressions, reaction -
to a stimulus, or enforcement of any other constraint the planner knows how to test
for and achieve.

o The word “planning” has become synonymous with “pre-planning.” As has become
increasingly clear, however, much planning must be done dynamically. Thus, reactive
and pre-planning techniques must be blended within a complete planning spectrum.

¢ The notions of planning search, plan modification techniques (what I call plan fizes),
‘and the actual structure of a plan have become confused with each other. While there
may be connections between the structure of a plan and the search mechanisms and
plan modifications used to attain that structure, they should not be equated. One
of the most common examples of this is that many planners insist that the ordering
of actions in a plan be the same as the order in which those actions are added to
the plan by the planner. This, for example, is one of the several explanations for
the so-called “Sussman Anomaly.”® Another similar confusion occurs between the
hierarchies within a plan due to nonatomic event decomposition and the hierarchies
that exist within the search space.

3Despite protests made in a recent paper by Drummond and Currie about the confusion between search
and plan [b], they too makes this unstated assumption about action ordering!



A most insidious example is the overwhelmingly popular tendency Lo confuse the
nonlinear (partially ordered) structure of a plan (of course, any multiagent plan must
be nonlinear) with so-called “nonlinear” search decisions and plan modifications. For
example, plan modifications may utilize least commitment and leave certain actions,
which may ultimately be ordered, unordered for the time being. Alternatively, a plan
modification may impose a particular event ordering between two events {perhaps
within the context of a larger plan that is partially ordered), only to have the planner
ultimately backtrack and choose an alternative event ordering.

In GEMPLAN, the notions of search, plan structure, and plan modification strategy
(i.e., fizes) are quite distinct. The planning process may be viewed as the search of
a tree. Each node in the tree is associated with a partially-constructed plan. Each
arc represents a plan fix, which results in the new plan at its terminating node. The
actual structure of a plan is a partially ordered set of events. Plan fixes may add
events anywhere they choose within a plan and, together with search strategies, may
adopt least-commitment plan changes or commit-and-backtrack strategies as desired.
The search itself {i.e., the order in which plan fixes are applied) is highly general and
can be easily tuned by the user.

Just as traditional planning techniqﬁes have become fossilized in people’s minds, those
of us pursuing newer approaches to planning must guard ourselves against the pitfall of
claiming one technique for all uses. I believe that the use of reactive planning techniques as
exemplified by the work of Kaelbling and Rosenchein on situated automata [9], Chapman
and Agre on Pengi [1], and Georgeff and myself on the Procedural Reasoning System
(PRS) [7, 8] will find limited application in domains where complex synchronization and
coordination must take place. For reasons described in the previous section, coordinative
reasomng must often be done in advance, not on the fly. In addition, much of the work
in reactive planning (for example, the PRS system built by Georgeff and myself) has no
inherent method for understanding plan interactions and resolving them — any coordination
must be done by the programmers of these systems when they are designing appropriate
reactions. That 1s, coordination must be explicitly handled by system users rather than
by the system itself. Clearly, this is not a realistic requirement for many applications.

Similarly, I believe that coordination by dynamic negotiation and much of the recent
work on “communicating rational agents” will not be adequate for domains with com-
plex interactions. While coordination via communication and negotiation certainly has its
place (it is how humans generally coordinate among themselves), it is not appropriate for
large-scale coordinative problems. This is why workers on the factory floor don’t negotiate
with each other about how to achieve their tasks and share resources, why large organi-
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zations make organizational plans in advance, and why general contractors exist. It is my
view that these large-scale coordination problems are the ones that will benefit most from
computational aids.

In general, I think that AI researchers liave shied away from the complexity that
naturally arises from concurrency. They have tended to focus on things like interagent
communication and negotiation rather than hard-core coordination algoritlinis. This is
understandable — humans aren’t good at dealing with coordination in their day-to-day
lives. However, computational concurrency has been an active area of computer science
researcli over the past 20 years and the Al community has a lot to gain by utilizing this
work. ‘

3 GEMPLAN Multiagent Planner

In this section I will try to outline the salient features of my research on the GEMPLAN
multiagent planner. The current system is implemented in Prolog on a Sun computer
and can generate multiagent solutions to several small domain problems. My near-term
research goals (described in Section 3.5) include applying the system to a larger, more
realistic domain.

3.1 Domain Representation

GEM models a domain as a set of interrelated events clustered into regions of activity.’
Events may be related temporally, causally, or by a simultaneity relation that models
required simultaneity.® GEM utilizes two kinds of regions: elements and groups.® Each
element or group may be associated with explicit constraints on the event behaviors oc-
curring within it. Thus, a domain is viewed as a myriad of interrelated events that are
partitioned into regions and subject to regional constraints.

Elements are the most basic type of region. Every event must belong to exactly one
element, and all events belonging to the same element must occur sequentially. Thus,
elements are loci of sequential activity. Elements (and their constituent events) are then

4] use the terms “event,” “action,” and “event instance” synonymously.

50f course, unordered actions may also potentially occur simultaneously — they are simply not required
to be simultaneous. ‘

SGEM stands for the Group Element Model.



clustered into groups — regions whose boundaries impose barriers on various forms of
domain interaction and the influence of constraints. The motivation behind the selection
of these particular region types was to mimic the structures found in the world and how
people reason about them. For example, at some Jevel, most physical objects in the world
are subject to sequentiality constraints. Such regions may be suitably represented as
elements. And the fact that humans are capable of dealing with the complexities of the
world is evidence that they utilize some form of regional independence — e.g., the kind
imposed by groups.

GEM’s domain regions may be structured so that they overlap, are disjoint, or form
hierarchies - i.e., they may take on any structural configuration that the domain describer
wishes. The key idea is to partition a domain in such a way that domain properties are
localized. That is, if a set of events is affected by a specific set of constraints, that set
should be represented as a distinct region of activity. A domain’s physical structure, its
functional decomposition, the extent of causal effect, the processes that may occur — all
of these factors may play a role in structuring a domain. Indeed, the regional structure
of a domain may reflect many decompositions simultaneously - for instance, a physical
decomposition may be overlapped with a functional decomposition.

Syntactically, a GEM domain description is composed of a set of element and group
declarations.” Each element declaration is associated with a set of event types, describing
the kinds of events that may occur within it. A group declaration describes the elements
and groups that comprise it. Both element and group declarations are then associated
constraints on internal event behavior. These constraints are highly expressive, especially
for describing the complex synchronization properties common to multiagent domains.

Again, note that GEM constraints are localized, constraining the event behaviors oc-
curring within the element or group with which they are associated. Thus, one of the
primary reasons for structuring a domain into elements and groups is to localize the effect
of constraints upon event behaviors - i.e., constraint localization. The second reason for
GEM’s locality structures is to impose additional structural constraints on events. As al-
ready stated, elements impose a sequentiality constraint on their constituent events, and
groups limit event interrelationships that cross their boundaries. A more formal definition
of GEM’s locality properties is provided in [10, 11].

7GEM also includes a facility for declaring and instantiating element and group types.
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3.2 What is Planning?

As I have stated earlier, I believe that the planning process should be viewed as one of
constraint satisfaction - preferably localized according to a natural partitioning of the
domain. This is (not surprisingly) precisely the approach taken by GEMPLAN.

Given the structure of a domain and its applicable constraints, GEMPLAN’s task
is to construct a plan (i.e., a set of interrelated events) that is subdivided into regions
(“subplans”), each of whose executions satisfies all applicable regional constraints and
goal constraints. Thus, GEMPLAN’s reasoning process may be viewed as one of constraint
satisfaction. Given an initial world plan (possibly empty), the planner repeatedly chooses a
constraint, checks to see whether the constraint is satisfled and, if it is not, either backtracks
to an earlier decision point in the planning process or continues on, modifying the world
plan so that the constraint is satisfied.

This constraint satisfaction process may be seen as the search of a set of trees, one for
each region. Each search tree focuses on building a regional plan that satisifies all regional
constraints. At each tree node is stored a representation of the currently constructed plan
for that region. When a node is reached during planning search, a constraint is checked. To
satisfy it, the search space branches for each of the possible ways of repairing or “fixing” the
world plan. A fiz typically involves the addition of new events and event interrelationships;
in essence, it massages an ever-growing partial order. The placement of events within this
partial order depends on the nature of the constraint and fix — a fix may potentially insert
an event or relationship anywhere within the plan it is fixing.

Currently, GEMPLAN is able to satisfy a predefined set of common constraint forms.
These include constraints that describe required causal relationships between events, con-
straints that require sets of events to conform to a behavior expressed as a regular-
expression, nonatomic-event expansion, and the achievement of state-based conditions and
goals (based on Chapman’s modal truth criterion).® GEMPLAN also includes a facility
for accumulating constraints on the values of unbound event-parameter variables, similar
to the constraint accumulation facility in Wilkins’s SIPE system. This allows some forms
of least commitment to be utilized.

Of course, the order in which constraints and fixes are applied has an effect on the
speed with which a correct plan is found and the actual composition of the plan — indeed,
on whether or not any solution is found at all. GEMPLAN tries to provide for as much
flexibility as possible in the control of planning search. The order in which constraint checks
and fixes are tried (including moves between regional search trees) and decisions about

8Thus, the system already exceeds the capabilities of most existing planners.
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when and where to backtrack or halt are all guided by user-modifiable regional search tables.
Whenever backtracking occurs, the node left behind is retained. The search may thus
utilize a mixture of depth- and breadth-oriented exploration, depending on the strategy
determined by the table. If a user does not supply domain-specific search information, a
default depth-first search strategy is used. The constraints and fixes within each region
are chosen in the order in which they are supplied within the domain description. Once
constraint checking in a specific region is complete, other regions that may be affected are
rechecked.

It is interesting to note the differences between this approach to planning and more
traditional methods. While most planners can handle only one or two forms of “do-
main constraints” (attaining state-conditions, nonatomic-event expansion), GEMPLAN
can handle any form of constraint, as long as it is furnished a suitable plan-fixing method.
Thus, planning “operators” that have been given distinctive status by traditional planners
become “constraint satisfaction methods.” Second, GEMPLAN’s constraint satisfaction
search is much more flexible than those found in most planners. Constraints and fixes
can be applied in any order determined by the regional search tables, which may encode
context-sensitive heuristic information.

3.3 The Impact of Locality

The use of locality can have several positive impacts on planning, both from a represen-
tational and a reasoning point of view. Representationally, locality provides a means for
modularizing the domain description and explicitly stating the scope of effect of domain
constraints. Thus, it goes a long way in handling the notorious “frame problem” — deter-
mining the extent of effect of events on properties and other events. We have discussed
the formal impact of locality on the frame problem elsewhere [10, 11].

In our view, locality will have an even more significant impact on the cost of planning.
The partitioning of planning search into localized search spaces can cut planning costs in
two ways:

o Reduction of search space size.
Imagine that a domain is represented as a global entity with 10 constraints over
its events. At each point in the global search tree, the planner has the potential to
choose from 10 constraints to work on — and further, each constraint may be satisfied
in multiple ways! This leads to a search space with a branching factor of at least 10.

Now imagine that the search space is partitioned into two subregions, each with 4
constraints, and a global region with 2 constraints that apply only to the events
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exported from its subregions. Each subregion tree has a branching factor of approx-
imately 4, and the new global region’s tree a branching factor of 2.

This is obviously a substantial reduction in search size. It is also not surprising -

“divide and conquer” is a tried and true technique. GEMPLAN provides a way to

subdivide the search according to the inherent locality properties of a domain - only
" relevant constraints are applied within each locality.

o Reduction of planning algorithm cost.

Not only are local search spaces smaller, but the sizes of the plans to which expensive
constraint satisfaction algorithms are applied are also smaller. This is because each
regional search tree deals only with a smaller, regional plan. In the example described
above, even the “global” search space (in the second, partitioned case) deals with a
much smaller plan that is composed only of events exported (made visible) by the
two subregions. In contrast, traditional hierarchical planners, which may partition
the ezpansion of subplans (using hierarchical action decomposition), do not cope
with the potential interactions among those subplans in any disciplined manner. As
a result, event interactions within a plan must be checked during a costly global
interaction analysis. We expect the use of locality to have a substantial impact on
the cost of planning.

As far as we know, GEMPLAN is unique in its use of domain structure to partition
planning search into localized search spaces. Of course, planning for one region may
affect planning within another. The flow of reasoning among regional search spaces must
be guided by a domain’s potential regional interactions. When plan modifications are
made, constraints (and regions) that could possibly be affected (but only those that could
be affected) need to be rechecked. In practice, shifts between regional search spaces are
enacted by virtue of search table information or the particular nature of a fix. For example,
if a group fix adds an event to a subregion, search will be pursued within that subregion.

Given this regional planning architecture, planning complexity is directly related to the
amount of regional interaction within a domain — which is as it should be. Planning for
tightly coupled regions may involve considerable interaction among their regional search
spaces, but planning for domains in which there is little regional interaction will be loosely
coupled and could potentially be performed in parallel.

Of course, the ultimate utility of locality is predicated on the assumption that a domain
can be appropriately subdivided. This will depend on the skill of the domain expert in
subdividing a domain description and on the nature of the domain itself. If a domain can
be structured so that regional interactions are limited, planning will be cheaper. Tradeoffs
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must obviously be made between allowing possibly relevant, but costly, interactions and
the ultimate tractability of domain reasoning. However, experience thus far with GEM
(as well as the fact that humans are able to plan in a complex world) is evidence that
localizing principles can be effectively used.

3.4 Dynamic Reasoning for Multiagent Domains

In this section I will discuss my plans for extending the GEMPLAN system, which, cur-
rently, conducts planning only prior to execution, to a framework that spans preplanning
and execution-time (dynamic) reasoning. As I have discussed, the process of planning
(deciding upon which actions to execute) is really a spectrum of reasoning techniques that
may occur at various times relative to actual execution.

Preplanners tend to produce plans that are provably “correct” but are too rigid and not
robust in the face of dynamic changes to the environment. Reactive techniques are more
flexible and robust, but tend to be weak in ensuring correctness, especially when it comes to
multiagent coordination. In between these extremes lie possibilities for achieving dynamic
but well-defined (with respect to plan semantics) plan modification. This includes the use

_of “synchronizers” — mechanisms that dynamically satisfy constraints at run-time. I expect
that they will be especially useful for enforcing priority constraints. Such constraints are
quite important in multiagent domains, which tend to resolve resource contention using a
priority policy (for example, first-come-first-served). From a realistic point of view, it is
often impossible to prioritize resource usage until an actual ordering of resource requests
1s determined - i.e., during execution.

The full-spectrum planning framework I envision for GEMPLAN will take the following
form. Given a domain with its localized constraints and a specific problem to solve,
the GEMPLAN will perform as much planning as possible in advance. However, some
constraints may be unsatisfiable until run-time. These may include priority constraints,
but may also include other constraints due to lack of information — information that can
be found only at run-time.

Whenever possible, such constraints should be handled by inserting a “synchronizer”
— essentially a run-time demon - into the plan. This synchronizer will perform the appro-
priate constraint satisfaction at run time, and will hopefully have a well-defined semantics
so that reasoning about its possible run-time effects can (if desired) be done during the
preplanning phase.

The GEMPLAN executor will then execute the plan, activating “synchronizers” to
further control plan execution when necessary. Reactive demons may also be utilized within
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the execution system. These would perform more typical forms of reactive reasoning, and
might be especially useful for dealing with emergency situations, for filling out low-level
actions (for example, for navigation), and possibly for plan repair. However, the actual
semantic effect of these reactive demons might be less well defined. After several dynamic,
reactive repairs, it might ultimately be necessary to fully replan. (As an illustration, a
factory floor schedule may be patchable to some extent, but, at some point, may have to
be completely rescheduled).

Note that the locality properties of GEMPLAN might be quite useful for dealing with
dynamic forms of reasoning — both reactive techniques and full replanning. GEMPLAN
stores a link between each event and relation in a plan and the search tree node where it
was added. This link can be used for plan explanation as well as plan repair. If a particular
event goes awry during execution, GEMPLAN could potentially use the link between the
offending event and the node where it was created to guide the planner directly to a point
where other strategies might be tried. By knowing which events have already taken place
and which events are affected by which constraints (locality), GEMPLAN could determine
which events are retractable and which portions of a plan must be repaired.

Similarly, suppose that the set of constraints to be solved suddenly changes. Using the
links between events and relations in the old plan and the constraints that caused them to
be inserted into that plan, GEMPLAN could determine which events should be removed
from the older plan (i.e., those that have not yet occurred and correspond to constraints
that were removed). Locality could then be used to distinguish those parts of the plan that
will be affected from those that will not. (By the same token, locality can also be used to
help determine which parts of a plan may be affected by a reactive demon.) Starting from
a newly pared-down initial plan (that saves as much information as possible from the old
plan), replanning could then proceed as an instantiation of a new planning problem with
a new set of constraints to be solved.

3.5 Goals

My future goals are to further enhance GEMPLAN along the lines described in this report
and to apply the system to a large, real-world domain that exercises the system’s unique
capabilities. Potential applicitions include a building contractor domain and several NASA
apphcations (for example, scheduling space station experiments so that power consumption
needs are coordinated with heat dissipation capabilities, or coordinating the tasks of Mars
rovers). Primary areas for further development include:
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Enhancing the constraint satisfaction facility to handle new forms of constraints,
including: metric temporal reasoning (work on this began in the summer of 1989),
CSP constraints, and priority constraints (i.e., dynamic constraint satisfaction).

Continuing experimentation with the localized, heuristic search mechanism. The
mechanism is currently being enhanced to deal with the full range of locality struc-
tures, including regional overlap. Another possible area of exploration is to actually
search the various independent local search trees in parallel.

Enhancing the underlying plan structure to include: (1) conditionals and other lim-
ited forms of disjunction; (2) synchronizers and reactive demons.

Building a GEMPLAN executor that integrates the use of synchronizers and reactive
demons.

Applying the system to a domain that heavily utilizes locality and that involves
complex forms of coordination.
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