The Path-Indexing Method for Indexing Terms

Technical Note 473

October 1989

By: Mark E. Stickel, Sr. Computer Scientist

Artificial Intelligence Center
Computer and Information Sciences Division

This research is supported by the Defense Advanced Research Projects Agency
under Contract NO0039-88-C-0248 with the Space and Naval Warfare Systems
Command. The views and conclusions contained herein are those of the author
and should not be interpreted as necessarily representing the official policies, ei-
ther expressed or implied, of the Defense Advanced Research Projects Agency or
the United States government. APPROVED FOR PUBLIC RELEASE. DISTRI-
BUTION UNLIMITED.

SR Internetioneal

333 Ravenswood Ave. * Menlo Park, CA 94025
{4157 326-6200 « TWX: 910-373-2046 » Telex: 334-486

international
LR AV,
N P ®

Abstract

The path-indexing method for indexing first-order predicate calculus terms is a refinement
of the standard coordinate-indexing method. Path indexing offers much faster retrieval at a
modest cost in space. Path indexing is compared with discrimination-net and codeword in-
deﬁng; While discrimination-net indexing may often be the preferred method for maximum
speed, path indexing is an effective alternative if discrimination-net indexing requires too
much space or in certain cases in which discrimination-net indexing performs particularly

poorly.

1 Introduction

Artificial intelligence (AI), logic programming, and automated deduction systems are often
required to deal with large amounts of symbolic information. The need to store large
amounts of information is met in conventional applications by database systems, but the
form of the data in Al logic programming, and automated deduction applications requires
somewhat different techniques, particularly in the context of indexing the data for effective
retrieval. 7

It is necessary in these applications to retrieve entries that are indexed by values that are
at least as general as first-order predicate calculus terms. A first-order predicate calculus-
term is either (1) a constant, (2) a variable, or (3) an n-ary function symbol applied to n
term arguments. Examples are the constant terms John, widget, and 3.1416; the variable
terms z and ¥; and the composite terms (e + z) — 3, father(John), and append(nil, z,).
Conventional databases can easily index only constant terms, e.g., numbers and strings.

Besides retrieving exact matches or accepting any value as in conventional da.ta.ba.se‘
retrieval operations, it is necessary, for example, to be aBle to specify retrieval of all stored
terms that are unifiable with = + (—=).

Terms can be related in several ways. A pair of terms can be equal, or equal except for

the names of the variables, i.e., the terms are variants. One term can be an instance of

another—the first is equal to the second with terms substituted for its variables. Conversely,
one term can be a generalization of another. Finally, the terms can be unifiable, i.e., have
a common instance.

Retrieval on a field containing keys that are first-order predicate calculus terms may

require finding terms in the database that are

; Equal to the term in the retrieval request

e Varjants of the term in the retrieval request

o Instances of the term in the retrieval request

» Generalizations of the term in the retrieval request

o Unifiable with the term in the retrieval request.

The need for each form of retrieval can be illustrated in the field of automated deduc-
tion [1,11]. Automated deduction systems often require all these forms of retrieval. Other
applications, such as logic programming and expert systems, often use only a subset. To
determine if a newly derived formula is already present in the database, it is necessary to
retrieve terms that are equal to or variants of the new formula. It is necessary to find in-
stances (resp., generalizations) of a newly derived formula to perform equality simplification
or subsumption® of formulas in the database by the new formula (resp., of the new formula
by formulas in the database). Other operations, such as fesolution, may require unifiable
terms. Prolog inference, as a special case of resolution, requires retrieval of clauses whose
head literal is unifiable with the current goal.

The path-indezing method we propose is a refinement of the coordinate-indezing metho&
that was proposed for the PLANNER. Al programming language [4] and was used in the
Logic Machine Architecture (LMA) [7} for implementing deduction systems (where it is
called FPA indezing). Path indexing offers substantially faster retrieval in exchange for a

modest increase in storage cost.

'In deduction, subsumption is the deletion of assertions that are instances of more general assertions. It

is done to eliminate redundant information and reduce the size of the search space..

/ \
1/ A2
/ \
[n] [n]
FAR
1/ 1 \3
/! 12\
o] o] [s]
/\
1/ \2
/ \
o] o]

Figure 1: Tree corresponding to term f(a, g(b, z, h(y, 2))).

Section 2 contains a description of the simple and familiar coordinate-indexing method.
Section 3 defines the new path-indexing method, which is easily understood by comparing
it with the coordinate-indexing method. An implementation approach is given in Sec-
tion 4. Path indexing is compared with coordinate indexing in Section 5 and compared

with discrimination-net and codeword indexing methods in Section 6.

2 Coordinate Indexing

The term ¢t = f(a, g(b,z, h(y, z))) can be specified by a mapping Symbol; from the coordi-
nates (), (1), (2}, (2,1}, (2,2), (2,3), (2,3,1), (2,3, 2) of the tree in Figure 1 to the symbols

in 1:

Symboly((})
Symbol,((1))
Symbol,((2))

Symbol,((2, 1))
Symboly((2,2))
Symboly((2, 3))
Symboly({2,3,1))
Symboly({2,3,2))

12 T T I O ¢ O [
* ¥ > X, oow@m g o

Let Terms be the set of terms stored for possible retrieval. Then the following can be
used to define methods for retrieving those terms in Terms that are variants of, instances
of, generalizations of, or unifiable with a term.® GetVariants({),t) returns a subset of
Terms that includes all variants of t; GetInstances({),t) returns a subset that includes
all instances; GetGeneralizations({),t) returns a subset that includes all generalizations;
GetUnifiables((},t) returns a subset that includes all terms unifiable with ¢. If ¢ and Terms
are all linear terms, i.e., do not contain repeated variables, then these retrieval operations
are exact. If there are nonlinear terms, extra terms may be retrieved.r The expression p -4
denotes the coordinate p extended by i, e.g., (2) -3 is (2,3). |

Let ‘GetTerms(p, s) = {t € Terms|Symbol,(p) = s}. Retrieval formulas will be com-
posed of set union and intersection operations applied to GetTerms sets. Methods for

| efficiently computing the GetTerms sets and their unions and intersections are described

in Section 4.

GetVariants(p,z) = GetTerms(p,*)
GetVariants(p,a) = GetTerms(p,a)
GetVariants(p, f(11,...,1n)) = GetTerms(p, f)N
GetVariants(p-1,£)N---N,

GetVariants(p - n,ty)
GetInstances(p,z) = Terms*
GetInstances(p,a) = GetTerms(p,a)

GetInstances(p, f(t1,...,tp)) = GetTerms(p, f)N
GetInstances(p-1,t1)N-+-N
GetInstances(p - n,t,)

2These indexing methods ignore the identity of variables, so all are replaced by ».
3BEqual terms can be retrieved by retrieving all variants and checking them for equality. If there is

sufficient need for equal retrievals, each term can be stored twice, the second time with its variables indexed
as if they were constants. Equal terms can then be found by retrieving variants of the term in the retrieval

request, with variables again treated as if they were constants.

GetGeneralizations(p,z) = GetTerms(p,*)
GetGeneralizations(p,a) = GetTerms(p,*)U GetTerms(p,a)
GetGeneralizations(p, f(t1,...,11)) = GetTerms(p,*)U
‘ (GetTerms(p, f)N
GetGeneralizations(p-1,4;)N---N

GetGeneralizations(p - n,t,))

GetUnifiables(p,z) = Terms
GetUni fiables(p, a) GetTerms(p,+) U GetTerms(p,a)
GetUni fiables(p, f(t1,...,tn)) = GetTerms(p,*)U
(GetTerms(p, f) N
GetUni fiables(p-1,4,))N---N
GetUnifiables(p- n,t,))

For example, instances of the term f(a, g(b,z, h(y, 2))) can be retrieved by

GetTerms((), /)N

GetTerms({1),a)n

GetTerms({2),g9)N (1)
GetTerms((2,1),5)N

GetTerms({2,3),h)

and terms unifiable with it can be retrieved by

GetTerms({), f) 7
GetTerms({1),*) 8 GetTerms({1),a)
GetTerms((),+)U " GetTerms((2), g)
GetTerms((2),+)U | GetTerms((2,1), *)8 GetTerms((2,1),b)
GetTerms((2,3), *) 8 GetTerms((2,3),h)

(2)

“Occurrences of Terms are effectively ignored, since the retrieval formula Terms N X can be simplified

to X.

3 Path Indexing

While coordinate indexing certainly yields the correct result, each GetT'erms may contain
many irrelevant terms. In particular, GetTerms({(}, f) is a set of all the terms whose top
function symbol is f, fega.rdless of the arguments, and GetTerms((1),a) returns a list of
all terms whose first argument is a, regé,rc_iless of the top function symbol.

Coordinate indexing describes terms by a mapping from coordinates to symbols. Path
indexing describes terms by a mapping from paths to symbols. The term ¢ = f(a, g(b, z, h(y, 2)))
can be specified by a mapping Symbol, from the paths (}, {f,1), {f,2), {f,2,9,1),{f,2,9,2),
{f,2,9,3),{f,2,9,3,h,1),{f,2,9,3,h,2) from the root node to the nodes of the tree in Fig-

ure 1, with function symbols included, to the symbols in

Symboly({})) =f
Symboly({f,1)) =a
Symbol,({f,2)

Symbol:((f,2, 9, 1)
Symboli{{f,2,9,2)
Symboly{{f,2,g,3)
Symbol({f,2,9,3,h,1

)
)
) =g
) =6
)
)
)
Symboly({f,2,9,3,h,2))

)
)
Symboly({f,2,9,1})) = b should be interpreted as saying that f has the symbol b as the
first argument of g, which is the second argument of the top function symbol f. Thus,
 GetTerms({f,2,9,1),b)in the pa.th-indexjn'g method has the same value as GetTerms({}, f)N
GetTerms({2),g) N GetTerms({2,1),b) in the coordinate-indexing method.

Let Tewﬁs be the set of terms stored for possible retrieval. Then the following can
be used to define the path-indéxing method for retrieving those terms in T'erms that are
variants of, instances of, generalizations of, or unifiable wit}l a term. If t and Terms are

all linear terms, i.e., do not contain repeated variables, then these retrieval operations are

exact. If there are nonlinear terms, extra terms may be retrieved. The expression p- f -4

*These indexing methods ignore the identity of variables, so all are replaced by .

denotes the path p extended by the i** argument position of function f, e.g., {f,2)-g-3
is {f,2,9,3). The cases of terms with all variable arguments f(z,,...,2,) and not all

variable arguments f(t1,...,%,), where at least one f; is assumed not to be a variable, are

distinguished in GeiInstances and GetlUni fiables.

Let GetTerms(p,s) = {t € Terms|Symboly(p) = s). Retrieval formulas will be com-
posed of set union and intersection operations applied to GetTerms sets. Methods for

efficiently computing the GetTerms sets and their unions and intersections are described

in Section 4.

GetVariants(p,z) = GetTerms(p,*)
GetVariants(p,a) = GetTerms(p,a)
GetVeariants(p, f(t1,...,tn)) = GetVeriants(p- f-L,t1)N---N
GetVariants(p- f - n,tn)

GetInstances(p,z) = Terms®
Getlnstances(p,a) = GetTerms(p,a)
GetInstances(p, f(z1,...,%2)) = GetTerms(p, f)
Getlnstances(p, f(t1,...,1s)) = GetInstances(p-f-1,4;)N---N
GetInstances(p - f - n,1,)

GetGeneralizations(p,z) = GetTerms(p, *)
GetGeneralizations(p,a) = GetTerms(p,*)U GetTerms(p,a)
GetGeneralizations(p, f(f1,...,1s)) = GetTerms(p,*)U
(GetGeneralizations(p- f-1,3) N+ N
GetGeneralizations(p- f - n,1,))

GetUnifiables(p,z) = Terms

8Qccurrences of Terms are effectively ignored, since the retrieval formula Terms N X can be simplified

to X.

GetUnifiables(p,a) = GetTerms(p,*)U GetTerms(p,a)
GetUni fiables(p, f(z1,...,2n)) GetTerms(p, *)U GetTerms(p, f)
GetUni fiables(p, f(t1,...,1n)) GetTerms(p,*)U
(GetUnifiables(p- f-1,t1)N---N
GetUnifiables(p- f - n,1,))

For example, instances of the term f(a,g(b, z,h(y, z))) can be retrieved by

GetTerms({f,1),a)N
GetTerms((f,2.9,1),b)n 3)
GetTerms({f,2,g9,3),h)

and terms unifiable with it can be retrieved by

GetTerms({f,1),*)U GetTerms({f,1),a)
n
GetTerms((},)U GetTerms({f,2,9,1),*)U GetTerms((f,2,g,1),b)
GetTerms({f,2),*)U n
GetTerms({f,2,g,3),*)U GetTerms((f,2,¢,3),h)

(4)

4 Implementation

An efficient implementation of coordinate or path indexing depends on (1) efficiently com-
puting GetTerms sets and (2) efficiently computing unions and intersections of GetTerms

sets.

4.1 Compufing GetTerms Sets

For the fastest retrieval, the set of terms in GetTerms(p,s) for coordinate or path p and
symbol s is explicitly stored. Thus, for each term in Terms (the set of all terms stored for
possible retrieval), a pointer to the term is stored in a GetTerms set for each symbol in the
term.

There is a large enough nurmber of GetTerms sets to make it necéssa.ry to consider how

to find the GetTerms(p, s) sets efficiently given p and s.

One approach is to store GetTerms(p, s) in a hash table. For example, hash(p, s) could

compute an integer index = into array A such that
A(n) = {(pi, 5i, GetTerms(p;, s:))lhash(p;, si) = n}.

GetTerms(p, s) could be found, if present, by comparing p and s with each p; and s; in
A(n).

An implementation should take account of the frequent occurrence of common initial
subsequenées of coordinates or paths to reduce unnecessary computation and storage costs.
For example, computing hash({f,2,g,1),b) and hash({f,2,g,3),h) can share the cost of
computing a hash value for the common initial subsequence {f,2,g) of the two paths.
Likewise, the two paths can be stored in the hash table with structure sharing of the
common initial subsequence.

A second approach is to construct a discrimination net [2] (also see Section 6.1) for keys
(p,s) and to find GetTerms(p, s) by traversing the nodes of the discrimination net in accord
with (p, s).

Nodes in the discrimination net are reached from their parent nodes by integer and

symbol lookup operations:

ip: node X integer — node

slp: node X symbol — node.

The discrimination-net node N corresponding to the end of the path p = (f,2,¢,1}, for

example, can be found by

N = ilp(slp(ilp(slp(No, £),2), 9), 1),

where Np is the top node of tHe discriminatipn net. The #lp integer lookup operation can
be implemented as an array reference operation. The slp symbol lookup operation can
be implemented as a hash table or association list lookup operation, or an array reference
operation on an integer corresponding to the éymhol. Array references on integers corre-

sponding to the symbol provide fast constant-time symbol lookup, but can be wasteful of

space if the number of symbols is large and nodes often have few successors. Association
lists provide space-efficient nonconstant-time symbol lookup that is fast if the number of
successors is small. Hash tables provide nearly constant-time symbol lookup with space
requirements that may be between those of the other techniques.

The value of GetTerms(p, *) is stored in a field of node N; the value of GetTerms(p, s)
is stored in a field of node slp(N, s).

This approach eliminates the need to store p and s with GetTerms(p,s) as in the
hash table approach and eliminates the need to compare p and s with stored p;s and s;s.
The absence of this comparison may make the discrimination-net approach asymptotically

superior, although the hash-table approach may still perform well in practical cases.

4.2 Computing Unions and Intersections of (GetTerms Sets

The set union and intersection operations specified in the retrieval formulas can always be
done in time proportional to the sum of the sizes of the GetTerms sets if each entry has
an extra mark field.

For example, Eq (3) for retrieving instances of f(a, g(b,z, 2(y, z))) by path indexing can
be computed by the algorithm

1. Mark with 1 every entry in GetTerms({f,1)},a).

2. Mark with 2 every entry in GetTerms((f,2,g,1),b) that is now marked with 1.

3. Retrieve every entry in GetTerms({f,2,g,3),h) that is now marked with 2.

Equation (4) for retrieving terms unifiable with it can be computed b_;,r the algorithm

1. Mark with 1 every entry in GetTerms({f,1),a) or GetTerms({f,1},%).

2. Mark with 2 every entry in GetTerms({f,2,g,1),b) or GetTerms({f,2,¢,1),*) that
is now marked with 1.

3. Retrieve every entry in GetTerms({f,2,g,3),h) or GetTerms({f,2,¢,3),+) that is
now marked with 2.

4., Retrieve every entry in GetTerms({f,2),+) that is now marked with 1.

5. Retrieve every entry in GetTerms({),*).

10

5 Comparison of Coordinate and Path Indexing

Coordinate and path indexing return identical results, but path indexing can he expected
to result in substantially faster retrieval than coordinate indexing,.

The price for this increase in speed is a modest increase in storage cost. The same
number of pointers to terms are stored in both methods, but they are divided into a larger
number of GetTerms sets in path indexing than in coordinate indexing. The extra storage
cost comes from the extra indexing structure required to distinguish among all the paths of
the terms instead of all the coordinates of the terms.

Path indexing appears to be more feasible for storing and retrieving unordered collections

of terms.

5.1 Retrieval Time

Inspection of the definitions of GetVariants, GetInstances, GetGeneralizations, and
GetUnifiables for coordinate and path indexing immediately reveals the reason for the
expected superiority of path indexing’s retrieval time. Path indexing consistently performs
set union and intersection operations on sets of terms that can reasonably be expected to
be much smaller than those in coordinate indexing,.

Consider Eq. (1) and Eq. (3) , which describe the retrieval of instances of f(a, g(b, z, h(y, 2)))

by the two methods. Path indexing computes the intersection of the sets

GetTerms({f,1),a)
GetTerms({f,2,¢,1),b)
GetTerms({f,2,9,3),h)

whereas coordinate indexing computes the intersection of the probably larger, and certainly .

not smaller, sets

GetTerms((1),a)
GetTerms((2,1),b)
GetTerms((2,3),h)

11

which must still be intersected with the sets

GetTerms({),)
GetTerms((2),g)

Comparison of Eq. {(2) and Eq. (4) for retrieving terms that are unifiable with f(a, g(b, z, &(y, 2)))
" also demonstrates the expected superiority of path indexing’s retrieval time.

The following table shows the number of GetT'erms in the retrieval formula for coordi-
nate indexing and path indexing. Only in extreme cases (no function symbols or no function
symbols with nonvariable arguments) does path indexing require as many GetTerms as co-

ordinate indexing, and it never requires more.

Number of GetTerms in Retrieval Formula
Coordinate Path
Retrieval Type Indexing Indexing
Variant V+C+ F V+C
Instance C+ F C+ Fy
Generalization | V4+2C +2F | V4+2C+ F
Unifiable 2C 4+ 2F 204+ F 4+ Fy

V' = number of variable-symbol occurrences in retrieval term

C = number of constant-symbol cccurrences in retrieval term

F = number of function-symbol occurrences in retrieval term

Fy = number of function-symbol occurrences with only variable arguments in
retrieval term

The minimum number of symbol and integer lookups (slp and ilp operations) required
‘is the same for the two procedures:

e C + F symbol lockups.

o V+C+F-1 iﬁteger lookups for variant and generalization retrievals.

o C + F — 1 integer lookups for instance and unifiable retrievals.

The preceding is actually a worst-case analysis. Retrieval of some GetTerms sets and
some symbol and integer lookup operations can be eliminated if, for example, a symbol

lookup has no resulting node. This can happen because the discrimination net may contain

12

only those nodes necessary to index the terms actually stored, not all those that might
be used in retrieval requests. The more detailed indexing by function symbol and argu-
ment position of path indexing, as compared with indexing by argument position only in
coordinate indexing, makes this elimination of effort more likely in path indexing than in
coordinate indexing. This further enhances the superiority of path indexing.

The smaller size of the GetTerms sets for path indexing is a major contributor to
the method’s superiority over coordinate indexing. However, the magnitude of the size
reduction of GetTerms sets depends on the stored terms themselves, so we cannot present

a formal comparison.

5.2 Storage Cost

Storage cost is modestly greater for path indexing than for coordinate indexing.

We expect each GetTerms(p, s), the set of all terms with symbol s at coordinate or end
of path p, to i)e stored explicitly. For each symbol occurrence in a stored term ¢, a pointer
to t will be stored in one of these GetTerms sets. Thus, for both coordinate and path
indexing, the total number of pointers to stored terms, or the total size of the GetTerms
sets, is the just the sum of the number of symbols of all the stored terms.

Although pointers to terms are stored in exactly the same number of GetTerms sets,
there are more sets for path indexing than for coordinate indexing. Thus, the number of
nodes in the discrimination net used to locate GetTerms sets is greater for path index-
ing than coordinate indexing. The number of nodes is related to the number of possible
coordinates in coordinate indexing and to the number of possible paths in path indexing.

For example, consider the following rewrites which form a complete set of reductions for
free groups. When they are used to simplify terms, their left-hand sides must be indexed

for retrieval:

fle,z) — =
flz,e) — =

flg(z),z) — e

13

fe,g(z)) — e
f(flz9),2) = flz, f(y,2))

gle) — e

oo(=) - 2

flg(z) f(z,9)) = v

£z, £o()) = v

9(f(z,) — fle(y),9(z))
The size of GetTerms sets for the stored left-hand sides is shown below.
Coordinate Indexing Path Indexing
|GetTerms({}, f)l =7 |GetTerms{({}, f)| =7
|GetTerms({),q) = 3 |GetTerms({},q)| =3

|GetTerms({1), x)| = 3 |GetTerms({f,1),*)| =3
|GetTerms({1},e)| = 2 |GetTerms({f,1},e)| =1
|GetTerms({g,1}),€e})| =1
|GetTerms({1), f)| =2 |GetTerms({f,1}, f)|=1
|GetTerms({g,1), f)|=1
|GetTerms({1),g)| =3 |GetTerms({f,1),g)| = 2
|GetTerms({g,1),g)I=1
|GetTerms({2),+)| = 3 |GetTerms({f,2),*)| =3
|GetTerms((2),e)] =1 |GetTerms({f,2),e)] =1
|GetTerms{(2},)| = 2 |GetTerms((f,2), f)1=2
|GetTerms({2),g)| = 1 |GetTerms({f,2),g})|=1

|GetTerms({1,1),%)[=5 | |GetTerms((f,1, f,1),%)|=1
|GeiTerms({f,1,9,1),+)| = 2
|GetTerms({g, 1, f,1),%)|=1
|GetTerms({g,1,9,1),%)|=1
|GetTerms((1,2),*)| = 2 (GetTerms({f,1,f,2),+)| = 1
]GetTermS((,gs 13 fs 2)1 *) =1
|GetTerms({2,1),%)] = 2 [GetTerms((, f,2, f,1),%)|=1
|GetTerms((, f,2,9,1),%)| =1
GetTerms({(2,1),9)| =1 |GetTerms({, f,2, f,1),9)|=1
GetTerms{(2,2),*)| =2 GetTerms((, f,2, f,2),*)|= 2
|GetTerm5((2, L,1),+)|=1 | |GetTerms((, f,2, f, 1,9, 1)1 +)|=1

The indexing structure for these terms requires 24 nodes for coordinate indexing and 38

nodes for path indexing. For coordinate indexing, each of 16 GetTerms sets is stored in a
single node and 8 additional nodes represent coordinates: (), (1), (2}, (1,1), (1,2}, (2,1},
(2,2), (2,1,1). For path indexing, each of 24 GetTerms sets is stored in a single node and
14 additional nodes represent partial paths: {}, (f,1), {f,2}, {(g,1}, {f,1, f, 1), {f,1, 1,2},
(f,1,9,1%,{f.2, f,1),{f,2, f,2), {f,2,49,1), (9,1, f, 1), (9,1, f,2},{g,1,9,1},{f.2, f,1,9,1).

14

An optimization that reduces the length of paths and number of nodes for path indexing
follows from the observation that if g is a unary function, the path {g,1, f, 1) could instead
be given as {g, f,1) because an argument of g is always argument number 1. In a further
optimization, 1 ‘ca.n a.lwa.ys be omitted, so that {f,1,¢,1) and {f,2,¢,1), which denote the
first argument position of g in the first argument position of f and the first argument

position of ¢ in the second argument position of f, would instead be written as (f, g) and

(f:2'ig)‘

5.3 Application to Unordered Terms

. Path indexing’s retrieval of smaller sets that more precisely match the term in the retrieval
request makes it more feasible to change the definition of path to allow retrieval of unordered
collections of terms.

Suppose, for example, that j is a commutative function. If the term ¢t = j(a,b) is stored,
we would want to retrieve it if seeking variants of j(b,a) or instances of j(z,a). Although
in this case it would be easy to retrieve variants of both j(a,b) and j(b,a) or instances of
both j(e,z) and j(z,a), this would bé more complex and costly‘in cases where the terms
have more than one function with unordered arguments.

Storage of j(a,b) would ordinarily be done in path indexing according to the relation

Symboly(()) =7
Symboly({,1)) =a
Symboly((7,2)) =b
Thus, pointers to ¢ would be stored in the sets GetTerms({),), GetTerms({j,1),a),
and GetTerms((j,2),b).
In a refinement of path indexing for unordered terms, j(a,) could be stored according.

to the relation

Symboly((})) =3
Symboly((7,7)) =a
Symboli((7,7)) =1b

15

where Symbol,({7,7)) = a specifies that ¢ occurs as an argument of top function symbol j.
Thus, pointers to ¢ would be stored in the sets GetTerms((), 7), GetTerms({7,?},a), and
GetTerms({j, ?},b).

The GetVariants, Getl nstaﬁces, GetGeneralizations, and GetUnifiables retrieval
formulas are likewise modified to substitute 7 for argument indices in the case of unordered
arguménts.

This is more feasible in path indexing than coordinateindexing. Doing likewise in coordi-
nate indexing would result in pointers to ¢ being stored in GetTerms({),) GetTerms({?},a),
and GetTerms((?),b). But sets like GetTerms({?),a) appear to be too undiscriminating
in their membership to be practically useful, since they contain all terms with unordered

argument a regardless of function symbol.

6 Comparison with Other Indexing Methods

6.1 Discrimination Net

In refining the coordinate-indexing method to obtain the path-indexing method, we made
retrieval more sensitive to context. We would retrieve GetTerms({f,1), a), the set of all
terms with ¢ as the first argument of top function symbol f, instead of GetTerms({1},a),
the set of all terms with a as the first argument regardless of function symbol.

Retrieval can be made even more sensitive to context. To make retrieval sensitive to all
symbols to the left of the current one, the term ¢ = f(a, g(b, z, A(y, 2))) can be specified by

a mapping Symbol; of the tree in Figure 1 to the symbols in {:

Symboly((}) =F

Symboly({f})) =a
Symboly((f,a}) =g
Symboly({f,a,9)) =1
Symboly({f,a,q,b)) =+
Symboly({f,a,g,b,%}) =h

Symboli({f,a,9,b,%,h)) =

Symboly({f,a,g,b,x,h, %)) =%

16

This mapping supports the use of a discrimination net or trie [2,3,6]. A discrimination
net can be used to store the strings of symbols obtained by the preorder traversal of terms
to be indexed.

Nades in the discriminaﬁon net are reached ffom theirrpa;rent nodes by the symbol

lookup operation:®

slp: node x symbol — node.

The sip symbol lookup operation can be implemented in a variety of ways as discussed in
Section 4.1. Terms can be stored in the terms field of nodes. Let Ny be the top node of
the discrimination net.

Let Terms be the set of terms stored for possible retrieval. For each term ¢ in Terms

with preorder traversal {(s1,...,sn} (e.8., {f,6,9,b, %, h, %, %) for t = f(a,g(b, z, h(y, 2)))),

t € terms(slp(---(slp{No, 51),-), 8n))-

The following can be used to define methods for retrieving those terms in T'erms that are
variants of, instances of, generalizations of, or unifiable with a term. GetVariants(No, (t})
returns a subset of Terms that includes all variants of t; Getinstances(Ny,(t)) returns
a subset that includes all instances; GetGeneralizations(Ny,(t)) returns a subset that
includes all generalizations; GetUni fiables(Ng, (t)) returns a subset that includes all terms
unifiable with ¢. If { and Terms are all linear terms, then these retrieval operations are

exact. If there are nonlinear terms, extra terms may be retrieved.

GetVariants(N,()) = terms(N)
GetVariants(N,(z,12,...,tm)) = GetVariants(slp(+),{ta,...,im))
GetVariants(N,{a,t3,...,tm}) = GetVariants(sip(a),(tz,...,tnm))

GetVariants(N, (f(t,...,t) t2,. ., tm)) = GetVariants(slp(f), (1, tnst2,-- .y tm))

TAsin coordinate and path indexing, we ignore identity of variables, so all are replaced by *. It is feasible
instead to retain variable names and bind variables while traversing the discrimination net. 'The search for

terms can then be pruned when variable bindings conflict [6).
8To simplify this description, we treat * as any other symbol. To save lookup time, the successor node

for a variable should be stored in a separate field in the node.

17

GetInstances(N,{(}) = terms(N)

GetInstances(N, {*,12,...,tm}) U GetInstances(M, (t2,...,tm))
MeSkip(N) ‘

GetInstances(sip(a), {iz,...,tm))
GetInstances(sip(f), {t],- -1 lnst2y -+ tm})

GetInstances(N,{a,t2,...,1m})
GetInstances(N,{f(1],.. . i)y t2, -y tm))

Il

 GetGeneralizations(N,(}) = terms(N)
GetGeneralizations(N,(z,13,...,tm)) = GetGeneralizations(slp(),(t2,...,tm))
GetGeneralizations(N,{a,12,...,tm)) = GetGeneralizations(slp(*),{t2,...,tm))U
GetGeneralizations(sip(a), {t2, ..., tm))
GetGeneralizations(N, {f(11,...,t,),t2,. .., tm)) = GetGeneralizations(sip(*),{t2,...,tm}) U

= GetGeneralizations(slp(f), {1, - - thst2, e« ytm))

GetUnifiables(N,(})) = terms(N)

GetUnifiables(N, (*,12,.. ., tm)) = J GetUnifiables(M,{t2,...,tm))
MeSkip(N)

GetUnifiables(N,{a,ty,...,tm)) = GetUnifiables(sip(+),{ta,. .. tm)) U
GetUni fiables(slp(a), (Lo, - -, tm))
GetUnifiables(N, (f(1],...,tn) t2,- -y tm)) = GetUnifiables(slp(*),{t2,...,tm)) U
= GetUnifiables(slp(f),{t], -, tnst2s--rtm})

One auxiliary function is necessary. Skip(NN) is the set of nodes in the discrimination -
net obtained by skipping over all the descendant nodes that correspond to skipping a single
term. For all symbols s for which sip(N, s) is defined, if s has arity 0 (s is a constant or *),
then slp(N,s) € Skip(N); if s has arity n > 0, then Skip"(sip(N,s)) C Skip(N).

The Skip function can be implemented as described or, alternatively, the value of
Skip(N) can be stored as an explicit list in node N. The latter should be much more
efficient, since it eliminates arity computations and traversing intermediate nodes. The
extra storage required for such lists is negligible. Although Skip lists can be long, any node
can only be an element of a single Skip list, so the cumulative cost of Skip lists is one list

element per node.

18

Unlike coordinate and path indexing, discrimination-net indexing does not use GetTerms
sets and does not need to compute any intermediate results by set union and intersec-
tion operations. Discrimination-net indexing retrieves all terms in terms(N) for all nodes
N in the final recursive calls of GetVariants, GetInstances, GetGeneralizations, and
GetUnifiables.

In coordinate and path indexing, the number and size of the GetTerms sets is usually
the dominant factor in retrieval time. In discrimination-net indexing, the number of symbol
lookup operations is the dominant factor.

For variant retrieval, ¥ + C symbol lookup operations must be performed, where F' is
the number of function symbols and C is the number of constant symbols in the retrieval
term. As noted before, sip(*) operations for variables should not be performed by real
symbol lookup operations and are therefore not counted here.

For generalization retrieval, the number of symbol lookup operations is only exponen-
tially bounded by the number of symbols in the retrieval term. For example, retrieval of
generalizations of the term f(a1,...,a,) with n-ary function symbol f and constant argu-
ments a,,...,4, Mmay require 2" symbol lookup operations (fewer if successor nodes do not
always exist).

For unifiable and instance retrievals, the number of symbol Iookup operations is no
Ionger bounded by the number of symbols in the retrieval term. The number of symbol
Iookup operations depends in part on the size of the sets of nodes computed by Skip(N),
which depends on the number and structure of the stored terms.

A contrived example to demonstrate the possibility of poor behavior in djscr-inﬁnatiom
net indexing is the storage of the addition table plus(m,n,m +n) for m and = in the raﬁge
[0,999]:

plus(0, 0, 0)

plus(0, 999, 999)
plus(1, 0, 1)

plus(999, 999, 1998)

and the retrieval of instances of plus(z,y,150). Path indexing immediately finds the so-
lutions in GetTerms({plus,3),150) while discrimination-net indexing must traverse essen-
tially the entire discrimination net, whose size exceeds 1 million nodes. On the other hand,
discrimination-net indexing immediately finds instances of plus(70, 80, z) while path index-
ing intersects the 1,000-element GetTerms({plus,1),70) and GetTerms({plus,2),80) sets
in time proportional to the sum of the sizes of the sets.

For several years, one of our deduction systems [9] relied on the undocumented use of
discrimination-net indexing. We developed path indexing as an alternative to discrimination-
net indexing to overcome some limitations of discrimination-net indexing. We had been
dissatisfied with our handling of functions that are associative and/or commutative. A pro-
vision for unordered arguments in path indexing partially addresses this concern (see Sec-
tion 5.3). Discrimination-net indexing can have variable storage requirements and retrieval
times that are sensitive to the encoding of the input. For example, storing father(john, bill)
and father(john, mary) requires fewer nodes then storing them with argument order re-
versed because they have common initial instead of common tail subsequences in their pre-
order traversals. Storage requirements and retrieval time in path indexing do not depend
on argument order. Storage requirements for discrimination-net indexing can sometimes be
excessive. Path indexing generally requires less space.

Nevertheless, discrimination-net indexing remains very competitive. Discrimination-
net indexing performs no set union and intersection operations. Variant retrieval is very
rapid. Generalization retrieval also often performs well, despite the absence of a polynomial
bound on the number of symbol lookup operations based on the size of the retrieval term.
McCune has suggested that discrimination-net indexing be used specifically for retrieving
generalizations [6] and has investigated its use for other types of retrieval. Although the
number of symbol lookup operations is not bounded by the size of the retrieval term for
instance and unifiable retrievals, instance and unifiable retrieval can be accelerated by using
lists of pointers to successor nodes for skipped terms in the discrimination net instead of

traversing the skipped discrimination-net nodes. Retrieval time is still always bounded by

20

the number of stored terms and the size of the discrimination net.

Christian’s HIPER (HIgh PErformance Rewriting) system [3] for extended Knuth-
Bendix completion includes very efficient code for discrimination-net indexing. Permutation
of arguments in the retrieval term permits use of permutative, including commutative, but
not associative, functions. Qverwhelmingly more generalization than instance retrievals are
usually necessary in Knuth-Bendix completion. This diminishes the impact of possibly poor
behavior of discrination nets for instance retrieval. Christian’s linear term representation is
particularly efficient for use in discrimination-net retrievals because it includes the sequence

of symbols in the preorder traversal of the term.

6.2 Codeword Indexing

Another approach to indexing terms is codeword indezing [8,10]. We describe here the su-
perimposed codewrd indexing scheme of Ramamohanrao and Shepherd [8]. A superimposed
codeword indexing scheme for a conventional relational database generates a descriptor for
a record by ORing codewords associated with key values.

Consider the example of an employee(Name,Position,Department,Salary) relation.

Each possible field value has an associated code word, e.g.,

john 00010 00000 10000 jane 10000 00000 00001
clerk 01001 00000 00000 manager 00000 01000 01000
admin 00010 00100 00000 sales 00100 00000 10000
22000 00000 00010 00001 32000 01000 00000 01000

A descriptor for the record employee(john,clerk,admin,22000) is computed by OR-

ing the codewords for john, clerk, admin, and 22000:

john 00010 00000 10000
clerk 01001 00000 00000
admin 00010 00100 00000
22000 00000 00010 00001

01011 00110 10001

Query descriptors, such as for employea(_,clerk,admin,_), are computed by ORing
the codewords for all the specified fields:

21

clerk 01001 00000 00000
admin 00010 00100 00000
01011 00100 00000

A record might satisfy a query if the result of ANDing the descriptors is equal to the
query’s descriptor. False matches are possible because different terms may coincidentally
have similar descriptors. Their frequency depends in part on the number of fields, the
codeword length, and the distribution of 1-bits in the codewords.

In principle, the retrieval procedure ANDs each record descriptor with the query de-
scr-iptor. Whenever the result is equal to the query descriptor, the record is a possible
match for the query. In practice, retrieval can be made more efficient by using a bit-slice
representation of all the descriptors and examining only those bit-slices corresponding to
1-bits in the query descriptor.

To handle field values that are first-order predicate calculus terms, it is necessary to
extend this standard superimposed codeword scheme.

Unlike all the previously discussed forms of indexing, which can index on every symbol
in a ‘term, it is necessary in codeword indexing to specify which argument positions are
indexed.

For example, suppose terms such as p(f (a,X) ,d), p(X,d),p(£(a,b),X),and p(g(c,b),X)
are of interest and only the numbered positions of p(1(2,3),4) are indexed.

Using the codewords

01001 00000 00000
00000 01010 00000
10000 00000 00010
00010 00100 00000
00010 00000 10000
00000 00001 00001

m A0 o p

the example terms have the following descriptors obtained by ORing the codewords for the

field values and adding mask bits denoting fields that contain variables

p(f(a,X),d) 01011 00100 10000 0010
p(X,d) 00010 00100 00000 1**0
p(f(a,b),X) 01011 01010 10000 0001
p(g(c,b),X) 10000 01011 00011 0001

22

The final {four bits of each descriptor denote whether that field contains a variable. The
value “*’ for a mask bit indicates that this bit position is irrelevant for retrieval purposes;
it appears in mask bits corresponding to positions 2 and 3 of the term 1(2,3) where the
term is a fariable and fields 2 and 3 are absent.

Now suppose terms unifiable with p(f(a,X},Y) are to be retrieved. If the descriptor
bits are denoted by 1, 2, ..., 15 and the mask bits by m1, m2, m3, m4, then terms unifiable
with p(f(a,X),Y) will have codewords that satisfy the formula m1 OR ((4 AND 11) AND
(m2 OR (2 AND 5))). Thus, either (1) position 1 must be filled by a variable or (2) £ (bits
4 and 11) must be present and either (2a) position 2 is a variable or (2b) a (bits 2 and
5) must be present. Such retrieval formulas are reminiscent of those used in coordinate
indexing, but are less exact because they do not compare symbols, only bits from their
descriptors, and ignore their locations in the record.

This superimposed codeword indexing scheme was devised for indexing large Prolog
databases. Two obvious extensions are required for general and efficient indexing of terms
in broader contexts.

The first extension is just the specification of retrieval formulas for variant, instance,
and generalization terms as well as unifiable terms.

The simple ORing of codewords to form term descriptors creates a presumption that
where a value appears in a term does not matter. This is sometimes true, as in the employee
relation, where values of the Name, Position, Department, and Salary fields cannot ap-
pear in any other field. However, it is often necessary to distinguish between terms such as
f (g(.a,b) ,b) and £(g(b,a),a), which azre assigned the same descriptor by the above pro-
cedure. The second extension is to use different codewords for a symbol depending on the
position of its occurrence in the term, e.g., by rotating a symbol’s codeword some number
of bits depending on the position.

Codeword indexing has several advantages, notably simplicity, low storage requirements,
and use of efficient logical operations on bits.

However, it has several disadvantages. Perhaps most significantly, its time complexity

23

is O(N), where N is the number of stored terms, because the descriptor of each stored
term must be compared with the query. Performing this computation on bit-slices reduces
the amount of work (by performing operations only on bit-slices corresponding to 1-bits
in the query descriptor) a.ﬁd may employ parallelism to do the remaining work (logical
operations on bit-slices can be performed in computer-word-size chunks) but the method
remains O(N).°
" False matches can be returned if there are coincidentally similar descriptors. The other
methods are exact retrieval methods except in the case of nonlinear terms. They would
never retrieve a term with a constant or function symbol that failed to match a constant or
function symbol in the query.!?
Codeword indexing requires specification of which argument positions are indexed. If
terms of unrestricted size and structure are stored, codeword indexing will still be able to
index only the specified argument positions. This results in less complete indexing than the

other methods that can index every symbol in the term.

7 Conclusion

We have presented the path-indexing method for indexing terms. It is a refinement of the
standard coordinate-indexing method that was proposed for the PLANNER. Al program-
ming language and was used in LMA for implementing deduction systems. Path indexing
nearly always retrieves terms by computing unions and intersections of fewer, smaller sets of
terms than coordinate indexing. Path indexing requires somewhat more space than coordi-
nate indexing, but we expect that the substantially faster path indexing will nearly always
be useable whenever coordinate indexing is.

However, the superiority of path indexing over coordinate indexing does not demon-

strate that it should be the method of choice in general. We have described and partially

?Hierarchical codeword indexing may overcome the O(N) time requirement in practice, but this involves

the greater complexity of multiple indexing, initially with much wider codewords.
YOne consequence of this feature is that a faster version of the unification algorithm that does not check

whether constants and functions are identical can be used to unify the query with retrieved terms.

24

analyzed the behavior of two important alternative methods: discrimination-net indexing
and codeword indexing. Unfortunately, formal comparison of the methods will generally
fail to justify a preference for one method, since the worst-case assumptions employed by
most formal analyses are unrealistic, and average-case analyses are difficult to produce and
require definition of the average case.

Therefore, optimal selection of an indexing method may requife experiments on sets
of terms that occur in practice, with the correct proportion of variant, instance, general-
ization, and unifiable retrievals as well as addition and deletion operations. For example,
discrimination-net indexing mjght be preferable for some sets of terms if instance and unifi-
able retrieval is much less frequent than variant and generalization retrieval. Indexing terms
in more than one way (e.g., discrimination net for variant and generalization retrieval, and
path indexing for instance and unifiable retrieval) may be a useful approach to getting the
best performance.

We have formulated the following guidelines for selecting a method. If speed is the
paramount concern, discrimination-net indexing is likely to be best, although there are
exceptions to this rule. If storage requirements are an issue, or discrimination-net indexing
works poorly in a particular case, coordinate or path indexing can be used. The latter offers
much greater speed at the cost of some increase in space. If the amount of storage required
must be minimized, codeword indexing can be used. The bit manipulation operations in
codeword indexing are individually quite fast, but the method has the disadvantages that
retrieval time is linear in the number of stored terms, retrieval is less exact than for the

other methods, and terms cannot be indexed arbitrarily deeply.

References

[1] Chang, C.L. and R.C.T. Lee. Symbolic Logic and Mechanical Theorem Proving. Aca-
demic Press, New York, New York, 1973.

[2] Charniak, E., C.K. Riesbeck, and D.V. McDermott. Artificial Intelligence Program-
ming. Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1980.

25

[3] Christian, J. Fast Knuth-Bendix completion: summary. Proceedings of the 8rd Inter-
national Conference on Rewriting Technigues and Applications, Chapel Hill, North
Carolina, April 1989, 551-555.

[4] Hewitt, C. Description and theoretical analysis (using schemata) of Planner: a lan-
guage for proving theorems and manipulating models in a robot. Ph.D. dissertation,
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts, January 1971. :

[5] Knuth, D.E. The Art of Computer Programming: Sorting and Searching. Addison-
Wesley, Reading, Massachusetts, 1973.

[6] McCune, B. An indexing mechanism for finding more general formulas. Association for
Automated Reasoning Newsletter, No. 9 (January 1988), 7-8.

[7] Overbeek, R.A. and E.L. Lusk. Data structures and control architecture for implemen-
tation of theorem-proving programs. Proceedings of the 5th International Conference
on Automated Deduction, Les Arcs, France, July 1980, 232249,

[8] Ramamohanarao, K. and J. Shepherd. A superimposed codeword indexing scheme for
very large Prolog databases. Proceedings of the Third International Conference on Logic
Programming, London, England, 1986.

[9] Stickel, M.E. The KLAUS automated deduction system. System abstract in Proceedings
of the 8th International Conference on Automated Deduction, Oxford, England, July
1986, 703-704.

[10] Wise, M.J. and D.M.W. Powers. Indexing Prolog clauses via superimposed code words
and field encoded words. Proceedings of the 1984 International Symposium on Logic
Programming, Atlantic City, New Jersey, February 1984, 203-210.

[11] Wos, L., R. Overbeek, E. Lusk, and J. Boyle. Automated Reasoning. Prentice-Hall,
Englewood Cliffs, New Jersey, 1984,

26

