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Abstract

The manipulation of two dimenstonal elevation maps is an importiant part of digital car-
tography. In many situations, these maps are computed by interpolating sparse data such as
isolated elevation points obtained from stereo matching. In this paper, we present a surface
interpolation algorithm based on variational splines which is well suited to massively parallel
computers. Using multiresolution parallel relazation, we can efficiently compute the interpo-
lated surface and also have local control over its continuity and smoothness. We apply this
technique to sparse elevation data and to elevation contours, and show how to add realistic
fractal detail through stochastic relazation. We also present a multiresolution decomposition
algorithm and a fast parallel 3-D rendering algorithm.

1 Introduction

Digital cartography is an emerging field which concerns itself with the application of com-
puters to the creation and manipulation of maps [Hanson88]. The data being manipulated
can be represented in a variety of formats; of these, the digital terrain model (DTM} is one
of the most common and most general {USGS87]. A DTM represents the data using a two-
dimensional array which encodes some local feature such as elevation, terrain classification,
or cultural status.



The creation of digital terrain models often involves the interpolation of sparse elevation
data obtained through field surveys or aerial photogrammetry [Slama80]. Other common
operations include the alignment of data taken from different samples or sources, and the
automatic correction of errors or biases in the data. A variety of techniques have been
developed for doing surface interpolation [Fuchs77, Bartels87, Cendes87]. In this paper, we
will introduce a new class of interpolators based on variational splines [Ahlberg67]. These
interpolators are extremely flexible and allow local control over quantities such as continuity,
orientation, and smoothness. The variational splines are formulated using an optimization
framework which specifies the desirable properties for the interpolated solution (e.g., the
closeness of fit to the data and/or the smoothness of the solution).

The variational splines that result from this framework can be computed in two differ-
ent ways. The first involves triangulating the two-dimensional domain of the digital terrain
model using the sparse data points as corners and solving for the coeflicient of the polynomial
(spline) patches on each triangle. The second involves using a fine rectangular discretization
which corresponds to the final resolution of the map. This approach allows us to combine
information from various sources (e.g., low-resolution elevation maps obtained through pho-
togrammetry with high-precision survey measurements) and to have local control over the
model properties. This latter approach is the one which we adopt in this paper.

To convert the analytic (continuous) equations describing the variational spline into a
discrete set of equations, we use either finite difference or finite element analysis. The result-
ing set of equations can then be solved using parallel relaxation. These iterative algorithms
solve the system of equations by repeatedly setting each grid point to a weighted average of
its neighbors. They are thus extremely well suited to massively parallel architectures such
as the Connection Machinel M [Hillis85].

Unfortunately, the convergence of these relaxation algorithms can be quite slow. In
this paper, we show how multiresolution methods such as multigrid and preconditioning
with hierarchical basis functions can be used to accelerate this convergence. The resulting
algorithms have a performance which makes them suitable for real applications.

In addition to developing an efficient surface interpolation algorithm, we examine other
parallel algorithms for map manipulation. We show how a stochastic (random) generalization
of surface interpolation can be used to add fractal detail to our surface. This same approach
can also be used to quantify the uncertainty in our map estimates. We examine how to
provide a multiresolution description of the terrain model, which may be useful in the process
of extracting a reduced description based on prominent features. We also develop a fast
parallel rendering algorithm for displaying three-dimensional views of the surface.

The algorithms described in this paper have all been implemented on the Connection
Machine. Their suitability, however, is not limited to just fine-grained (SIMD) architectures
[Potter85]. Because of their regular structure, our algorithms are well suited to medium-
grained (MIMD) architectures and even vector or array processors. Some of these algorithms
have also been implemented on standard RISC architectures with good performance. Devel-



oping massively parallel algorithms thus allows us to use a wide range of current architectures
while anticipating the increasing parallelism of future computing hardware.

1.1 Overview

This paper starts in Section 2 with a review of surface interpolation using variational splines.
We present a mathematical formulation of the problem and discuss surface interpolation vs.
surface approximation. We also show how to achieve local control over both smoothness and
continuity. QOur variational formulation is compared to a Bayesian (probabilistic) formula-
tion. In Section 3, we derive the discrete equations for the surface (elevation map) and show
how they can be solved using local relaxation. We discuss two different acceleration methods:
multigrid relaxation, and conjugate gradient descent preconditioned with hierarchical basis
functions. In Section 4, we discuss how interpolation can be used for amplification, i.e., to
increase the resolution of the data and to fill in unknown areas. We also show how to add
fractal detail to the surface to increase the realism and how to use such random samples to
obtain a Monte Carlo esimate of the local uncertainty (variance) in the solution. Section 5
examines the opposite problem, that of reducing a terrain map to a more abstract or com-
pact form. We discuss how a relative multiresolution representation can be used to aid this
processes. Section 6 describes an efficient parallel algorithm for rendering 3-D views of the
terrain model with optional texture or intensity mapping from aerial images. We conclude
the paper with a discussion of the advantages and disadvantages of the two-dimensional
terrain model representation. '

2 Surface interpolation with variational splines

The problem of interpolating a two-dimensional surface such as an elevation map through a
set of data points is usually underconstrained, i.e., there are many possible surfaces which
pass through the given points. One way of resolving this problem is to heuristically choose
a good interpolating algorithm, e.g., to triangulate the domain and use piecewise linear
patches. Another possibility is to cast surface interpolation as an optimization problem,
e.g., to maximize the smoothness of the surface while minimizing the error of the fit to the
data points. This latter approach, which is called variational spline fitting [Ahlberg67], is
the one we adopt in this paper.

To formally characterize the optimization problem, we use regularization theory [Tikhonov77].
This mathematical technique imposes a weak smoothness constraint on the possible solu-
tions. The functional to be minimized

E(f) = &a(fi {p:}) + A&(f) 1)

is thus the weighted sum of two terms: the data compatibility constraint E4(f; {p:}) and the
smoothness constraint &(f). The regularization parameter A is used to adjust the closeness
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of the fit between the surface and the data. Regularization has recently been applied to a
wide range of problems in low-level computer vision [Poggio85a, Terzopoulos§6a].

2.1 Interpolation vs. approximation

The data compatibility constraint measures the distance between the collection of depth
values {p;} = {(u;,»,di)} and the interpolated surface f(u,v). In its simplest form, this
constraint is a weighted squares energy measure

f {ri}) Z ci (f(uiyv;) d')2 (2)

where the weights c; are inversely related to the variance of the measurements (¢; = o7%).
This weighting of the data allows us to combine both low-resolution data, such as that
obtained from large-scale photogrammetry, with high-resolution data obtained from field
surveys or more detailed photosurveys. It also allows us to take into account the inherently
uncertain nature of elevation measurements.

If we wish the surface to pass exactly through the data points (i.e., to have an inter-
polating instead of an approzimating solution), we can set the weights ¢; to a very large
value, or equivalently, we can set the regularization parameter A — 0. This does not pose
any significant complications in our framework (it is easy to represent sufficiently small or
large values using floating point numbers), but it may slow down the convergence of certain
algorithms such as conjugate gradient if we do not use the correct preconditioning (Section
3). In practice, we almost never desire a true interpolated solution since our data points are
never without error.!

Choosing an optimal value of A is an active area of research in regularization theory. A
powerful method for choosing this parameter is called generalized cross-validation [Craven79].
It involves minimizing the distance between each data point d; and the spline approximation
fit to the remaining data points. This approach is quite expensive, since for each sample
. value of A, n spline fits must be calculated, where n is the number of data points. A
simpler approach is simpl}r to adjust A until the variance of the residuals 7; = f(u;,v;) — d;
matches that of the noise model (¢?). A related method is process whitening [Maybeck82,
Marroquin85], which chooses a A tha,t makes the residuals as uncorrelated as possible. A
number of other approaches to this problem, including a new method based on maximum
likelihood estimation, are discussed in [Szeliski88].

1We could also formulate the regularization problem as min; &(f) such that |f(u;, ) — di| < € for all
i [PoggioB5al. However, problems of this sort are more difficult to solve and the utility of this formulation
seems questionable.



2.2 Smoothness and continuity

The smoothness constraint (or stabilizer, in regularization theory) is a functional or norm
of f(u,v) that encodes the variation in the surface. Two examples of possible smoothness
functionals are the membrane model

&N=3 ) [ (72 +72) duds,

which is a small deflection approximation of the surface area, and the thin plate model

&N =35 [ [ (Ftofit £2) dudv,

which is a small deflection approximation of the surface curvature (the subscripts indicate
partial derivatives) [Terzopoulos86b]. These two models can be combined into a single func-
tional

60N =35 [ [l 0) {1~ (o)l + F21 4 m(u,0) 2+ 262 + ) dudv (3)

where p(u,v) is a “rigidity” function, and r(u,v) is a “tension” function . The rigidity and
tension functions can be used to allow depth (p(u,v) = 0) and orientation (7(u,v) = 0)
discontinuities. The above smoothness constraint corresponds to a “generalized piecewise
continuous spline under tension” [Terzopoulos86b).

To see the effects of using various smoothness constraints, consider the nine data points
shown in Figure la. The interpolated solution using a membrane model is shown in Figure
1b. Note how the surface has visible peaks and dips corresponding to the location of the data
points. In practice, the membrane interpolator is not sufficiently smooth for cartographic
applications. The interpolated solution using a thin plate model is shown in Figure 1c. This
model may sometimes prove to be too smooth, but is often a good choice. The controlled-
continuity thin-plate is shown in Figure 1d. Note that a depth discontinuity has been
introduced along the left edge and an orientation discontinuity along the right.

2.3 Local control

The stabilizer £(f) described by (3) is an example of the more general controlled-continuity

constraint
0™ f(u,v)

Oui fvk

2

dudv (4)

m!
Jk!

&(f) = % i fwm(usv) Z

m=0 Ftk=m

This formulation allows us to have local control over the continuity and the smoothness of.
the interpolated solution. The values for the continuity and smoothness can be derived from
other cartographic features such as rivers, peaks or cultural features. We will present some
graphical examples of this local control in Section 4.
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Figure 1: Sample data points and interpolated solutions
(a) sample data points (b) membrane interpolant (c) thin plate interpolant (d) thin plate
with discontinuities



Discontinuities in the elevation map (tears) or in its orientation (creases) can be achieved
by locally setting w; = ws = 0 or w, = 0, respectively. These discontinuities usually occur
along lines or curves such as cliffs (for tears) or ravines and ridges (for creases).? In the
discrete formulation of our problem (Appendix A), these features are encoded using binary
line and crease variables.

Smooth variations in the w,, correspond to local variation in surface roughness.> These
can be obtained from a knowledge of the local topography (mountainous, rolling, flat, etc.).
We can also derive these parameters through a statistical analysis of our terrain model
[Anderssen74, Pentland84, Hewett36]. In the discrete formulation, local smoothness control
is achieved by making the w,’s discrete fields coincident with the elevation map (Appendix
A). The controlled-continuity constraint (4) can also be extended to model anisotropic sur-
faces [Boult86), i.e., surfaces such as parallel mountain ranges whose correlation or structure
is not rotationally symmetric. In our framework, this could be achieved by using a separate
coefficient in front of each partial derivative.

Lastly, we can incorporate non-linear constraints into our regularization framework. For
example, we could constrain the elevation map to have a local maximum at a known peak
location. We could also constrain certain areas of the map (such as man-made areas or
lakes) to be flat. These constraints result in discrete equations that are no longer linear
and are not directly amenable to the same optimization techniques which we study in this
paper. However, since the algorithms which we develop are iterative, the extension to non-
linear constraints is not too difficult [Platt88]. This should be a fruitful direction for future
research.

2.4 Relationship to Bayesian estimation

The energy-based framework for surface interpolation can be related to a probabilistic
(Bayesian) framework through the use of Gibbs distributions [Geman84]. In the Bayesian
framework, surface interpolation is cast as an optimal estimation problem. A prior model,
P(f), provides a statistical description of the surface which we are trying to reconstruct.
A sensor model, P({p;}|f), describes the noisy process by which the data points were sam-
pled from the surface. From these two distribution, we can compute the posterior model,

P(f|{p:}), using Bayes’ Rule

PUly) = THEIDS) )

where P({p;}) is used to normalize the posterior distribution. We can then compute the
Mazimum a Posteriori (MAP) estimate by finding the value of f which maximizes (5).4

2The problem of automatically detecting discontinuities in surfaces has been extensively studied in the
field of computer vision [Marroquin84, Blake87, Terzopoulos86b, Leclerc89].

3This is equivalent to having a spatially varying A.

4Other estimates can also be obtained from the posterior distribution [Marroquing5, Szeliski88], but for
our application they are equivalent to the MAP estimate.
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We can relate the Bayesian framework to the energy-based regularization framework by
setting

P(f) e exp(=&(f)) (6)
and
P({pi}|f) e exp (—Ea(f; {p:})) - : (7)
For this choice of prior and sensor models, we find that
P(f|{p:}) o exp (=€()) ®)

and that maximizing the posterior probability P(f|{p:}) is equivalent to minimizing the
energy £(f). The MAP estimate therefore corresponds to the usual minimum energy solution
obtained from regularization. ‘

This observation has been made before in the regularization literature [Kimeldorf70], but
it has not been exploited to a great degree. One way we can make use of this relationship
between energies and log probabilities is to build better sensor models. For example, the
probability distribution (7) corresponding to our weighted squares data constraint (2) is

From this, we see that our data constraint corresponds to an assumption that each elevation
d; is obtained by sampling the surface f at location (u;, v;) and adding independent Gaussian
noise with variance o?. More sophisticated sensor models which model gross errors or three-
dimensional uncertainty in position can be developed and integrated into the variational
framework by setting the data constraint energy to the negative log of the sensor probability
distribution [Szeliski88].

The prior model obtained by exponentiating a stabilizer of the form (4) is a correlated
(Gaussian field whose spectrum is determined by the order of the stabilizer (i.e., the choice of
Wy ’s) [Szeliski87]. For the membrane and thin plate models, the prior model is a stochastic
fractal, i.e., a random surface which is self-affine over scale [Mandelbrot82, Voss85]. While
this observation may sound counter-intuitive, it provides a statistical model for the surfaces
which we are interpolating. Having such a model allows us to generate typical samples from
this distribution which we can use to check the validity of our prior model [Geman§84].

Under the Bayesian interpretation, the posterior distribution P(f|{p;}) describes a family
of random surfaces drawn from the prior model which are consistent with the observed
data. The most likely sample from this distribution, the MAP estimate, corresponds to
the minimum energy solution of (1), as shown in Figure 1d. A fypical sample from this
distribution, which can be generated using stochastic relaxation (Section 3), is shown in
Figure 2. We can use such random samples to add realism to our interpolated surfaces and
to calculate the uncertainty in our surface estimates (Section 4).
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Figure 2: Random sample from posterior distribution

3 Parallel relaxation algorithms_

3.1 Finite element discretization

To minimize (1), we apply the finite element method, which provides a systematic approach
to the discretization and solution of variational spline problems [Terzopoulos83]. We dis-
cretize f(u,v) on a regular fine-grained mesh of nodal variables which coincides with the
digital terrain model we wish to produce. The advantage of such a representation is that it
is independent of the location of the data points. We can thus add more points or combine
data from different resolutions without changing the algorithm. 1t 1s also easier to represent
discontinuities and local variations in smoothness in this form. The regular fine-grained na-
ture of the mesh leads naturally to simple local parallel algorithms which can execute on a
massively parallel array of processors.®

Using a triangular conforming element for the membrane and a non-conforming rectan-
gular element for the thin plate [Terzopoulos83], we can derive the energy equations

Ey(x) = %(_E_) (@15 — 72 + (@1 — 22’ (10)

5The alternatives to our fine-grained discretization include finite elements defined over a data-dependent
triangulation of the domain [Fuchs77, Cendes87] and kernel splines [Boult86]. Non-regular (adaptive) grids
could also be used to give increased resolution where needed.
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for the membrane (the subscripts indicate spatial position) and

1. _
E(x) = k™2 ) [ (zigrg — 230 + Tic1,5)° (11)
(03) 4+ 2ATigr 01 = Tijpr — Tigr,j + Tij)?
+ (zi541 — 2255 + 24 5-1)7]

for the thin plate, where A = |Au| = |Av| is the size of the mesh (isotropic in u and v).
These equations hold at the interior of the surface. Near border points or discontinuities
some of the energy terms are dropped or replaced by lower continuity terms (see Appendix
A). The equation for the data compatibility energy is simply

1
Ea(x,d) = 5 3 ciyl@i; — dis)® (12)
(.5
with ¢; ; = 0 at points where there is no input data.

If we concatenate all the nodal variables {z;;} into one vector x, we can write the prior
energy model as one quadratic form

E,(x) = %XTASX (13)

where x is the vector of nodal variables, i.e., x = {f(hi,hj)}. The stiffness matrix A, is
extremely sparse, having at most 13 entries per row. Similarly, the data constraint in (2)
can be written as

1
Ea(x,d) = 5(x - d)TA4(x —d), (14)
where d is a zero-padded vector of elevation values, and the diagonal matrix Ay has entries
¢; where data points coincide with nodal variables and zeros elsewhere.
Using (13) and (14), we write the combined energy (1) in discrete form as
1
E(x)= ExTAx —x"b+k (15)

where k is a constant,

A=3A,+A, and b= A,d

This energy function has a minimum at x = x*, the solution to the linear system of algebraic
equations

Ax=h. (16)
3.2 Deterministic and stochastic relaxation

In principle, the solution to (16) can be found using either direct or iterative numerical
methods. Direct methods are impractical for solving large systems associated with fine
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meshes because of excessive storage requirements.® Iterative methods, on the other hand,
do not require any additional storage and are amenable to parallel implementations. Here,
we will study four iterative methods: Gauss-Seidel relaxation, weighted Jacobi relaxation,
conjugate gradient descent, and stochastic relaxation.

Gauss-Seidel relaxation is in principle a sequential algorithm where the nodal variables
z; are updated one at a time. The new value for z; is chosen to minimize the local energy

1
E(z;) = a,,:c + (Z aj;z; — ) zi + ki, (17)

JEN;

where a;; are the entries of A, and N; expresses the fact that the a;; are nonzero only for
certain neighbors of node 7 (see Appendix A for details). When using Gauss-Seidel relaxation,
we choose the new node value which minimizes this local energy

=1 (b,‘ - Z agjacj) (18)

JEN;

(for pure interpolation, we set 7 = d; at points coincident with data). We can thus rewrite

the local energy as

la,','(:l':,‘ — 'L‘j-)z + K. (19)

E(z:) = 5

Gauss-Seidel relaxation is well suited to sequential architectures, since it converges faster
than the parallel Jabobi algorithm (see below). On a parallel architecture, we can update
nodes simultaneously as long as no two nodes are neighbors of each other (7 & ;). For the
membrane interpolator, this can be achieved by using a red-black coloring (updating the red
squares on a checkerboard in parallel, then the black squares) [Briggs87]. For the thin plate,
we have to use at least 5 colors, and it is often easier to code the algorithm using 9 colors
arranged in a 3 x 3 array. On a machine like the Connection Machine, this can result in an
algorithm where each Gauss-Seidel cycle is 9 times slower than a Jacobi cycle.

Weighted Jacobi relaxation is the fully parallel version of Gauss-Seidel. To ensure that
the iterative algorithm converges, we take a smaller step than we would in Gauss-Seidel

zf = 7; + wa! (b,- - Z a,-jmj) (20)

jenN;

where the neighborhood N] now contains the point i. The underrelaxation parameter w
is chosen so that the algorithm convergences. A good choice for w can be computed by
examining the eigenvalues of the iteration matrix [Young71, Briggs87]. The parallel version

of (20) can be written using matrix notation,

xFt = x* 4 WD (b — AxF), (21)

8For an N x N image, we require Q(N?) storage and O(N?) operations for a direct solution.
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where D is the matrix of diagonal elements from A (the superscripts indicate the iteration
number). The term r¥ = b — Ax* is called the residual and measures the current difference
between the right and left hand sides of (16).

While both of these algorithms do a good job when the data is reasonably dense, their
performance degrades severely as the distance between data points increases (see {Szeliski89a]
for examples). A faster algorithm is conjugate gradient descent [Press86]. In this algorithm,
we choose a descent direction p and take an optimally sized step in this direction

xk-}-l — xk 4+ Cz’kpk. (22)
The step size a* is chosen to minimize the global energy (15), and can be shown to be
T L T :
ak — pk I‘L/pk Apk.

Initially, the direction p is taken to be the residual r, which is also the negative gradient of
the energy (15). To increase the convergence of the algorithm, we require that successive

directions be conjugate, i.e., that p"TltLl:)‘*"'l = 0. We can ensure this by setting
pk — I‘k . ,kak_l (23)

with r 7
g = ok Apk—l/pk—l Ap*t,

As we can see from these operations, this algorithm is well suited to massively parallel archi-
tectures such as the Connection Machine which can both compute weighted local averages
(e.g., Ax) and global summations (e.g., pZr). A full description of the conjugate gradient
algorithm is given Table 1 near the end of this section.

The three algorithms which we have just described can be used to find the surface which
minimizes the energy (15). In the Bayesian interpretation, this corresponds to the MAP
estimate for the surface. If we wish instead to generate a typical sample from the posterior
distribution, we can use the Gibbs Sampler [Geman84]). This algorithm is a stochastic
generalization of Gauss-Seidel relaxation. Updating the points one at a time, we choose the
new value for z; from the local Boltzmann distribution corresponding to (19)

z; —z})?
P(z;) x exp(—E(z;)/T) «x exp (—}é-(m-f—fﬁ%—)—) . (24)

This distribution is a Gaussian with mean equal to the deterministic update value z¥ and
a variance equal to T'/a;;. Thus, the Gibbs Sampler is equivalent to the usual Gauss-Seidel
relaxation algorithm with the addition of some locally controlled Gaussian noise at each
step.” The amount of roughness can be controlled with the “temperature” parameter T

12
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Figure 3: Multiresolution pyramid
The solid dots indicate the nodes in the hierarchical basis.
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3.3 Multigrid relaxation

Although the above iterative algorithms will eventually compute the desired solution,
the convergence may be unacceptably slow in practice (see [Szeliski89a] for examples). To
accelerate convergence, we can use coarse-to-fine relaxation on a multiresolution pyramid
(Figure 3). The problem is first solved on a coarser (smaller) mesh, and the solution is used
as an initial condition for the next finer level.

This simple idea is often adequate to get a rough solution. However, to achieve maximum
accuracy, a more sophisticated approach called multigrid is usually required. Multigrid re-
laxation algorithms [Hackbusch85, Briggs87] are based on the observation that local iterative
methods are good at reducing the high frequency components of the interpolation error, but
are poor at reducing the low frequency components. By solving a related problem on the
coarser grid, this low frequency error can be reduced more quickly.

To develop a multigrid algorithm, several components must be specified: the method used
to derive the energy equations at the coarser levels from the fine level equations; a restriction
operation that maps a solution at a fine level to a coarser grid; a prolengation operation that
maps from the coarse to the fine level; and a coordination scheme that specifies the number
of iterations at each level and the sequence of prolongations and restrictions.

A sophisticated version of multigrid relaxation was developed by [Terzopoulos83]. In his
implementation, the coarser meshes are coincident with the original mesh, i.e., the coarser
level nodes are a subset of the finer level nodes. Simple injection (subsampling) is used
for restriction, and third-degree Lagrange interpolation is used for prolongation. A Full
Multigrid (FM) method is used to coordinate the inter-level interactions. This ensures that
the coarse levels have the same accuracy as the fine level solutions.

Our own experiments with multigrid on the Connection Machine were somewhat dis-
appointing. The convergence rates were not significantly better than those obtained with
simple coarse-to-fine relaxation. This problem may be due to the irregular nature of the
data constraints (multigrid techniques were originally developed for the solution of uniform
smooth partial differential equations). It is quite possible that the use of different (locally
adjusted) interpolators could improve the convergence, but we have not investigated this
possibility. Instead, we have been developing a multiresolution version of conjugate gradient
descent, which we describe next.

3.4 Preconditioned conjugate gradient descent

The conjugate gradient descent algorithm that we described earlier can be accelerated dra-
matically using the hierarchical basis functions developed recently by [Yserentant86]. In
this approach, the usual nodal basis set x is replaced by a hierarchical basis set y. Certain

" A parallel version of stochastic relaxation based on global diffusion is also possible but does not converge
as quickly to the equilibrium distribution [Szeliski89b].
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elements of the hierarchical basis set have larger support than the nodal basis elements, and
this allows the relaxation algorithm to converge more quickly when using the hierarchical
set.

To convert from the hierarchical to the nodal basis set, we use a simple linear (matrix)
transform ' '

x = Sy, (25)

where S = §,5,...Sz_,, and L is the number of levels in the hierarchical basis set. Each of
the sparse matrices S; interpolates the nodes at level { + 1 to level [ and adds in the nodes
corresponding to the new level. The columns of S give the values of the hierarchical basis
functions at the nodal variable locations.

In his paper, Yserentant uses recursive subdivision of triangles to obtain the nodal basis
set. The corresponding hierarchical basis then consists of the top-level (coarse) triangulariza-
tion, along with the subtriangles that are generated each time a larger triangle is subdivided.
Linear interpolation is used on a triangle each time it is subdivided. We can generalize this
notion to arbitrary interpolants defined over a rectangular grid [Szeliski89a]. Each node in
the hierarchical basis is assigned to the level in the multiresolution pyramid where it first
appears (the solid dots in Figure 3). This is similar to the multiresolution pyramid, except
that each level is only partially populated, and the total number of nodes is the same in hoth
the nodal and hierarchical basis sets. To fully define the hierarchical basis set, we select an
interpolation function that defines how each level is interpolated to the next finer level before
the new node values are added in.

The resulting algorithms for mapping between the hierarchical and nodal basis sets are
simple and efficient. We use

procedure S
fori=L—1downtol
for z € M;
for j € N}
i) = uli) + wli f)u()
end S

to convert from the hierarchical to the nodal basis set. In this procedure, which goes from
the coarsest level (I = L) to the finest (I = 1), each node is assigned to one of the level
collections M,;. Each node also has a number of neighboring nodes A; on the next coarser
level that contribute to its value during the interpolation process. The w(z; j) are the weight-
ing functions that depend on the particular choice of interpolation function (these are the
off-diagonal terms in the S; matrices).

We also use the adjoint of this operation

procedure ST
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fori=1to L -1
for i € M,
for j € N;
u(f) = u(j) + wli; Fu(?)
end ST

in our modified conjugate gradient descent algorithm.

These mapping algorithms are easy to code (once the interpolation functions have been
precomputed) and require very few computations to perform. On a serial machine, these
procedures use O(n) operations (multiplications and additions), where n is the number of
nodes. On a parallel machine, O(L) parallel steps are required, where L & 1logn is the
number of levels in the pyramid. This is the same number of steps as is needed to perform
the global summations (inner products) used in the conjugate gradient algorithm. Note that
although we have defined the hierarchical basis over a pyramid, it can actually be represented
in the same space as the usual nodal basis, and the transformatlons between bases can be
accomplished 1n place.

The hierarchical basis set allows us to minimize exactly the same energy as the one we
derived from the discretization on the finest grid. Substituting x = Sy into (15), we obtain
the new energy equation

1
B(y) = gy"(STAS)y —y'(8Tb)+c
1 s .
= 5y Ay-y'b+te (26)

where the “identifies the hierarchical basis vectors and matrices. The advantage of minimiz-
ing this new equation is that the condition number of the matrix A is much smaller than
that of the original matrix A [Yserentant86], implying much faster convergence for iterative
algorithms such as conjugate gradient.

Unfortunately, the A matrix is not as sparse as the original matrix A, so that a direct
minimization of (26) is impractical. Instead, we use the recursive mappings S and S7 in
conjunction with the original matrix A and vector b to compute the required residuals and
inner products. The resulting conjugate gradient descent algorithm is identical to the usual
single-level algorithm except that we use a smoothed version of the residual ¥ = SSTr to
choose the new direction [Szeliski89a]. The full algorithm is shown in Table 1.

The above algorithm is an example of the more general idea of preconditioning. One
common application of this idea is to divide the residual r by the diagonal of the A matrix,
i.e., to use ¥ = D7'r. This is equivalent to dividing each row and column of the A matrix by
the square root of the diagonal element (A = D=Y/2AD~/?), The new stiffness matrix A
has a lower condition number, especially when the data coupling terms are very stiff (large
¢; or small A). The resulting conjugate gradient algorithm looks a lot like weighted Jacobi
with the added conjugation in the descent direction. We can combine the hierarchical basis
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0.  initialize rp and Ty using 6. — 8. and set pg =Tp

1. W = Apk

2. of = pr-w,=pjAp;

3. e = pr-ri=pir

4.1 ap = aff ol

9. Xey1 = Xk + Pk

6. 1 = b — AXpy

7. fre1 = STrig (preconditioning step)

8. Tre1 = STy (preconditioning step)
L9 Bl = el oWk

10.f B = B/

1. Pry1 = Trpr — BreraPs

12.  loop to 1.

i AE(x+oap)=%pTAp—oap'r

t (F-p8p)Ap=0

Table 1: Conjugate gradient descent algorithm

preconditioner with the inverse diagonal preconditioner (using either D~'/28 or SD~%/2) to
obtain an algorithm which performs well even when the data coupling is stiff.

3.5 Comparison of algorithms

To compare the performance of the various deterministic relaxation algorithm, we ran these
algorithms on the data set shown in Figure 5. First, we computed the optimal solution x*
using 500 iterations of the hierarchical basis conjugate gradient algorithm (L = 4). Then,
for each of the algorithms tested, we computed the root mean squared (RMS) error

ex = |xx — x|/
as a function of the number of iterations k.

Figure 4 shows the relative performance of the relaxation algorithms, as well as the effects
of varying the number of smoothing levels in hierarchical basis conjugate gradient. The
topmost curve corresponds to weighted Jacobi relaxation (w = 0.25), which is the slowest of
the algorithms tested. The second curve is for Gauss-Seidel, which initially converges faster
but then also tails off. Conjugate gradient does better and continues to converge towards
the solution at a reasonable rate. Using preconditioning with hierarchical basis functions
dramatically speeds up the convergence of conjugate gradient. Initially, the speedup is
proportional to the number of smoothing levels. As the iterations progress, however, the
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Figure 4: Convergence plot for surface interpolation
The top three curves are for Jacobi, Gauss-Seidel, and conjugate gradient. The lower five
curves are for hierarchical basis conjugate gradient with different numbers of smoothing levels
L (note that HBCG with L = 1 corresponds to conjugate gradient). The fastest convergence
is for HBCG with L =3 or L = 4.
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versions using an intermediate number of smoothing levels (L = 3 and L = 4} have the
best performance. We believe that the optimum number of levels to be used is related to
the density of the underlying data points, and we are currently investigating methods for
automatically adjusting the smoothing based on the local structure of the data.

4 Data amplification

The deterministic relaxation algorithms which we have developed can be used to interpolate
smooth terrain models from sparse irregular data. Our stochastic relaxation algorithm can
be used to generate random terrain models which fit the data. We can use both of these
techniques for data amplification, i.e., to produce a denser (and more voluminous) description
of our terrain from a sparse set of control points.

4.1 Interpoiation from sparse data

The variational splines which we use for surface interpolation are well suited to interpolating
sparse irregular elevation data. An example of such data is that obtained from matching
isolated features in a stereo pair of aerial images. Figure 5a shows one of the two intensity
images which was input to the STEREOSYS stereo matching system developed at SRI
[Hannah88]. Figure 5b shows the set of 7696 matches which were produced by this algorithm
in a sub-region of this image. These points were then given as sparse elevation constraints
to our thin plate interpolating program. The resulting dense elevation map is shown as a
contour map in Figure 5c.

Variational splines can also be used to generate a full digital elevation model from a set of
contour lines. Figure 6a shows the original elevation map (from a 1:250,000 scale map of the
Rockies just west of Denver) digitized on a 256 x 256 grid. In this figure, brighter intensities
represent higher elevations, and the contour lines are drawn at 100m intervals. This map was
subsampled using 200m contour lines, and the resulting sparse data was input to the surface
fitting algorithm. The resulting elevation maps are shown in Figures 6b (membrane), 6¢c (thin
plate), and 6d (mixed membrane / thin plate model). Although it is difficult to see from the
contour maps, the membrane interpolator ({wg,w), w2} = {0,1,0}) is not smooth enough
(locally, it acts like a “soap film”), while the thin plate interpolator ({weg, w1, w2} = {0,0,1})
is too smooth (it creates a large “dip” in the middle of the map). Using a blend of these two
models ({wp, wy,we} = {0,0.0063,1}) results in a better reconstruction.

We can also use additional (non-topographic) information to control and enhance the
surface interpolation process. An example of such information is the hydrography (streams,
rivers, and other drainage) that is often available in conjunction with digital elevation models
[USGS86]. Figure 7a shows a 256 x 256 section of a digital elevation model of the Big Basin
area; Figure 7b shows the hydrography for the same region. If we interpolate a surface
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Figure 5: Surface interpolated from sparse elevation data
(a) sample aerial photograph from stereo pair (b) matched points from stereo pair (c) inter-
polated thin plate solution on 106 x 99 grid
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Figure 6: Surface interpolated from contour data
(a) original Colorado Rockies elevation map (100m intervals) (b) membrane interpolated from
200m intervals (¢) thin plate interpolated from 200m intervals {d) mixed model interpolated
from 200m intervals
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Figure 7: Big Basin elevation map and hydrography
(a) original elevation map (200m intervals) (b) hydrography (drainage) (c) 400m contour
lines used for interpolation (d) sparse (2%) sampling of elevation data
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Figure 8: Big Basin reconstructed surfaces
(a) mixed model interpolated from 400m intervals (b} mixed model interpolated with creases
from 400m intervals (c} mixed model interpolated from sparse samples (d} mixed model
interpolated with creases from sparse samples
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directly from the contours shown in Figure 7c, we obtain the surface shown in Figure Sa. If,
on the other hand, we use the hydrography to introduce creases (discontinuities in the first
derivative), we obtain the more realistic (and accurate) map shown in Figure 8b. A similar
effect is shown in Figures 8c and 8d, which were interpolated from the 2% sampling shown
in Figure 7d.

For interpolating regularly spaced data or re-sampling grids for rectification, other tech-
niques may be preferable to variational splines. Simple bilinear interpolation or cubic in-
terpolation {Cendes87, Foley87] may suffice. In any event, the interpolation of regularly
spaced data with no discontinuities or local variation can always be expressed as a linear
shift-invariant filtering operation [Oppenheim75, Poggio85b]. This results in a simpler and
quicker algorithm than the one we use in this paper. Variational splines are preferred,
however, when there are significant gaps in the data and we desire local control over the
continuity.

4.2 Adding fractal detail

Stochastic fractals have become a popular technique in computer graphics for adding realistic
detail to rendered images of natural terrain [Fournier82, Mandelbrot32]. Such realism is use-
ful in flight simulators, synthetic scenes used in advertising and movies, and as backgrounds
for architectural studies. As we saw in Section 2.4, a random sample from the family of
surfaces defined by the variational spline energy has fractal statistics [Szeliski87]. In Section
3, we saw how a simple stochastic extension of relaxation (i.e., the addition of controlled
(Gaussian noise) can be used to generate fractal surfaces which also match our desired data
constraints.

If we apply our stochastic relaxation algorithm to the data shown in Figure 6a, we obtain
the contour map shown in Figure 9. Note how the new contour lines look more realistic than
the smooth ones shown in Figure 6d. A shaded rendering of this same surface in shown in
Figure 10. We can also use our stochastic relaxation with additional inter-level consistency
constraints to generate a “zoom sequence” which reveals more detail as the viewer approaches

the surface [Szeliski&9b].

4.3 Illusion vs. reality

The surface shown in Figures 9 and 10 is, of course, just one possible random sample from a
whole family of surfaces which fit the data. The detail in the surface is actually “hallucinated”
and does not necessarily correspond to the true detailed shape of the terrain. For certain
applications (fly-throughs, mission planning and simulation), having this fictitious detail
may be advantageous. For others, however, this detail gives a false sense of confidence in
the terrain shape which is not justified by the available data.
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Figure 9: Fractal surface interpolated from contour data
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Figure 10: Fractal surface (shaded rendering)
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From a Bayesian perspective, the fractal surface of Figure 9 is a typical sample from the
posterior distribution, whereas Figure 6d is the most likely sample (and also the mean value).
By generating a number of random samples, we can actually compute the local variance in
the posterior estimate at each point.® These confidence measures can help decide where
more measurements are needed or how much to trust the terrain model at a given point.

Displaying the variance as a confidence interval around each surface point is difficult. In
one dimension, we can draw an envelope around the curve showing the confidence interval.
In two dimensions, we could use color coding to indicate the confidence. If our computation
and rendering hardware were fast enough, we could actually display many random samples
in succession. The resulting surface would appear to “wiggle” or “shimmer” in areas where
it is most uncertain. Whether this additional confidence information will be useful for
cartographic applications remains to be seen.

5 Data reduction

The converse of the data amplification process discussed in the previous section is data
reduction. Here, the aim is to go from a complete description such as an elevation map or
terrain model to a more parsimonious description. For example, we may wish to describe
the topography by the location of simple features such as peaks, ridges, and valleys. Such
sketch maps can be used in the recognition of features and observer location, the semantic
interpretation of the terrain model, and the quick generation of rendered views.

The general problem of deriving a reduced description is a difficult one which involves
elements of both signal processing and knowledge-based artificial intelligence [Fischler89]. In
this section, we will sketch out a more modest proposal which aims to decompose the terrain
model into a multiresolution description. This work, while incomplete, may lead to a novel
technique for decomposing a surface into a hierarchical description.

5.1 Relative depth representation

The multigrid and coarse-to-fine algorithms described in Section 3.3 keep a full copy of
the current depth estimate at each level. An alternative to this absolute multiresolution
representation is a relafive representation [Szeliski88]. In this representation, each level y;
encodes details pertinent to its own scale, and the sum of all the interpolated levels provides
the overall depth map estimate

L
X = Z I;y; (27)

=1
where I, is the interpolation function associated with each level. The relative representation
is thus analogous to a band-pass image pyramid [Burt83, Crowley82], while the absolute

8This is a Monte Carlo approach to computing a distribution.
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representation is similar to a low-pass pyramid. In the relative representation, each level in
the pyramid has its own associated smoothness energy

1
E(y') = 5y Ay (28)
The data compatibility is measured using the summed depth map x and the data points d
1
Ey(x,d) = §(x ~d)TAy(x - d). (29)

Using ¥ = [le .. .yLT]T to denote the concatenation of the individual state vectors, I =
[I'...T%] for the concatenated interpolation matrices, and

Al 0 - 0

. 0 A2 ... 0

A= . 0 (30)
0 0 --- AL

1

to denote the composite spline model matrix, we can write the overall energy function as

: L
EF) = Y E(y)+ Ealx,d)

=1

logw . 1~ “_
= ¥ A+ 517 - ) Au(I§ - d)
_ %yTAgr —3Th+e (31)
where 5 _ ) ) L
A=A, +T7A,I and b=1TA.d. (32)

The minimum energy solution can be calculated from this quadratic form by solving

Ay =h. (33)

A number of iterative relaxation techniques could be used to implement the minimiza-
tion of the composite energy (31). For example, we could set the energy gradient of (31)
to 0 at each level independently using the current value of x to compute VE4(x,d), and
then recompute the summed representation x. Because of the tight coupling between the
levels, however, this approach (Gauss-Seidel or Jacobi) does not work very well. Instead, we
have found that using conjugate gradient descent performs satisfactorily. To implement this
algorithm, we must compute the current residual

F=A5+1ITA(Iy - d). (34)

This is achieved by first computing x = 17, then subtracting the data points d and weighting
the error by A4. This data-fit residual is then converted into the relative representation by
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multiplying by T/ d (the adjoint of the interpolation function), and the smoothness component
of the residual (Aly') is then added. A similar approach is used to compute the sparse matrix
product Af), where p is the current direction vector. While this algorithm does not converge
as fast as hierarchical basis conjugate gradient, it does produce a multiresolution description
while solving the surface interpolation problem.

To reduce the amount of storage required for the interpolation matrices I' and the amount
of computation performed when interpolating, we can use.a recursive structure for the in-
terpolants. We define

7' =y +1_ 2! (35)
as the absolute representation at level I (with x = z;), where I!_, is the interpolation
function between levels I — 1 and {. The structure of our relative representation algorithm
now looks very similar to that of the hierarchical basis conjugate gradient, except that the
smoothness constraint is computed at each level separately, and each level in the pyramid is
fully populated. The relative representation thus has more state than the original fine-level
system of equations.

Designing a set of spline energies for each level that decomposes x into a reasonable
multiresolution description while maintaining the faithfulness of the energy function (31) to
the original energy (15) is a nontrivial task. The discussion in [Szeliski88] gives conditions
for the approximation to hold. It is often easier to take an indirect approach to designing
these energies using Fourier analysis, where instead of defining the interpolation problem as
a functional minimization problem, we view it as a Bayesian estimation problem and try to.
match the power spectra of the prior models [Szeliski88].

The relative representation as we have described it so far could also be obtained by
filtering the fine-level (composite) representation.® What may be more interesting is to
equip each level with a non-linear smoothness constraint, e.g., one that favors flat or zero
surfaces. Instead of making the cost proportional to the square of the surface magnitude,
slope or curvature, we could incur a fixed cost whenever one of these quantities is non-zero.
For example, we could add terms of the form

Ey(x) = > (1 - 8(zi5)) (36)
(i.9)

This would favor surfaces which are zero, and higher order terms could be used to favor
piecewise constant or piecewise linear solutions.’® Combining this idea with a multiresolution
relative representation, we would obtain an interpolation algorithm which distributes the
terrain features among the various levels in a non-linear fashion.!! While this is still far
removed from a true semantic interpretation of our terrain, it may provide the kind of
perceptual grouping which is a necessary precursor of object identification [Lowe85].

9This is because the levels are a linear function of the input data.

10This idea is inspired by a similar constraint in Leclerc’s work on minimal-length encoding [Leclerc89],
where the optimal polynomial order for a surface patch is determined by penalizing non-zero coefficients.

1By contrast, the current relative representation distributes the data among the levels in a “weak” fashion,
as if springs of varying stiffness were attached to the surface.
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Figure 11: Texture mapped rendering of Yosemite valley
6 Rendering

Once we have interpolated our cartographic data to its final resolution, we may wish to
display this information. Cartographic information is often displayed in two-dimensional
formats such as contour maps (e.g., Figure 6a). In many cases, however, a three-dimensional
perspective view may be more useful for interpreting or analyzing the terrain.

A number of formats can be used for three-dimensional displays. We can use a wireframe
with hidden surface removal (Figure 1), but this often limits the available resolution of the
display. We can also use a simple shading model to generate a three-dimensional view (Figure
10). Finally, if an intensity image (aerial photograph) is available which corresponds to the
terrain model, we can use texture mapping to produce a realistic view of the scene (Figure
11).

The computation of a realistic, properly anti-aliased rendering can be quite complicated
and time consuming [Hanson88|. For many applications, however, having a real-time ren-
dering capability greatly enhances the interpretation process. This is especially true of
the real-time rotation of three-dimensional surfaces, since a very realistic percept of shape
can be obtained.!? Traditionally, such animations have been available only from graphics
workstations’® or flight simulators. In our own research, we have developed a rendering

12In the vision literature, this is called the kinefic depth effect.
13For example, the top of the line IRIS workstation from Silicon Graphics will render 100,000 polygons
per second.
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algorithm for the Connection Machine which gives near real-time performance.

6.1 A parallel rendering algorithm

The key to developing a parallel rendering algorithm for the Connection Machine is to
assign one processor to each point in the terrain map being rendered. Our algorithm also
takes advantage of the combining routing network of the Connection Machine to perform
z-buffering. A detailed description of the algorithm follows.

The input to our rendering algorithm consists of two images (2-D arrays): a floating point
image of elevation values, and an integer image of intensities to be texture mapped. These
latter intensities can be true intensities obtained from aerial photographs, synthetic intensi-
ties computed using a shading model, or a simple texture such as a grid. The elevation map
is converted into screen coordinates (z, y, and screen-based depth-z) using a user-supplied
homogeneous transformation matrix [Newman79] (we keep an extra 4 bits of precision on
the screen coordinates).

Next, we optionally blur the texture (intensity) image to reduce the aliasing which occurs
when multiple points map to the same screen location. To do this, we average each point
with its nearest neighbors if these neighbors map to the same or nearby points on the screen
(a global parameter called the blur radius controls the nearness criterion). We then average
the points from the previous step with their neighbors two pixels away if they are still within
the selected screen distance. This iteration continues until the aliasing has been eliminated.

At this stage, we can independently draw each pixel into a z-buffer which corresponds
to the final image size. To do this, we append the intensity value for each map point to
its depth (z) value, i.e., we form a long (32-bit) integer which contains the z value in its
high-order bits and the intensity in its low-order bits. Using the global routing network of
the Connection Machine with maxz combining!* we can directly draw each pixel into the
z-buffer (pixels falling outside the z-buffer are automatically clipped). The low-order bits of
the z-buffer then correspond to the rendered image.

This “simple” rendering is fast, but it often leaves gaps in the image where a map
grid square covers more than one pixel. While this fast rendering may be suitable for
quick interactive positioning and for obtaining a depth percept, a better algorithm must be
devised for final renderings. We designed our “complex” rendering algorithm by assigning a
processor to each square interior to the digital map (this is basically equivalent to the node
per processor assignment with some replication at the borders). Each processor then checks
if all four corners of the square map to the same screen location. If so, the pixel is drawn; if
not, the square is subdivided (refined) before drawing.

The subdivision occurs by first determining the maximum number of screen pixels sepa-
rating the square corners along each dimension

mi; = max(|zip; — @il + Witrs — vih [zt — igal + W0 — vigal, 1)

14The *Lisp instruction is (*pset :max ...).
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i = max(|$i,:'+1 - :c;,5| + |y-‘,j+1 - y,;,'|, |$=‘+1.:‘+1 — Tipr,i| + Ve — vingl, 1)-

We then subdivide each square into m;; X n;; pieces, thus guaranteeing that each piece
covers at most one pixel. To implement the subdivision, each square processor “grabs”
8i; = m; n;; processors using a (scan!! s;; *+!!) global scan to determine the starting
address of the group of processors it will use. Often, there are not enough processors available
in the rendering processor set, in which case the complete subdivision/rendering stage may
take several iterations. Iach group of processors renders its assigned square in parallel
by first computing the screen addresses and intensity using bilinear interpolation and then
calling the “simple” rendering procedure.!®

The performance which we have achieved with this algorithm is quite impressive. On our
8K Connection Machine running unoptimized *Lisp code, we can render a 256 x 256 texture-
mapped image in 0.45 seconds for the simple version and 2.61 seconds for the complex fully
interpolated version (these figures vary, depending on the particular viewing position).

There are a number of extensions possible to our rendering algorithm which we have
not implemented. Instead of mapping an intemsity image onto the terrain map, we could
map the surface normals. This would allow us to tnove the light source position and recom-
pute the synthetic shaded image in real time, which would aid in the perception of surface
shape.!® We could also generalize the algorithm to render arbitrary 3-D surfaces defined
using polygonal (quadrilateral) surface patches. This would only require a different front
end to the algorithm, since the same routines could be used for coordinate transformation,
quadrilateral subdivision, and z-buffer rendering. Finally, if we are to achieve the same qual-
ity of renderings as is currently available with the SRI Cartographic Modeling Environment
[Hanson88], we would have to add a multiresolution pyramid representation of the terrain
and intensity to our algorithm. Integrating this representation into our current algorithm is
difficult, since it is based on projecting each map point into the rendered image rather than
ray tracing screen points back to the map. However, a recursive rendering algorithm based
on the idea of quadtrees [Rosenfeld80] may be feasible.

7 Discussion

The approach to surface interpolation developed in this paper is based on using a regular
grid representation for the terrain map. This representation fits in well with the usual
desired output of the interpolation stage. It is limited, however, to representing single-
valued functions such as terrain (for a description of how to integrate this representation
with three-dimensional models of buildings and objects, see [Hanson88, Bobicks9].).

15 Anothet alternative which we considered was iteratively splitting each square into two until it is small
enough. This approach, however, requires keeping a list of “active” squares which have not yet been painted,
and ensuring that this list does not overflow existing memory is difficult.

16This suggestion was made by Yvan Leclerc.
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The spline interpolator defined over this regular grid results in a very large sparse set of
equations which must be solved iteratively. Fortunately, multiresolution acceleration tech-
niques (in particular, our hierarchical basis conjugate gradient algorithm) make the solution
of these equations feasible in a reasonable amount of time.

These iterative relaxation algorithms are inherently parallel, and are therefore well matched
to massively parallel architectures such as the Connection Machine. Multiresolution algo-
rithms, however, can sometimes underutilize the parallelism in such an architecture, espe-
cially if the coarser levels of the pyramid are smaller than the processor array size.!” Because
of their regularity, our parallel algorithms should also execute efficiently on sequential, vec-
tor, or MIMD (coarse-grained) parallel architectures. The key to the widespread availability
and acceptance of our parallel relaxation algorithms will probably lie in our ability to auto-
matically covert code from a high-level parallel language such as *Lisp into languages such as
Common Lisp, C, or FORTRAN than can be compiled on more conventional architectures.
This promises to be an interesting area for future research.

8 Conclusions

In this paper, we have demonstrated how variational splines can be used for performing
suiface interpolation, which is an important problem in digital cartography. Our variational
splines are defined using an optimization framework, where the characteristics of the desired
solution are specified rather than the algorithm used to compute the solution. This opti-
mization framework is useful for integrating data from multiple sources and resolutions, and
also allows us to locally control surface characteristics such as continuity and smoothness.

To compute the variational spline, we use a fine, regular discretization which corresponds
in resolution to the final digital map we wish to produce. This discretization results in a
simple local set of equations and is well suited to parallel representations and algorithms. To
efficiently solve these equations, we must use some multiresolution acceleration technique. In
our experience, conjugate gradient descent preconditioned with hierarchical basis functions
has proven to be the most efficient method.

We have applied our surface interpolation algorithm to the problem of data amplification,
1.e., obtaining a dense cartographic representation from a sparse set of samples. Examples
with both sparse (punctate) data and contour lines were presented. We also showed how to
locally control the surface, for example by introducing creases along hydrographic features.
Natural looking fractal detail can be added to our interpolated solution through stochastic
relaxation. The random samples thus generated can be used to quantify the local uncertainty
(variance) in our terrain model estimates.

The problem of data reduction was also studied briefly. We described a relative repre-
sentation surface interpolation algorithm which decomposes the surface into a hierarchy of

7In this case, the combination of a smaller parallel machine and virtual processors [TMC88] may actually
be a boon.
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scales, and suggested how this could be extended to perform a more non-linear feature ex-
traction. In the final part of the paper, we developed a parallel three-dimensional rendering
algorithm which can be used to visualize our interpolated surfaces.

As we have demonstrated in this paper, manipulating terrain maps using parallel relax-
ation algorithms gives the user more flexibility in integrating data and adding local con-
straints. The advent of parallel architectures and the development of fast parallel algorithms
is quickly making this approach practical for real cartographics applications.
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A Finite element equations

In this Appendix, we present the discrete implementation of the energy equations used in
Section 3.1. The energy equations which we develop are formulated in terms of a number
of discrete fields which form the basic data structures used in the surface interpolation
algorithm:

Ti surface depth (free variables)
d;, ; depth constraints

¢, j depth constraint weights (¢~%)
l; j,mi;  depth discontinuities [0,1]

n, ; orientation discontinuities [0,1]

The line variables [; ; and m; ; are located on a dual grid, and the crease variables n; ; are
coincident with the depth value nodes.

To describe the discrete version of the smoothness constraint, we define a number of
implicit fields which are not actually computed by the algorithm but serve only as a notational
shorthand. First, we define the finite differences

u

Tii = Tiqr,j — Tij

Ti; = Tij4l — Tij

Tij = T T i = Tikng — 2in, F T

TLE T Tigp T TG = Bl T 5T ik — Tk — Sign T2
TG T T T @i = gz = 28050+ T

Next, we define the continuity strengths

o= (1=14;)
f;o= (- mw)
b= (=) (1= T 5 )(1 = mi,5)
v o= (=L ) = L) (= ma )L = mig, 1) (1 = mi jrisn, s (1 — mis, 57, 541)
Pro= (L =mi (1 = mie)(1 — i ).
These continuity strengths determine which of the molecules defined by the z;,..., 2"}

finite differences are active (we use phantom line variables around the edges of the gr1d to
take care of boundary conditions).
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Figure 12: Continuity strengths and computational molecules

The interactions between the depth field, the line and crease variables, and the continuity
strengths are shown in Figure 12. Intuitively, the line variables disable any molecules tha.t

are cut when the line variable is turned on. The crease variables disable the =% or z}

molecules whose centers are coincident with the crease, and disable the z* o molecules if two
opposite corners are creased.

The prior energy (weak smoothness constraint) is constructed from these elements

1
Eu(x) =5 20 woh? [(mi,5)"] +ws [B25(e2))" + 62 (28;)’] (37)
{1, ) + 'U.Jgh_z [6::1; uu 2 + 9 uu( L:J) :',J( 1‘1;)2]
where h = Au = Av is the grid spacing. The weighting functions w,,, which come from the

general controlled-continuity constraint (4), define the order of the interpolator. In terms of
the notation used by Terzopoulos [Terzopoulos86b] which is shown in (3), we have

{wl]: wla‘w2} = {0? p(”? U)[l - T(u? U)]: p(u) v)T(u‘: U)}
(in our implementation, we use the line and crease variables to represent the discontinuities
rather than spatially varying wy,).

The equation for the data compatibility constraint is the same as we presented in Section
3.1, namely

Z ¢i,j(Ti; — ,1)2 (38)

('r-?)
with ¢, ; = 077 being the inverse variance of the measurement d; ;.

The stifiness matrix A and the weighted data vector b can be obtained from the discrete
energy equation
E(x) = Ei(x) + Ea(x,d)
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by setting

9 E(x)
a(i'j),(k,l) - m x=0 (39)
and
, b, = 0860 (40)
Oz ; x=0

The A matrix and b vector are precomputed before the relaxation begins. Since A has at
most 13 non-zero entries per row, we can store these coefficients in an M x N x 13 array,
where M and N are the terrain model dimensions.
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