[R Y

nternatonal

)

Technical Note 460 o 14 March 1989

PARSING AND TYPE INFERENCE FOR NATURAL
AND COMPUTER LANGUAGES

Prepared by:

STUART M. SHIEBER

Computer Scientist

Artificial Intelligence Center

Computer and Information Sciences Division

and

Center for the Study of Language and Information

A dissertation submitted to the Department of Computer Science and the
Committee on Graduate Studies of Stanford University in partial fulfillment of
the requirements for the degree of Doctor of Philosophy.

333 Ravenswood Ave. « Menlo Park, CA 94025
(415) 326-6200 ¢ TWX: 910-373-2046 ¢ Telex: 334-486

Copyright © 1989 by Stuart M. Shieber
All Rights Reserved

To Linda Ann Sernoff (1959-1988)
Strength. Wisdom. Beauty.

Abstract

Computational and theoretical linguists and computer scientists interested in the
computer processing of natural language have converged on a class of grammar for-
malisms for describing the well-formedness conditions of natural languages. This
class is distinguished by its reliance on systems of declarative constraints to explicate
natural-language syntax axiomatically, rather than generatively or procedurally. In-
tuition suggests that these various efforts from a broad range of disciplines form a
natural methodological class; still, there is no general foundation on which to ground
this impression. We provide a method for abstractly and uniformly characterizing
a class of formalisms based on logical constraints, and use the uniformity to define
and prove correct a parsing algorithm that applies to any formalism in the class. We
discuss the applicability of these techniques to computer languages as well, specif-
ically to type inference. In so doing, extensions of the simple formalism instances
typically considered in natural-language analysis are motivated.

This dissertation thus provides a mathematical and computational foundation
for, and extensions of, current practices in theoretical and computational linguistics,
as well as initiating a rapprochement between the techniques for describing well-
formedness of natural and computer languages.

Contents

Preface
1 Introduction

2 Constraint Logics for Linguistic Information
2.1 The Structure of Grammatical Information - 5
2.2 The PaTRr Formalism - 7
2.3 Idealizations of the Constraint-Based View - 14
2.4 Constraint-Based Description of Computer Languages - 15
2.5 History of Constraint-Based Formalisms - 17
2.6 The Structure of Constraint-Based Formalisms - 20
2.7 Appropriate Logics for Constraint-Based Formalisms - 22
2.8 Properties of Appropriate Models - 27
2.9 Operations on Models - 31
2.10 Existence of Appropriate Models for £, ¢ - 38

3 Grammars and Parsing
3.1 Defining Constraint-Based Formalisms - 41
3.2 Grammar Interpretation - 43
3.3 The Abstract Parsing Algorithm - 47
3.4 Auxiliary Notions for Item Semantics - 51
3.5 A Correctness Proof for the Algorithm - 54
3.6 Instances of the Abstract Algorithm - 63

4 A Compendium of Model Classes
4.1 Finite-Tree Models - 72
4.2 Infinite-Tree Models - 75
4.3 Eqtree Models - 79
4.4 Graph Models - 85

vil

®1

41

71

viii Parsing and Type Inference for Natural and Compuier Languages

5 Parsing as Type Inference
5.1 Natural and Computer Languages - 98
5.2 A Difference in Semantics - 101
5.3 Using Constraint Formalisms for Computer Languages - 104
54 Extending L1 ¢ with Subsumption Constraints - 111
5.5 Models for £E'C - 113

6 Conclusion
Proofs of Properties of L1 ¢

Bibliography

97

127

131

140

List of Figures

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3

4.1
4.2
4.3

5.1
5.2
5.3
5.4

A Typical Graph Structure - 9

A Tiny English Fragment - 10

A Tiny Applicative Language Fragment - 15
Structure of Grammars and Languages - 21
Examples of Graph Ordering - 29

Summary of Properties - 39

An Example Parse Tree - 45
A More Traditional Representation - 46
A Derivation 19, 71,...,7% + 53

Failure of Upward Closure - 73
Eqtree and Corresponding Graph - 84
Extraction and Embedding on Feature Graphs - 92

Well-formedness terminology in CS and LT - 100

X Decomposition of Categories - 111

A Sample Potree - 116
An Irrational Potree - 120

ix

ﬁ

Preface

A wise man once said, “Finé words butter no parsnips.” I didn’t make this up; you
can check in Bartlett’s. I don’t pretend to know what that means, but I have a
sneaking suspicion that it applies to this document. Worse, I fear, as all writers of
technical material must, that people will have the same quizzical reaction to this
dissertation that I have to the proverb. In any case, insofar as the ideas presented
herein have any currency and consequence—butter a.ny parsmps 1 suppose——I owe
a debt to a great many people. - -

This work has endured a long gestation period since Stan Rosenschein first -
introduced me to the design of natural-language grammar formalisms.. Thereafter,
an increasingly large number of individuals and institutions have part1c1pated in its
etiology. :

Barbara Grosz persuaded me, a.ga.mst my better judgment at the t1me to return
to school; Stan Rosenschein and Fernando Pereira applied significant pressure as
well. At that point, the die was cast. :

SRI International allowed me to underta.ke the responsxbjhtles ofa student whﬂe
maintaining my job; Artificial Intelligence Center directors Nils Nilsson, Stan Rosen-
schein, and Ray Perrault have been primarily responsible for this enlightened policy.
The Center for the Study of Language and Information, under the thoughtful guid-
ance of, variously, John Perry, John Barwise, Tom Wasow, and Stanley Peters, made
facilities of various sorts—including computers, office space, and time—available to
me. These two institutions have provided a work environment unparalleled with
respect to quantity and quality of resources and ideas, academic freedc»m personal
camaraderie, and good humor. : :

The most important: ena,bhng force, however, has been the mmds I ha,ve had
the privilege of working with over the years. From the original work on PATR with
Stan Rosenschein to the brainstorming sessions designing PATR-II with the early
PATR group {comprising at various times John Bear, Jane Robinson, Lauri Kart-
tunen, Fernando Pereira, Stan Rosenschein, Susan Stucky, Mabry Tyson, and Hans

xii Parsing and Type Inference for Natural and Computer Languages

Uszkoreit) to the later consolidation of results through the aegis of the Foundations
of Grammar group at CSLI (Mark Johnson, Ron Kaplan, Lauri Karttunen, Bob
Kasper, Martin Kay, Fernando Pereira, Carl Pollard, Bill Rounds, Ivan Sag, An-
nie Zaenen, and numerous others), many people have directly influenced my ideas
on the topic of this dissertation and have kept the study of the area exciting and
fast-paced. _

I have also benefitted from the many insights of the members of the natural-
language group in the AIC (Susan Hirsh, Jerry Hobbs, Paul Martin, Bob Moore,
Barney Pell, and Martha Pollack, in addition to those mentioned elsewhere in the
preface) and the users of early and recent PATR versions, including Jane Robinson,
Kent Wittenburg, and Mary Dalrymple. Others who deserve thanks, though they
may not realize why, include Leslie Kaelbling, Dikran Karagueuzian, Peter Ludlow,
Stan Reifel, Hilary Sachs, Brian Smith, Sandy Wells, and the host and frequenters
of Richard Waldinger’s coffees. . N _ _

However, the single person with the foremost impact on this dissertation, tech-
nically and otherwise, must be Fernando Pereira, who has throughout the ordeal
acted as technical source, adviser, and friend. His invaluable guidance through in-
numerable well-placed suggestions and comments was a determining factor in any
coherence this work enjoys, and his friendship allowed me to keep the effort in its
proper perspective. '

I am also obliged to all of my reading committee members, Terry Winograd,
Fernando Pereira, Vaughan Pratt, and Gordon Plotkin, for seeing me through draft
after draft with a minimum of angst. Their comments were much appreciated and
gratefully incorporated. Terry Winograd, my principal advisor, made good on that
designation through his counsel on the proper negotiation of departmental and
university rules and practices. Fernando Pereira spent an extraordinary amount of
time assiduously examining all of the proofs, thereby maintaining my integrity at
a level far above its natural station. A debt of thanks is also owed the additional
members of my oral-defense committee: Nils Nilsson and Stanley Peters, committee
chair. . S _

The research reported herein was supported in part under contract with the
Nippon Telegraph and Telephone Company and in part by a grant from the System
Development Foundation to the Center for the Study of Language and Information.
I am indebted to the principal investigators of these two projects—Phil Cohen and
Doug Appelt for the former, David Israel for the latter—for making these funds
available. . : : : : . : :

Savel Kliachko must, once again, be thanked for exemplary editing of the final
version. He agreed (none too reluctantly) to be dragged from his bucolic retirement
to perform this one last editing task for me. My heartfelt appreciation goes to him.

The genesis of a dissertation reveals to the author the deep. influences in his
life. I am profoundly grateful to my family—to my parents for instilling in me an

Preface xiii

appreciation of the beauty of science, the power and limits of rational thought, and
the importance of competence in all undertakings; to my brothers for providing
exemplars thereof.

The predominant influence on my life over the last twelve years—the last seven
of which have been engaged in this enterprise-—was Linda Sarnoff. After her tragic
death several months ago, I was doubtful that the present work would ever be
completed. The memory of her strength in the face of mcomparable adversities
provided the inspiration to finish. I will love her always.

1

Introduction -

Over the last few years a new subfield of computational linguistics has emerged,
as subfields do, spontaneously and with surprising speed. The rapidity with which
work progresses in the initial stages of a field often leaves little time for careful foun--
dational research. Such is the case with the approaches to computational linguistics
that have been referred to as unification-based, information-based, or constraint-
based.

Grammar formalisms from within this general approach have been proposed
independently in linguistics, computational linguistics, and a.rtxﬁcxal-mtelhgence re-
search as alternatives to previous formalisms in use in the respectwe areas. By
utilizing declarative constructs that emphasize the modularization of mformatmn_
and its manipulation in the face of partiality, many technical problems in language
description and computer ma.mpula.tmn of language can be solved.! .

Intuition suggests that these various efforts from a broad range of d.lsmplmes'
form a natural methodological class; still, there is no general foundation on which to
ground this impression. This dissertation comprises an attempt to build some of the
foundational understanding of this class of formalisms—from both a mathemat:cal'
and a computational perspective. We address the following questlons

1. What are constraint-based grammar formahsms'? How are they alike and how
do they differ from other formahsms? '

2. What are their genera.l propertles computa.tlonal and ma.themat1ca.l7

3 How can they be apphed to the task of describing aspects of natural and com-
puter languages? What do they tell us about the &m;la,ntles and dlﬂerences)
between the two language classes?

We characterize the class of formalisms by focusing on their particular use of infor-
mation and constraints thereon as an orgamzmg bams (The formahsms are thus }

! An overview of these results can be found in ea.rher work (Shleber, 1985b)

2 Parsing and Type Inference for Natural and Computer Languages

more aptly referred to as information- or constraint-based rather than unification-
based, and we will do so here.) We define the underlying conception of information
implicit in previous work by examining its desired properties. Primary among these
are modularity, partiality, and equationality; these are codified in a class of logics
of information, each of which bears syntactic reflexes of the important semantic
intuitions. A specific instance of this class of logics, Ly, ¢, is described.

In order to provide a concrete grounding for such logics, we consider appropriate
semantics. By defining a set of properties of logical systems (that is, logic plus class
of models together with an appropriate relation of satisfaction), we can compare
the advantages and disadvantages of various choices of models, both existing and
new. These properties have not only logical but computational ramifications. The
development of the logics including £, c and an examination of the properties of
appropriate classes of models comprise Chapter 2.

Given a logical system with the requisite properties, we can define a grammar
formalism based on logical constraints over information associated with phrases.
The definition is quite abstract: any logical system of sufficient expressiveness satis-
fying the properties outlined in Chapter 2 will serve to define a formalism. It is this
abstraction that justifies considering these methods as characterizing’ constra.lnt-
based formalisms in general, rather than an individual formalism.

Furthermore, so long as the models of the logic have some further [quite strong]
computational properties, a general algorithm can be defined for parsing phrases
with respect to a grammar in the constraint-based formalism. The construction of
the algorithm and a proof of its correctness is given independently of the defails of
the logic upon which the formalism is based. A further abstraction in the definition
of the algorithm makes the algorithm and its correctness proof independent of the
control regime employed. Thus, at one stroke, a wide range of parsing algorithms
are proved correct for any constraint-based formalism. Particular instances of the
algorithm, including an incarnation as an extended Earley’s algonthm and a sim-
ulation of LR parsing, are discussed. The latter is espec:ally important because of
its ties to psycholinguistic effects. The definition of grammar formalisms and their
parsing algorithms takes up Chapter 3.

In Chapter 4 we return to the topic of appropriate classes of models for the
constraint logics, and develop a series of possible classes of models for the logic
Lr.c, with an eye towards their utility for logical and computational purposes.

Finally, we turn to a more speculative topic: the relation between these tech-
niques and those devised for characterizing computer languages. In so doing, we
attempt to bring out more clearly the s1m11ant1es a.nd dlﬁ'erences between the two
classes of languages.

As a concrete example of the techniques described in Chapters 2 and 3, and as an
application of those techniques to both natural and computer languages, we define.
a more expressive logic than Ly, ¢, extending the equational constraints of L ¢ to
encompass inequations; we provide a class of models for the logic and algorithms

Introduction 3

for computing with the models on the basis of the foundations built up in Chapter
4. The existence of the logic and its model structure with appropriate properties
immediately gives rise to algorithms for interpreting grammars in the formalism
constructed around the logic. Chapter 5 discusses the connections to computer
languages and the inequality logic.

This thesis can be seen as an attempt to characterize the abstract notion of
a constraint-based grammar formalism. The abstraction occurs along several di-
mensions. First, the constraint types on which such formalisms are built are char-
acterized generally, as logics satisfying certain properties. Second, the models for
the logics are characterized by their properties rather than by direct construction.
Finally, the algorithms for manipulating phrases according to a gramimar are char-
acterized independently of the specifics of the formalism and of the choice of control
regime. This abstract view of comstraint-based grammar formalisms engenders a
rigorous understanding not just of one attempt to characterize a particular natural
language from a particular perspective, but rather of a broad class of techniques
applicable to both natural and computer languages from both mathematical and
computational perspectives.

o

Constraint Logics for Linguistic Information

We define the underlying conception of information implicit in previous
work on constraint-based formalisms by ezamining its desired properties,
Primary among these are modularity, partiality, and equationality; these
. are codified in a class of logics of information, each of which bears syn--. .
. tactic reflezes of the important semantic intuitions. A specific instance
of this class of logics, L1, ¢, is described.

Inorder to provide a concrete grounding for such logics, we consider
appropriate semantics. By defining a set of properties of logical systems
(that is, logic plus class of models together with an appropriate relation
of satisfaction), we can compare the advantages and disadvantages of
various choices of models, both ezisting and new. These properties have
not only logical but computational ramifications. The development of the
logics including L, ¢ and an ezamination of the properties of appmpmate _
classes of models comprise this chapter :

2.1 The Structure of Grammatical Information
The description of languages can be performed in many ways. The methodology
most used within formal language theory—and inherited during the genesis of gener-
ative linguistics—is to characterize a language as a set of strings {or, more commonly .
in the linguistics literature, an assignment of asterisks to strings——the set’s charac-
teristic function). Perhaps the clearest example of a tool for describing languages
in this way is the finite automaton with its accepting and rejecting states. But,
independently of any formal limitations of finite automata, this binary distinction
of well- versus ill-formed has proved in practice to present too. coarse a grain of
string classification for the purposes of efficiently describing languages.

In fact, even a broadening of the classificatory power of the formalism to allow

for a ﬁmte set ‘of primitive expression types, as in context- free grammars, unduly
constrains writers of natural- -language grammars. Primary among the reasons for

6 Parsing and Type Inference for Natural and Computer Languages

the inadequacy of pure context-free grammars is that the distribution of expressions
of a language does not depend exclusively on a single kind of information. Certain
aspects of a phrase’s distribution might depend on morphological-agreement mark-
ings like the *-s’! ending that marks English nouns as plural. Other distributional
constraints depend on phonological restrictions. For instance, the co-occurrence of a
noun with the determiner ‘a’ or ‘an’ depends on the phonological form of the noun.,
Selectional restrictions on distribution depend on factors of a phrase’s meaning.
The distribution of reflexives depends on the semantic properties of the pronoun
and the subject of its embedding clause. Distribution of the word ‘I’ depends on
pragmatic, contextual factors—i.e., the identity of the utterer. Describing a phrase

by placing it in one of a finite number of categories is inherently unwieldy because

we are required to characterize all of the phrase’s distributional properties at once.

In short, the structure of the information as allowably stated in the formalism does

not match the natural structure of linguistic information.

This type of consideration leads to a view of grammatical descnptlon under
which a language is thought of as a relation between individual strings and in-
formation about them, rather than as a function from strings to well-formedness
judgments, or a classification of strings into a finite set of classes. Although these
latter two views can be seen as vestigial instances of the more general perspective,
they prejudge certain issues that are more profitably left open-ended, namely, issues
concerning the appropriate structure of the information. For instance, considera-
tions such as those in the previous paragraph argue for treating the information
associated with phrases of a language as entities with a modular, hierarchical struc-
ture, rather than as atomic nonterminals or grammaticality judgments.

Another problematic assumption inherent in the view of information found in
the context-free formalism is one of completeness. In order to define the relation
between strings and nonterminals inductively in a context-free grammar, each stage
in the induction must possess full information about the constituent phrases. A
phrase must be specified as singular or plural, animate or inanimate, referring to the
speaker or not, regardless of the motivation for making the distinction. In'a context
in which information about a phrase might arise from a variety of sources, such a
requirement that information be complete at all times might be too strict. Preferable
would be a system in which only the information available at each inductive step is
noted.? Sincé phrases may be underdetermined with respect to certain classificatory
criteria, the modeling system should allow such underdetermination as a first- cla,ss"
not1on In essence, mformatlon is to be v1ewed as being partia.l

*In this work, we will follow the typogr’aphii:a]' convention that words and ‘phrases that are being
mentioned, as opposed to being used, will be surrounded by single quotes. Since the exact
contents of such strings is critical in a work on grammars and parsing, we eschew the convention:
of shifting following punctuation within quote marks.

?This way of seeing the need for partiality as arising from the information differentially a.va.lla.ble
in the inductive construction of’ phrases was inspired by some informal comments of Sta.nley
Peters. -

- Constraint Logics for Linguistic Information 7

. A final property of the relation between strings and their associated informa-
tion concerns the source of that relation. Rarely is information about a phrase
given directly, as when a noun is explicitly marked for number. In general, phrasal
information is determined by a system of interacting constraints that mean little
separately, but that together place strong limits on the distribution of a phrase. .

In fact, we can go further.. A cursory examination of a few such constraints
reveals interesting commonalities. For instance, consider the followmg constramts
on English phrases:

A subject noun and the corresponding verb agree with respect to certain
concord features (number, gender, and person).

The word ‘I’ requires that - its referent be the same as the speaker of the
utterance.

Reflexives are in many respects (both syntactic and semantic) identical to the
subject of the embedding clause.

The object of a raising verb plays the role of the subject of the embedded
infinitival clause.

-All of these constraints share a reliance on the identity of information’ as the:
method of constraint. This reliance on identity is not coincidence; experience in
linguistics has demonstrated that a wide variety of linguistic constraints can be most
directly expressed as equations of some sort; rare are cases that require nonidentity
or more complex relations. Consequently, the stating of such equations will play a
fundamental role in the rest of this dissertation. .

In summary, information about phrases of a natural language is best regarded
as possessing at least three properties: modular structure, partiality, and equation-
ality. These properties will form the basis for the formalisms discussed in this and
succeeding chapters.

2.2 The PATR Formalism

A simple example of a formalism squarely in the constraint-based tradition will
be useful as an example of the preceding considerations, as a benchmark to in-
dicate the research tradition from which this work springs, and as a source for
intuition in the later development. The PATR formalism, perhaps the simplest of
the constraint-based formalisms, was developed by the author and colleagues in the .
Artificial Intelligence Center at SRI International as a successor to the DIALOGIC
system in which the comprehensive DIAGRAM grammar of English was written. The
motivation for the particular design decisions in the PATR formalism are discussed
at length elsewhere (Shieber, 1985a).

8 Parsing and Type Inference for Natural and Computer Languages

. Grammar rules written in the PATR formalism describe the relation between
strings and information about them directly. Typically, the information is thought
of as being characterized by graph structures of a certain sort. A “context-free”
portion of the rule constrains the concatenation of substrings to form a whole phrase,
while a set of equations constrain the allowable information types of the constituents
described. For instance, consider the standard context-free rule postulated for a
simple English sentence (S) composed of a noun phrase (NP) followed by a verb
phrase (VP):

S —+ NP VP .

This rule would be expressed in the PATR formalism as

X() —* .Xl Xg

(0 cat)y =8
(£a) I (1 cat) = NP
(2 cat) = VP.

The context-free portion states that the rule applies to three constituents—the
string associated with the first being the concatenation of that associated with the
second and third, in that order. In addition, it requires that the information associ-
ated with the three strings, their graphs, simultaneously satisfy the three equations.
Thus, it expresses the possibility that an expression Xo could be constructed as the
concatenation of expressions X; and X, (in that order), under the constraint that
the cat (category) information associated with Xo, X;, and X3 be S5, NP, and VP,
respectively. The rule thus corresponds directly to its context-free predecessor..

However, the PATR formalism allows more expressivity in that further indepen-
dent constraints might be added. For instance, to require that the noun phrase and
verb phrase agree in person and number (as they do in Enghsh), a single constraint
augments the previous rule

Xo — X1 Xo
{0 cat) =5

(R2) (1 caty= NP
(2 cat) = VP
{1 agr) = (2 agr}).

The new constraint requires that the agr (agreement) information associated with
the noun phrase be identical to that associated with the verb phrase. This agreement
information might be further decomposed into per (person) and num (number)
information (as demonstrated in the lexical-item definition below), but the smgle
equation suffices to guarantee concord of agreement features.

The graphs that have historically served as the carriers of mforma,t]on about
strings in the PATR formalism are rooted, connected, directed graphs with unordered

Constraint Logics for Linguistic Information 9:

ca agr

NP

nu er

singular third
Figure 2.1 A Typ.ical Graph Structure

labeled arcs and labeled terminals (nodes of outdegree 0). Furthermore, the labels
on arcs leaving a given node are required to be distinct. An equation {(fy --- fin) =
{g1---gx) is satisfied by a graph if and only if the node reached from the root
by traversing in order the arcs labeled f; through f,, is the same node as the
one reached by traversing g; through gi. Similarly, an equation (f;---fn) = ¢
is satisfied if and only if the node specified as above by the path (fi+--f) is a
terminal node labeled with the constant c.

For the above example, then, the constraints require that the constituents be-
long to major categories S (sentence), NP (noun phrase), and VP (verb phrase),
respectively, and further, that the agreement information for the noun phrase and
verb phrase be identical subgraphs.

A typical graph for a string like the proper noun ‘Nature’~as in the sentence
‘Nature abhors vacuums’, ® which we will use throughout the text to exemplify
various points—might be as depicted in Figure 2.1. Intuitively seen, the information
carried by this graph is that the string is of category NP and carries third person,
singular number agreement. This primitive lexical item can be thought of as being
defined by the rule ' o

Xo — ‘Nature’
(0 cat) = NP - =~
(0 agr num) = singular
(0 agr per) = third

(Rs)

2.2.1 Grammars and Their Interpretation

Using rules of the above two sorts—for combining strings and for introducing prim-
itive strings—grammars for fragments of natural languages can be written. A PATR
grammar for a tiny fragment of English will demonstrate grammar interpretation
a bit more fully. The grammar, given as Figure 2.2, makes use of an abbreviatory
convention that equations defining the cat (category) of an expression are implicit

9The sentence is a mistranslation of the Latin proverb “Natura abhorret vacuum.” ‘The need
to take liberties with the iranslation testifies to the difficulty of finding well-known three-word
sentences of English with differing agreement in subject and object. :

10 Parsing and Type Inference for Natural and Computer Languages

(R2) S —+ NP VP

(1 agr) = (2 agr)
(Ra4) VP — V NP

(1 agr) = (2 agr)

(R3) NP — ‘Nature’
(0 agr num) = singular
{0 agr per) = third

(Rs) NP — ‘vacuums’
(0 agr num) = plural
(0 agr per) = third

(st V — ‘abhors’
(0 agr num) = singular -
{0 agr per) = third.

(R7) V — ‘abhorred’
Figure 2.2 A Tiny English Fragment =

in the name chosen for the expression in the context-free portion of the rule. Thus,
the first rule in the grammar—Ilabeled (Rz)-—is equivalent to the similarly labeled
rule given in running text above. The sole import of the convention is to promote
readability; it has no effect on expressivity.

The grammar admits the sentence ‘N ature abhors vacuums’, which can be ver-
ified as follows. (Since we have rigorously defined neither the formalism nor its
semantics, at this point, the following description is intended merely to foster intu-
itions for the later, more precise, explication.)

The rules for the words ‘abhors’ and ‘vacuums’, respectively, incorporate con-
straints satisfied by the simple graphs

singular third

a,nd

Constraint Logics for Linguistic Information

cat

NP

_per

plural third

The phrases themselves are associated with the 0th subgraph of these:

cat agr
‘abhors’ —+ V. per
singular third
and
cat agr
‘vacuums’ —s NP nu per

plural third

11

Now, the constraints in the rule for constructing verb phrases are satisfied by

the graph

cal

VP .V NP

We can incorporate the phrases ‘abhors’ and ‘vacuums’ as the first and second
subcomstituents, respectively, in the rule, by combining their graphs with the graph

for the rule as a whole, yielding the expanded graph

12 Parsing and Type Inference for Natural and Computer Languages

cal

third singular | third plural

again, the Oth subgraph is associated with the full phrase:

cat agr

‘abhors vacunms’ VP
[=
hor S nu per

singular third

The sentence formation rule is associated with the satisfying graph

cat cat,” agr cat agr !
S NP VP

which can be used to combine with the graph for ‘Nature’ (obtained in the previously
described manner)

cat agr

[k]
Nature’ —s NP nu per

singular third

and the graph previously obtained for ‘abhors vacuums’. The resulting graph

third B singular -

Constraint Logics for Linguistic Information 13

admits the entire phrase as a sentence:

.cat _

S

‘Nature abhors vacuums’ i—s

2.2.2 Summary _

The PATR formalism possesses the propertles of modulanty, pa,rtzahty, a.nd equatlon-
ality that were described in Section 2.1. The graph structures partition information
into separate modules; major-category information is separated from agreement in- -
formation, for instance, and the two can be constrained separately. Only partial
information about a string need be stated. The lexical entry for ‘Nature’, for exam-
ple, gives both number and person information, but lexical entries for other words
might be underspecified for one or the other feature; the word ‘abhorred’ is an ex~
ample of a word underspecified for number and person. The equationality of the
formalism follows from the ability to state equations directly.

Furthermore, grammars stated in the PATR formalism have an immediate com-
putational interpretation. The minimal solution to all of the various equations can
be found by a process of graph unification akin to the term unification used in res-
olution theorem-proving. This observation allows for recognition algorithms to be
built that determine the grammaticality of sentences by performing the appropriate
unifications, thereby proving the satisfiability (or otherwise) of the equations. -

We will not describe in any detail how the PATR formalism can be used to build
actual grammars for fragments of natural language; this area has been discussed
elsewhere (Shieber, 1985b; Shieber et al., 1983). Nor will we go into any further
technical detail at this point to make the definition of PATR grammars more precise
and to spell out their interpretation rigorously. This has also been done previously
{Pereira and Shieber, 1984) and the remainder of the present work implicitly pro-
vides another method. But the example of the PATR formalism is illustrative of
several important properties of constraint-based formalisms in general:

o Informational constraints are giveﬁ exp]jeitly (as equa,tiohs)., _ |
. They constra.m informational elements (the graphs).

e They can be mterpreted computationally (by umﬁcatmn)

The notmn of a constramt based formahsm in the a.bstra,ct is deﬁned by just
such properties, parameterized by the parenthetical choices made in the design of-
. the PATR formalism in particular. In essence, we want to define a whole class:
of PATR-like formalisms by broadening the class of constraints and allowing other
sorts of informational structures, while still permitting computational interpreta-
tion. Consequently, we must tread a fine line, attempting to be as general as we can

14 Parsing and Type Inference for Natural and Computer Languages

yet not losing sight of algorithmic considerations. As the work presented here is the
first to attempt this enterprise, we must be satisfied with only a partially success-
ful negotiating of this line. The constraint languages allowed are not as general as
might be hoped, and the requisite properties of a constraint-based formalism appear
more ad hoc than they.might. (Our current thoughts on improving the method-
ology are presented in Chapter 6.) The present results, then, should be thought
of as a first step towards a more complete understanding of the ma.thematlcal and
computational foundations of constraint-based grammar formalisms.

2.3 Idealizations of the Constraint-Based View

The transition from seeing linguistic information as a simple binary distinction or
finite classification consitutes a movement away from an idealization of linguistic
structure. But even the fuller view proposed here is a vast idealization along several
dimensions concerning the structure of linguistic information. Most obviously, not
all linguistic constraints are statable as equations at all; examples of such cases
lie within the province of Chapter 5. Other constraints are statable as equations
only with the most gymnastic effort. For this reason, we would best leave open
the possibility that other types of constraints might be added to a formalism, and
we will. This chapter and the mext constitute an attempt to. place the results
concerning constraint-based formalisms in a more general setting, independent of
the particular types of constraints allowed, but even this more general approach may
not be sufficient for the types of informational constraints imposed by semantic and
pragmatic factors not considered in the present work..

Perhaps a more basic idealization made here is that the- mformatmn about
phrases of a language is discrete. Properties either hold or not of phrases; number,
if specified, is either singular or plural; the verb either requires an animate subject
or it does not, and so forth. There are no preferences, no prototypes, no fuzzi-
ness. Any system based entirely on discrete information will be subject to the kind
of fragility of behavior that has plagued artificial-intelligence systems in general
and natural-language processing programs in particular; constraint-based systems
are no exception. However, declarative systems based on constraints at least hold
open the prospect that the discrete solution of constraints can be relaxed by incor-
porating continuous approximations of various sorts, for instance, probabilistic or
abductive interpretation of constraints. Such possibilities are much more difficult
to maintain in the context of a formalism not based on the declarative statement
of grammatical information. Whether the constraint-based view of linguistic infor--
mation is amenable to such a relaxation is an open question with some intriguing -
possibilities, but one that will not be discussed further here. There is already suf-
ficient grist for the foundational mill to make introducing this further complication -
presumptuous. :

Constraint Logics for Linguist.izc' Information 15

R—F(A)
(1 type consiry = function
(1 type arg) = (2 type)
{1 type result} = {0 type)
{0 env) = (1 env)
(1 env) = (2 env)

A—w (we k)
(0 env w) = {0 type)

A~ (t € N)
(0 type constr) = int

Figure 2.3 A Tiny Applicative Language Fragment

2.4 Constraint-Based Description of Computer Lan-
guages

Looking ahead to Chapter 5, we note that these same properties of structure, par-
tiality, and primacy of equational constraints also arise in the information associated
with computer-language expressions, types. Comnsider the type of the polymorphic
identity function @ — a. This type exhibits structure in that it includes specifica-
tions for the component types of the function’s argument and result. Polymorphism
introduces a partiality into the description: the type is less constrained than the
integer identity function INT — INT; expressions of the polymorphic type there-
fore participate in more grammatical constructions than do expressions of the more
specific type. Finally, constraints on types are expressed as identities of subtypes;
in the example, a shared variable notation is used to constrain the types of the
argument and result to be identical. _

The analogy can be demonstrated by using the PATR formalism to define a gram-
mar for a simple applicative language; the equations state the typing constraints.
Figure 2.3 gives such a grammar.? Each expression is associated with a graph com-
prising information about its type and the environment (env) under which the typing
holds. The first rule corresponds to the more traditional typing rule ..

ErFf:A—-R Flta:4
EFf@:E

*The implicit category convention used in the grammar of Figure 2.2 is not in force in this gram-.
mar. Furthermore, with respect to the status of the parentheses in the first rule, a more correct,
but pedantic, grammar would introduce nonterminals for the parentheses and the parentheses
themselves as lexical items. The intent of the grammar in this respect should, however, be clear:
Such abbreviatory methods will prove useful in later examples as well,

16 Parsing and Type Inference for Natural and Computer Languages

while the second rule (actually a rule schema) corresponds to the typing rule

Ew)=T
Etw:T

where, as is typical, an environment is a function from identifiers to their types.
Given such an environment encoded by the graph

the typing gr.amrhar admits fhé following typings:
s id:a—a
. -'1-:INT;>INT'—'>INT '
o id(+): INT — INT - INT

o id(+(3)(id(z))) : INT

This last typing occurs in an environment in which is typed as an INT. Thus,
the grammar allows for type inference of subexpressions a la the ML programining
language (Milner, 1978), as a consequence of the purely equational nature of the
constraints.

Of course, not all expressions are typed by the grammar. For instance, the
expression +(id)(2) is not admitted by the grammar under any typing, as is correct.
The expression id(+)(3)(id(2)), intuitively typable as an INT, is unfortunately not
admitted by the grammar. This is because the environment defines the types of
identifiers once and for all, but the expression uses the same identifier (id) with two
different incompatible typings. We will return to this problem in Cha,pter 5, when
the topic of nonequational constraints comes under consideration.

- Constraint Logics for Linguistic Information 17

2.5 History of Constraint-Based Formalisms

Constraint-based formalisms have only recently been proposed, and their recogni-
tion as forming a single class is even more recent. Their origin may be traced to sep-
arate research efforts in computational linguistics, formal linguistics, and natural-
language processing; related techniques can be found in theorem proving, knowledge
representation research and theory of data types. Several independently initiated
strains of research have converged upon the notion of constraint satisfaction, espe-
cially equational constraints, as a technique for describing languages.

Beginning with the augmented-transition-network (ATN) concept (Woods 1970)
(like so much of the research in' modern computational linguistics) and inspired by
Bresnan’s work on lexically oriented nontransformational linguistics, the lexical-
functional grammar (LFG) framework of Bresnan and Kaplan (1982) was evolved.
The formalism used within the lexical-functional theory of language allows rules
with a context-free backbone and constraints of various sorts, including equational
constraints, constraints of existence of values, set membership constraints, and oth-
ers. The informational elements (in our terminology) of LFG are the so-called f-
structures, a type of finite tree (as opposed to the graphs of PATR; see Section 4.1).
The formalism is under constant development and new constraint types are often
introduced. The LFG formalism is in general, therefore, a superset of PATR, except
that, unlike PATR, LFG requires a major category to be assigned to each constituent.

Simultaneously, Kay devised the functional grammar (later unification grammar,
now functional unification grammar [FuG]) formalism (Kay, 1983). FuG blurs the
distinction between the language of constraints and the objects being constrained by
using functional structures (which are similar to the graph structures of PATR) both
as a language of description and as the objects of description. Besides conjunctions-
of equations, FuG allows disjunctions and various other descriptive extensions:

Independently, Colmerauer had produced the Q-system (Colmerauer, 1970)
and metamorphosis grammar {Colmerauer, 1978) formalisms as tools for natural-
language processing. The logic-programming community, specifically Pereira and
Warren (Warren and Pereira, 1982; Pereira, 1983), created definite-clause grammars
(DCG) on the basis of Colmerauer’s earlier work on these formalisms and on the pro-
gramming language Prolog. Viewed as a constraint-based formalism, DcGs describe
language using first-order terms as the informational elements. Variable sharing is
used to encode the equational constraints. Independent work in logic programming
has employed DCG as the foundation of many constraint-based formalisms, such as
extraposition, slot, and gapping grammars (Pereira, 1981; McCord, 1980; Dahl and
Abramson, 1984; Dahl and McCord, 1983).

- Another strain of parallel research grew out of the w0rk on nontransformatlonal
linguistic analyses, from which Gazdar and his colleagues developed generalized-
phrase-structure grammar (GPsG) (Gazdar, 1982; Gazdar et al., 1982; Gazdar,
1981). In its later formalization by Gazdar and Pullum (Gazdar et al., 1985),
GPSG imported a unification relation over tree-like feature structures that was used

18 Parsing and Type Inference for Natural and Computer Languages

to solve implicit equations stated as language-universal principles of the theory.
Later developments from GpPs@, specifically, Pollard and Sag’s head-driven phrase-
structure grammar (HPsG) (Pollard, 1985a; Pollard, 1985b; Pollard and Sag, 198{)
has moved in the direction of explicit equations as in PATR.

- Most recently, infiuenced by early papers on GPsG, Rosenschein and the author
(1982) devised PATR as a successor to DIALOGIC and DIAGRAM (Robinson, 1982).
Although the original PATR did not use equational constraints, it developed (under
the influence of FUG, later work in GPSG, and DCG) into PATR-1I, the formallsm we
introduced above (Shieber, 1984; Shieber et al., 1984).

Work on the mathematical and computational ba.ckground for constraint-based
formalisms is an even more recent development, emerging only in the last few
years. The first rigorous semantics for a constraint-based formalism was provided
by Pereira and the author (1984); this thesis is a direct outgrowth of that line of
research. Rounds and his students Kasper and Moshier have developed quite sophis-
ticated formal analyses of feature logics and feature structures (Kasper and Rounds,
1986: Rounds and Kasper, 1986; Moshier and Rounds, 1987), concentrating on the
view of feature structures as antomata (as alluded to in Section 4.4). Their logics
go well beyond those discussed here in certain aspects (allowing disjunction, nega-
tion, and set-valued features), though they make no attempt to describe classes of
logics. In contrast to the present work, they do not apply their analysis to the
full problem of providing a semantics for an entire formalism, nor to the computa-
tional interpretation thereof. Johnson has also provided an analysis along the same
lines as Kasper and Rounds, although with a more syntactic flavor (Johnson, 1987).
Most recently, Goguen has applied ideas in algebraic semantics to the problem of
providing a semantics for constraint-based grammars (Goguen, 1988).

The PATR formalism has been proposed previously as being especially useful as
a benchmark against which various constraint-based formalisms can be compared
(Shieber, 1987). For instance, GPSG has been reconstructed by “compiling” into
PATR, thereby showing that the universal principles can in fact be cashed out as
equations and making clear the constraint-based methodology of GPsG that might
otherwise have been hidden (Shieber, 1986). Of course, such reconstructions are
only indicative in general, since no other formalism has been given the kind of
rigorous semantics accorded PATR.

. Work on the implementation of the formahsms has concentra.ted on several-
fronts. Nelson and Oppen (1978) describe an algorithm for computing graph closures
efficiently, with an application to solving equations of the type found in constraint-
based formalisms. Their algorithm forms the basis for an implementation of uni-
fication for LrG. Early implementations of PATR used a simple invisible-pointer
representation for graphs that involved a large amount of copying (Shieber et al.,
1983). Replacement of such representations with ones incorporating binding envi-.
ronments that can share structure is one method of improving efficiency (Karttunen
and Kay, 1985; Pereira, 1985b), the latter based on ideas of structure-sharing for’

Constraint Logics for Linguistic Information 19

theorem-proving (Boyer and Moore, 1972). Other techniques for minimizing copy-
ing have been proposed (Wroblewski, 1987).

Parsing-algorithm design is only now getting wider attention. The stra,lghtfor-
ward modeling of Earley’s algorithm for pATR and the importance of using a re-
stricted subset of information in top-down prediction (as discussed in Section 3.6.2)
were first discussed by the author (1985c). Compiling of PATR grammars into Prolog
programs has been investigated by Hirsh (1986). Wittenburg (1986) discusses the
use of constraint-based techniques in the parsing of combinatory categorial gram-
mars. The view of parsing as a deductive process was first espoused for pCG by
Pereira and Warren (1983) and serves as the inspiration for the abstract character-
ization of parsing described in Chapter 3. The notion of having parsing algorithms
parameterized along the control dimension appears in Kaplan’s work on the General
Syntactic Processor (Kaplan, 1973). The present work generalizes this to abstract
the formalism as well, and to eliminate the reliance on a chart (although chart
parsing is still a possible optimization, as discussed in Section 3.6.1). Kay (1985)
discusses parsing FUG, although the technique provided was never contended to be
fully general.

Related Formalisms and Languages from Computer Science

Besides the obvious links to logic and theorem-proving research (unification was orig-
inally discussed as a component of the resolution procedure for automatic theorem-
proving (Robinson, 1965), a connection that is still evident in Prolog and pca)
other research from computer science bears directly on the topic at hand.

There is a close relationship between the type theory of computer science and
the algebraic structure of feature systems. Roughly speaking, the similarity is be-
tween feature structures and named product types (or numbered product types for
DCG terms) with or without sum types. Building on this relationship with type
theory, Ait-Kaci (1985) discusses a calculus of syntactic types that bears a remark-
able resemblance to the feature structures used in constraint-based formalisms. The
mathematics of subsumption, unification, and other algebraic properties of his cal-
culus are investigated in depth. The intended application of the formalism was to
knowledge representation——it was originally described as a generalization of Prolog
terms—but some brief natural-language examples are given by Ait-Kaci.

Cardelli (1984}, in a reconstruction of object-oriented programming, proposes
a typing system based on named product types with sums for disjunction. This
type system also bears a close resemblance to the feature structure domains. He
proposes this as a technique for modeling object classes with multiple inheritance
in a strongly typed language. :

The explication of the relationship between constraint- based formahsms and
type inference for computer languages (for instance, the analogy between the use of
unification for type inference (Hindley, 1969) and for natural-language parsing} has
not, to the author’s knowledge, been noted before in print. The use of subsumption

20 Parsing and Type Inference for Natural and Computer Languages

to describe coordination phenomena in natural language has been in the air since
the phenomena were first noted (Sag et al., 1985). Our analysis seems to be the first
rigorous formalization of the idea. Similarly, the idea is implicit in the description
of ML type inference (Milner, 1978). .

Perhaps the computer science work most closely related in spirit is the recent
development of constraint logic programming (Jaffar and Lassez, 1987). We regret
that this approach came to our attention too recently to enable us to assess our
own approach in its light. The notion of defining a class of computer languages pa-
rameterized by a constraint language (and constraint satisfaction technique) seems
completely analogous to the notion of defining a class of constraint-based formalisms
parameterized by a constraint logic and operations on models for formulas in the
logic. '

Moshier (1988b), starting from a common foundation with the present work,
namely the research on unification-based grammar formalisms and their semantics
(Shieber, 1985b; Pereira and Shieber, 1984; Rounds and Kasper, 1986), also in-
vestigates the mathematical aspects of these grammar formalisms, including the
independently observed application of equations and inequations to problems of
programming-language type inference. Although there is a sizable overlap in these
independent efforts, many aspects are peculiar to one or another. Moshier covers
two much more expressive logics that include disjunction, negation, and a recursion
operator; the present work, on the other hand, places logics for grammar formalisms
in a general framework so that their properties and alternative models can be ex-
plored. Further, only this work addresses the issue of parsing with such systems,
providing parsing algorithms and proving their correctness.

2.6 T.he. Strticturle of Constraint-Based .Foi'rhalisms :

The various constraint-based formalisms have differed historically in the details of
the types of information they provide for and the types of constraints they allow.
Consequently, it has been difficult to compare analyses in the various systems,
to design grammar-processing algorithms of general utility, as opposed to those
intended for specific formalisms, to provide uniform semantics, and so forth.

The constraint-based view of language and grammar offers a general framework
in which such questions can be studied. Just as a particular language can be viewed
as a relation between strings and their associated linguistic information, a gram-
mar can be seen as expressing two types of constraints on this relation: the first,
constraints on strings and their combination; the second, constraints on the as-
sociated informational elements. Figure 2.4 presents a graphical representation of
this relation between grammar and language. A grammar formalism, then, merely
characterizes the space of possible grammars by pinpointing a particular method of
string combination and a particular language for informational constraints.:

For the remainder of this work, we will assume that the method of string combi-

Constraint Logics for Linguistic Information 21

FORMALISM

PHRASE- CONSTRAINT LG.
STRUYCTURE] [(logic of informgtion)

LANGUAGES

STRINGS X INFORMATION
‘ (models for logic)

' Figure 2.4 Structure of Grammars and Languages

nation is simple concatenation; thus, the string-combining constraints can be seen
as simple phrase-structure constraints. Although this has many ramifications for
the expressiveness of formalisms, our main interest in the informational constraints
and our desire for computational feasibility mandate this idealization.

In order to compare various formalisms, we require a way of abstracting them
with respect to the specifics of the information and constraint types that they allow
for. This abstraction can be achieved by encapsulating the constraints in a logical
system of constraints on linguistic information, comprising a logical language for
stating the constraints, a class of models for the logic providing the informational
elements, and a relation of satisfaction between models and formulas of the logic to
relate the two.”

This view of an abstract formalism parameterized by an independent logical
system of constraints supplies a framework in which different formalisms can be
embedded, given uniform semantics, and compared with one another. Furthermore,
under suitable conditions, general algorithms for interpreting grammars can be de-
signed and proved correct, independently of the particulars of the constraint logic
employed. Such algorithms are therefore uniformly applicable to all of the formalism
instances. :

$The term ‘logic’ is ambiguous in common use as to whether it refers to an unintérpreted language
together with some syntactic rules of inference, or to an interpreted langunage, that is, a set of
formulas plus a class of models together with a relation of satisfaction between the formulas
and the models. To avoid confusion, we will uniformly use the word “logic’ for the purely
syntactic system, and the phrase ‘logical system’ for its interpreted counterpart, a triple (£, M, =
Y consisting of a logic, 2 class of models, and a satisfaction relation between formulas in £ and
individual models in M. :

22 Parsing and Type Inference for Natural and Computer Languages

2.7 Appropriate Logics for Constraint-Based For-
malisms '

The details of how such a logical system is used in definition of a constraint-based
formalism will be given in Chapter 3. Of course, not any logic will do for this
purpose. As we have seen, the notions of structure, partiality, and equationality
play a crucial role in any formalism for linguistic information; they must therefore
be reflected in any logic that serves as the basis for a constraint-based formalism.
This section describes the minimum criteria for expressivity of the logic.

Since information is to be thought of as modular and hierarchically structured,
some notation for referring to pieces of information is necessary. Let us assume
that the parts of an informational structure are labeled with elements from a set
L of labels or features. Then given an information structure, 2 sequence of labels
can be used to identify a single specified substructure by using the sequence as its
“address”. Such sequences will be called paths and will be identified with elements
of Path = L*. Some primitive unstructured informational elements will also be
needed. These can simply be taken as a set C of constants. Because of the impor-
tance of features as the structuring method in these informational elements, we will
refer to such elements generically and informally as feature structures, unless some
more particular mathematical structure is being relied upon.

Thus, the terms of a logic will include (but are not limited to) paths and con-
stants, each denoting a feature structure. Formulas in the logic will be finite sets of
atomic formulas, each representing some constraint over feature structures. Again
the choice of relations will depend on the logic, but because of the importance of
equality, we require that, at the least, the binary relation of equality (represented
by the symbol ‘=’ to distinguish it from the metalanguage symbol for equality 3 la
Moshier (19882)) be included. In particular, the atomic formulas include equations
of the form

PL=P2
or

pp=c
whete p; and py are members of Path and cis a member of C. - _ _

Formulas in the logic, finite sets of atomic formulas, are to be interpreted con-

junctively and will be written using standard set notation.® As more atomic formu-
las are included, the formula describes fewer feature structures, that is, it becomes
less partial, more defined. Thus, these logics allow for the structure (through labels

and paths), partiality (through sets of constraints), and equationality (through the
‘=’ relation) of information. : : : :

€The problems engendered by addition of disjunction and negation to systems of this sort have
been described elsewhere (Karttunen, 1984; Kasper, 1987; Kasper and Rounds, 1986). A com-
plete discussion is beyond the scope of the present work. :

Constraint Logics for Linguistic Information 23

A brief digression concerning notation is germane. The symbols f, g, h, etc.
will conventionally represent elements of L; g, b, c, etc., elements of C; and p, ¢, =,
etc., elements of Path. Concatenation of paths, and sequences in general, will be
notated with a center dot (-). Taken together, constants and paths comprise the set
of value descriptors V = C U Path, elements of which are denoted by v, w, etc. The
atomic formulas will conventionally be written ¢, 1, nonatomic formulas, &, ¥, etc.
Primed and subscripted symbols will also be used. The type of a symbol will often
remain unstated when this is clear from its spelling or the context. For example, an
equation p = ¢ may stand without an explicit statement that p € Path and c € C.

2.7.1 Rules of Inference

As the ‘=’ symbol in the logic is to be intefpreted as equality, inference rules must
be postulated that respect this interpretation. The notation & F ¢ will be used
to state that the atomic formula ¢ can be deduced or inferred from the formula
®. The inference relation between [nonatomic] formulas respects their conjunctive
interpretation: ® b+ ¥ if and only if @ | 9 for all ¥ € ¥. The definition of -
to infer atomic formulas will supervene on a formal notion of proof. Each logic
£ will provide a set of inference rules—each a relation of finite arity greater than
0 over atomic formulas of £. The inference rules will be presented in a standard
natural-deduction notation. A proof of ¢ from &, then, is a finite tree whose leaves
are members of ®, whose root is ¢, and each of whose interior nodes ¢; and its
immediate children ¢;; through ¢;, are in an inference rule relation—that is,

Pi1 - Pin

| B £ P T
is an instance of a rule schema. These proof trees will again be presented in natural-
deduction notation with the root at the bottom and leaves at the top, horizontal
lines associating the children of a node with the node itself. :
For the = predicate, the following inference rule schemata suffice. They are based
on those given by the author and Pereira (Shieber and Pereira, Forthcoming).

Triviality: ———-r

O0ED

o Cpg

Symmetry: ——2=

y v -
Reﬂe}éiirity:' R(... aP g,...)

: pg

Substitutivity: g=p R(9)

R@®)(p—a)

24 Parsing and Type Inference for Natural and Computer Languages

Here the notation R(#) represents any atomic formula (relation applied to terms)
and ®(p — ¢), the result of textually replacing a single occurrence of a path of the
form p - r with ¢ -7 in ®. We will later use the notation ®[p — ¢] to notate the
replacing of all paths in @, which must each be of the form p - r for some r, with
the corresponding g - r. Of course, these syntactic operations on formulas may not
always be defined; the rule of inference is applicable only if its consequent is defined.

(In Section 2.7.3, we present a full proof tree using these inference rules; the
reader may want to examine the proof for further intuition.)

2.7.2 Properties of I-

There might be other rules of inference in such a logic as well, allowing for deducing
the other constraints in the language. However, it is important that any such rules
of inference respect the interpretation of paths as being the terms in the logic that
hierarchically structure information. In particular, if a set of paths is “about”
certain information, then all deductions from constraints over those paths should
be “about” the same information. We will codify this requirement in the following
definition.”

Property 1 (logical locality) If @ is a formula all of whose paths have some
member of {p;} as a prefiz and & & §, then all paths in ¢ are prefizes or extensions
of some member of {p;}. '

In addition, constraints should not be sensitive to the particular syntactic forms
of the paths they talk about; rather, the constraints should be sensitive only to
the structural relationships among pieces of information. The inference rules must
respect this insensitivity. Any uniform substitution of paths for other paths that
maintains the structural relationships should therefore preserve the correctness of
inference, as should uniform prefixing of paths. We will codify this requirement with

a notion of prefixed homomorphism. A homomorphism over paths is defined as a.

function m : Path — Path such that m(g-r) = m(g) - m(r). A homomorphism m
prefixed by a path p is then a function m, : Path — Path defined by the equation
my(g) = p-m(g). We can now require that inference is invariant under prefixed
homomorphisms.

Property 2 (logical transparency) If @ - ¢ for nonempty @, then for any pre-
fized homomorphism m,, my(®) - my(p) where mp(P) is the result of replacmg all
paths q in @ by my(g).

Finally, in keeping with the equational interpretation of ‘=’, we limit the con-
sistent formulas to those not entailing a pair of atomic formulas of either of the
following two forms:

7The notion of extension assumed here is that a path p is an extension of a path g just in case ¢
is a prefix of p. Note that as a corollary of this property, if {} - ¢ then all paths in ¢ are empty.

Constraint Logics for Linguistic Information 25

Constant clash: p=a and p=b (wherea#b),or

Constant/compound clash: p-(f}=v and p=a.

The former condition violates the equationality of ‘=", the latter the atomicity
of constants. A logic might introduce further restrictions on consistency, stemming
from constraints other than equality. -

2.7.3 A Simple Example Logic

A simple example of such a logic is one in which we fix the set of constraint predicates
to include only the ‘=’ relation, and define consistency exhaustively by the clash
rules above. Rather than establishing values for the set of constants and labels
as well, we will refer to this logic as £y, ¢ to record its dependence on the set of
constants C and labels L. The logic £y, ¢ is just the constraint logic that was used
in the previous PATR grammar examples.

In the case of Ly, ¢, the Substitutivity schema is completely characterized by
the rule

r=v

Substitutivity: L2 P
g-T=v

and Reflexivity by

prg=v

Reflexivity: -
P=p

In this logic, for example, the following inference relafion hold.s:. |

{N = (N (fa) 2 ar(g) 2 0+ (F10) = (Ffg)

The proof is as follows:

(=4 0=0 (fad=a
(fF) = {f) {(fg)za .
a (ffg)=a
- {ffey={ffa)

Note that the leaf nodes of the tree ({f) = (ff) and (fg) = a) are elements of the
antecedent in the inference relation, but do not exhaust the antecedent; the root
(ffg) = (ffg) is the consequent. Each local set of nodes in the tree, corresponding
to a proof step, is licensed by an inference rule; reading top to bottom and left to
right, the rules used are: Triviality, Symmetry, Substitutivity, Substitutivity again,
and Reflexivity. As it turns out, this is not the minimal proof of the consequent, as
the use of Triviality and the first substitution can be eliminated. '

26 Parsing and Type Inference for Natural and Computer Languages

The reader can easily verify several simple properties of L1 . For instance,
in Lr ¢ every atomic formula is consistent. Locality holds of L1 c, a5 can be
demonstrated by an inductive proof of the slightly stronger requirement that, if
all paths in & have p as prefix and @ ¢, then all paths in ¢ either have p as
prefix or are of the form p’ = p' for p’ a prefix of p. To give 2 flavor for the sort of |
reasoning that will predominate in the rest of this chapter, and, especially, in the
appendix, we provide the proof here.

Proposition 3 (logical locality for Lrc) If® isa formula of L,c all of whose
paths have some member of {p:} as a prefix and @ + ¢, then all paths in ¢ are
prefizes or extensions of some member of {p:}.

Proof: We prove the stronger result that if the antecedent conditions hold, then
either all paths in ¢ are extensions of some p; or ¢ is of the form p’ = p' for p' a
prefix of some p;.

We assume that the antecedent condition holds and prove the consequent by
induction on the proof depth for @ & ¢. For proofs of depth 0, either ¢ € @ (i.e., a
terminal node in the proof tree) or ¢ = {) = {) (i.e.,, an instance of Triviality that
engenders a node in the proof tree with no children). In the former case, all paths
in ¢ are extensions of some p; by assumption. In the latter case, ¢ is trivially of the
form p’ = p/, where 9’ is a prefix of some p;.

For proofs of depth n + 1, the final step in the proof is licensed by either Sym-
metry, Reflexivity, or Substitutivity. If Symmetry is used, the antecedent is proved
using a proof of depth n; thus, it is either of the form p; -7 = p; - s or p’ = p for
P’ a prefix of some p;. In either case, the consequent (p;-s = p;-7ror p' = p,
respectively) is of the required form.

Similarly, if Reflexivity is the final proof step, the antecedent must by inductive
hypothesis be of the form p; -7 = p; - s or p = p' for p’ a prefix of some p;. The
consequent is therefore of the form p” = p” for p” a prefix or extension of either p;
or p;, again meeting the criterion in the proposition’s consequent.

Finally, for Substitutivity, the induction hypothesis guarantees that the proof
antecedents are each of the required form. A case analysis reveals that only three
possibilities can a,rise, assuming without loss of generality that no member of {p;} is
a prefix of any other:® the cases are summarized below. (In the table, p} is a prefix
of p; and p¥ of p!, for p; 2 member of the given path set.)

Case | Antecedent 1 | Antecedent 2 Consequent
(1) | p=p pitT=pits | PitT=P;S
@) | =9 |p=p . |PER
(@) |pi-t=pj-u |pj-u-r=pe-s|pi-t r=pks

5This assumption can always be made because if pi is a prefix of p;, then pj can be removed from
the set without changing the set of prefixes and extensions of the paths in the set.

Constrain't"Logics for Linguistic Information 27

Note that in each case the consequent is of one of the required forms. - a
Furthermore, the graph models introduced informally in Section 2.2 conform to

the inference rules for £, ¢, i.e., they possess a certain soundness property. Such

desirable properties of logical systems constitute the topic of the next section.

2.8 Properties of Appropriate Models for Constramt
Logics

A logic of at least this expressivity has been implicit in the constraint-based gram-
mar formalisms used in several linguistic theories and in the natural-language-
processing work of numerous computational linguists and computer scientists. Of
course, we earlier begged the question of what this logic is a logic of: what pre-
cisely are the feature structures, which serve as the models for formulas? Several
researchers have provided more or less substantial answers, starting with the infor-
mation systems domain of Pereira and Shieber {1984) and including the automata-
theoretic model of Kasper and Rounds (1986), the tree models of Gazdar et al.
(1985), and Barwise (1988), and the normal-form models of Johnson (1987). We -
will reconstruct and discuss several such possibilities further in Chapter 4. :
But first, we turn to the question of how to choose among such alternatives on
the basis of what properties the resulting logical system possesses. In this section we
will describe several such properties of logical systems; in fact, there will be sufficient -
properties to guarantee that the logical system can be used in defining a grammar
formalism and building parsing algorithms for it, as we will do in Chapter 3.

2.8.1 Soundness and Completeness Properties

The choice among these types of models depends in great part on the theoretician’s.
proposed use of them. If we want to prove the logic consistent, we need only find a .
class of models for which the logical system is denotationally sound, that is, there
are models only for consistent formulas.

Suppose we have a class of models M for a logic £ and a satisfaction relation
k= between models and formulas of the logic.’ Then we can define denotational
soundness for the logical system consisting of £, M, and | as follows: '

Property 4 (denotational soundness) For all formulas & of L, if there is a
model M € M such that M |= &, then & is consistent.

" If we want a guarantee that th'eorer.h—proﬁrig in the"lo.gi.c is a sufficient method
for revealing truths, the logical system must be logically complete. We can define
a notion of semantic entailment in a model structure~~for which we will overload

#We will require as a matter of course that |= reflect the conjunctive mterpretatlon of formulas,

that is, that M |=® if and only if M = ¢ for all ¢ € ©.

28 Parsing and Type Inference for Natural and Computer Languages

the symbol ‘|="—as follows: & |= &' if and only if all models of ® are models of o’
Then logical completeness requires that logical inferences hold for all semantically
entailed formulas.

Property 5 (logical completeness) For all formulas @ and &' of L, if® = &,
then @ | &',

Completing the set of soundness and completénesé pi‘operties are the converses
of the previous properties: denotational completeness'® and logical soundness.

Property 6 (denotational completeness) For all formulas ® of Lrc, i @ is
consistent, then there is a model M in M such that M = ®.

Property 7 (logical soundness) For all formulas & and 3 of L, zf o+ ¥ then
d k@

In summary, the denotational properties concern the faithfulness of models with
respect to consistency, the logical properties faithfulness with respect to deduction.
These four properties together provide a basis for viewing a model structure as an
appropriate one for the purpose of imparting a semantics to a logic such as Ly ¢,
although, for some purposes, one or another of the properties may not be necessary
to appropriately deploy a logical system in certain applications. Such semantic
grounding of a logic in a class of models conforming to these properties is especially
useful as the basis for proving the correctness of algorithms that manipulate the
formulas in various ways (as we will see in Chapter 3}, so that we will uniformly
require all four properties of the logical systems for constraint-based formalisms.

In addition, it is desirable that the models not display any artifactual idiosyn-
crasies, i.e., differences among the models that are not reflected in their logical prop-
erties. Such artifacts would indicate that the models are insufficiently abstract. A
logical system will be said to be categorical if the following property holds:*?

Property 8 (categoricity) For any two distinct models M and M’', there exists
a formula & such that either M = ® and M' £ & or vice versa. '

This property requires that there be a formula to distinguish any two models. Imag-
ine a class of models just like the graph models discussed in Section 2.2, but whose
nodes have, in addition to outgoing arcs, some other characteristic, say, a color.
Clearly, such a class of models would not be categorical for a logic such as Lz ¢,
which has no color constraints. For some other more e}\presswe logic, however,
colored gra.phs might be appropriate,

mThxs property corresponds roughly to what is called strong completeness in the logic literature.
117The notion of categoricity of models is akin to the notion of full abstraction in programming-
language semantics. The term categoricity derives from its traditional usage in logic.

Constraint Logics for Linguistic Information 29

f fl e

g b/ g
b a b

(a) (b)_ N _ (d)

Figure 2.5 Examples of Graph Ordering

2.8.2 Subsumption Ordering and Minimality

Besides the correctness of algorithms, their efficiency is also a concern, which leads
us to other properties of logical systems. In particular, we will later eschew normal
theorem-proving from a formula as the method for generating truths, preferring
instead to operate on a representative or canonical models for the formula, in effect
“reading off” the truths from it. This use of models as proxies for formulas requires,
first of all, that such canonical models exist. We first define an ordering on models
(called subsumption) such that one model subsumes another just in case it has less
information—that is, fewer formulas hold of it.

Definition 9 A model M subsumes another model M’ (wmtten M< M) if and
only if, for all formulas ® € £, M' = ® whenever M b= @, '

Continuing the informal example for the class of graph models, in the case of the
logic L1,c, the graphs (a,) through (d) in Figure 2.5 are given in increasing sub-
sumption order.

We will require that there always be a least model (by the subsumption ordering)
for any formula; this minimal model (which we will later prove unique) will be used
as the proxy for formulas in computations. :

Property 10 (existence of minimal modéls)' If ® is a consistent formula, then
there is a model M such that M |= @ and for all M' such that M' |= &, it is the
case that M < M'.

Since minimal-model existence is a strictly stronger property than denotational
completeness (Property 6), only the former need be demonstrated for a logical
system to be appropriate.

2.8.3 Compacthess

Finally, a notion of compactness is réquired, in the sense that consequences of an
infinite set of atomic formulas follow from a finite subset as well.

30 Parsing and Type Inference for Natural and Computer Languages

Property 11 (compactness) Given a consistent [possibly infinite] set of atomic
formulas S, if all models M such that M |= ¢; for all ¢; € S are such that M |5 ¥,
then @ F U for ® a finite subset of S.

2.8.4. Corollaries of Appropriateness Conditions

A great many consequent properties of these simple requirements will be useful in
later proofs and can demonstrate the high degree of structure already imposed by
the conditions. However, as the utility of these ancillary properties is motivated
only in later discussion (especially Chapter 3), this section might be skimmed over
at first reading, and used for reference during subsequent proofs.

It is convenient to separate the definition of the subsumption relation into two
parts, corresponding to the ‘if’ and ‘only if’ components of the definition, so that
they can be referred fo individually.

Definition 12 (upward closure) If M < M’, then for all formulas &, whenever
ME® M=% as well ' B

Definition 13 (subsumption respects entallment) If for - all formulas i
whenever M &= &, M' |= &, then M < M'.

These follow trivially from the definition of subsumption.
That definition does not in and of itself require that < be a partla.l order but
this can be shown to be a consequence of categoricity.

Lemma 14 The subsumption ordering < is a partial order.
Proof: We must show that < is reflexive, antisymmetric, and transitive.
Reflexivity: Trivially, M = @ whenever M |= &, so that M" < M by Definition 13

Antisymmetry: Assume that M < M’ and M’ < M. By the former subsumption
and Definition 12, M’ = ® whenever M |= @, and, by the latter subsumption,
conversely. Thus, M |= @ if and only if M’ |= ®. By Property 8, M = M'.

Transitivity: Trivial, by transitivity of implication. _ L o
The antisymmetry of subsumption guarantees that the Immmal model is umque o
Lemma 15 The minimal model for a formula ® is unique. |

Proof: The proof is by contradiction. Suppose M and M’ are distinct minimal
models of . By Property 10, M = & and M’ = @, so since both are minimal
models, M < M’ and M’ < M. By Lemma 14, M = M" o

This lemma allows us to define felicitously a function mm from formulas of L
to the Junique] minimal model for that formula. To demonstrate that the mini--
mal model of a formula captures exactly those constraints that are implicit in the.
formula—no more, and no less—we prove the following two results: '

Constraint Logics for Linguistic Information 31

Lemma 16 (minimal-model completeness) If mm(®) |z &' then & + &'

Proof: Suppose mm(®) = . By definition of minimal model, for all models M, if
M = ® then mm(®) < M. Now satisfaction is upward closed (Definition 12}, so if
M = ® then M = ¥ whenever mm(@) = ¥. For the particular case in which ¥ is
@', we have that if M = @ then M |= 9/, that is & & &'. By logical completeness
(Property 5), & @'. o

Lemma 17 (minimal-model soundness) If ® - &' then mm(®) = 9.

Proof: Suppose ® - &'. By logical soundness (Property 7), @ = @', that is, for all
models M, if M | & then M E &'. By definition of minimal model mm(CI)) =
so mm(®) E &' O

Finally, we show that for any formula, there is a model tha,t can be employed as
its proxy, a canonical model that, in a sense, summarizes all and only the models
of the formula. In particular, the models of the formula are exactly those tha.t the
canonical model subsumes '

Lemma 18 (existence of canonical models) If & is a consistent formula, then
there is a model M such that M = ® and for all M' M' = ® if and onlyif M < M’.

Proof: Follows trivially from the existence of minimal models (Property 10) and
upward closure (Definition 12). C
The canonical model for a formula is, of course, its minimal model. '
In fact, uniqueness of minimal models (Lemma 15) can be strengthened to apply
to infinite sets of atomic formulas, by virtue of compactness. This will be useful in
proving the functionality of various operations defined in the next section.

Lemma 19 If a set of atomic formulas {¢;} has a model, it has a unique least
model.

Proof: Assume that there are two minimal models M and M’ for {¢;}. We demon-
strate that they are identical by showing mutual subsumption. Suppose that for
some atomic formula ¢ we have that M | ¢. Then by compactness, there must be
a finite subset ® of {¢;} such that & I ¢. By logical soundness, all models for & are
models for ¢ as well; in particular, M’ |= ¢. By definition of subsumption, M < M’.
The identical argument shows the converse subsumption. Thus, by categoricity, the
two models are identical. -]

2.9 Operations on Models

If the canonical models of finite formulas of the logic are themselves finite, we can
use them to compute over, replacing theorem-proving over the formulas themselves.

32 Parsing and Type Inference for Natural and Computer Languages

This might be advantageous if efficient algorithms exist for manipulating the min-
imal models in appropriate ways. With this purpose in mind, we define several
operations on models. In Section 3.1 we discuss the necessary computational prop-
erties of these operations.

The most important operation on models is the operation that corresponds to
combining the information that two models capture. :

Definition 20 Theinformational union of two models M and M’ (writt.en MuM'),
if it exists, is the least model M" such that M < M" and M’ < M".

This is the operation that in previous work has been referred to as unification and
that has lent its name to the class of formalisms called unification-based. The
uniqueness of an informational union if it exists is proved as Lemma 31.

An operation that captures the intuition that the features can be used to de-
compose information into subparts is the extraction operation on models.

Definition 21 The extraction of a model M at address p (written M/ p). is that
model M' (if there is one) such that M’ = & if and only if M |= ®[() — p].

Intuitively, M/p satisfies all of the constraints starting with path p, and thus serves
as the “value” of the model at path p. Of course, M/p may not be defined if M
models no constraints of the requisite sort, namely, all of whose paths have p as a
prefix. If M satisfies no such constraints, M/p will satisfy ro constraints whatever.
But by Triviality, every model satisfies {) = (), so M/p must be undefined. That
M /p is unique if it exists is proved as Lemma 32.

The inverse of the extraction operation is the embedding opera.t;on

Definition 22 The émbedding of @ model M at an address p (written M \p) is the
least model M’ such that M'[p =

Note that unlike the / operation, the \ operation always yields a result because
proofs are invariant under prefixing (Property 2). Again, the uniqueness of M/p is
proved as Lemma 33.
The final operation does not affect the “vertical” character of a model, by em-
bedding or extracting subparts, but its “horizontal” structure, by removing features.

Definition 23 The restriction'? of a model M to a given domain of features {f;}
(written MPM{fi}) is the least model M’ such that if M = & and all nonempty paths
in © start with some element of {f;} then M' = &.

Useful auxiliary notions in discussing models include the domain of a model and
properties of cyclicity in models.

12Phe use of the term ‘restriction’ here differs from its use in previous work (Shieber, 1985c}, where :
it corresponds to the p function that will be introduced in Section 3.3. :

Constraint Logics for Linguistic Information 33

Definition 24 The domain of a model M (written dom(M)) is the set of labels
f € L such that M |= (f) = (f).

Definition 25 A model M is cyclic if and only if there are paths p and ¢ such that
g 1s nonemply and M =p-qg=p.

Definition 26 A model M is top-cyclic if and only if there is a path ¢ such that g
is nonempty and M = g = ().

Intuitively speaking, for the graph models top-cyclicity is the subcase of cyclicity
in which the root of the graph participates in a cycle. We will refer to formulas
whose minimal models are cyclic or top-cyclic as themselves having the respective
properties. Equivalently (by Lemma 16), a model is cyclic or top-cyclic if it derives
a formula of the kind in Definitions 25 and 26, respectively.

A useful fact about cyclicity is the following:

Lemma 27 If @ is a formula all of whose paths share nonemply p as a prefiz, then
® is not top-cyclic.

Proof: Suppose ® is top-cyclic, that is ® F () = p’ for some p’. By logical locality
(Property 1), p’ must be a prefix or extension of p. Logxca.l transparency (Property 2)
allows us to build from the proof

H

]
]

iI-
‘a'\

a proof, for arbitrary ¢, of
dp—gq-p]
0=ap o |
(under a preﬁxed homomorplusm my(), where m takes p’ orptoq-p’ or g-p, dependmg

on whether p’ is a prefix or an extension of p, respectively). Similarly, a prefixed
homomorphism my, where m' is the identity over paths, allows the proof

Taken together, we can now form the following proof:

. Bp—gq-p _
®p—q-pl q=q- 7 @p-—q-7]
D=¢-p qg-p=q (=qp

()=g¢ g-p' =)

P =)

34 Parsing and Type Inference for Natural and Computer Languages

from which it follows that ®[p — ¢-p] F () = p’. Since ¢ is arbitrary, we can choose
it so that p’ is neither a prefix nor an extension of g (hence of ¢ - p); consequently
this entailment relation violates logical locality. Thus, ® must not be top-cyclic. O

2.9.1 Properties of Operations on Models

The final set of properties required of a logical system so that it can be used in.
the definition of a grammar formalism has to do with certain locality properties of
inference in the logic. Although these properties could be stated directly as condi-
tions on the inference rules, it is simpler to couch them in terms of the operations
just defined, as these provide a convenient vocabulary for expressing inferential
relationships.

First, the inferences drawn from an equation p = ¢ should be local not only
in the sense of Property 1, but also in that models should be affected only at the
addresses specified.

Property 28 (model locality 1) Given a model M in the range of mm, if M{p
and M/q are defined, then M Umm({p = q}) is defined if and only if M{pU M/[q
is defined.

Second, when two paths in disjoint models are combined, the ramifications.
should be local to the subgraphs combined. '

. Property 29 (model locality 2) Given models M and N such that dom(M) is
disjoint from dom{N) and M [p and N/q are defined, then

(MU NUmm({p= q}))dom(M)=MUN/q\p

Finally, the union of two models that have disjoint domains (that is, carrying
information about different aspects of a string) should be no greater than the sum
of the parts.

Property 30 (model locality 3) Given models M and N , i'f dom{M) is disjoint
from dom(N) and M and N are not top-cyclic, then (M U N)pom(M) = M.

Proofs for these properties for the case of £, ¢ are included in the appendix.

2.9.2 Corollaries for Operations on Models

We list some useful properties of these operations that follow from their definitions
and the constraints on logical systems. Again, these are motivated by their use in
later proofs. '

Lemma 31 (uniqueness of informational union) For all models M and M’
such that M U M' ezists, M U M’ is unique.

Constraint Logics for Linguistic Information 35

Proof: By assumption there is a model N which is a least model such that M < N
and M’ < N, that is, for all atomic formulas ¢ such that M = ¢, N | ¢ and

similarly for M’. Thus ¥ = {¢ | M = ¢ or M’ = ¢}. By Lemma 19, N defined in
this way is unique. _ a

Lemma 32 (uniqueness of extraction) For all models M and paths p such that
M/p ezists, M[p is unique.

Proof: Suppose M/p is not unique, that is, there are distinct M " and M” obeying
the definition of M/p. Since they are distinct, there must, by categoricity, exist
some formula ¢ such that M’ = ® and M” £ & (or vice versa, but without loss
of generality assume the former). Then M | ®[(} — pj and M ¥ 3[() — 7], 2
contradiction. a

Lemma 33 (uniqueness of embedding) For all models M and paths p such that
M\p exists, M\p is unique.

Proof: Suppose M\p is not unique, that is, there are distinct least M’ and M”
such that M'/p =M and M"/p= M. Since M'/p= M, thenforall ¥, M'/p T
if and only if M |= ¥. By definition of /, this holds just in case M’ = ¥[() — p].
An identical argument holds for M”. In summary, M’ ¥[{) — p] if and only if
M = ¥, and similarly for M". Thus, if we let {4} = {¢ | M |= ¥}, then M’ is
a least model such that M’ &= {¢;[() — p]}, and similarly for M"”. Now since both
M’ and M" are least models of a single set of atomic formulas, by Lemma 19 they
are identical.]

Lemma 34 (uniqueness of domain restriction) For all models M and sets of
features F such that MPMF ezists, M]MF is unique.

Proof: Asin Lemma 33. ' - _ in

Lemima 35 For all formulas ® and ®' such that their union is consistent, mm(®)l

mm(®) = mm(d U).

Proof: By Definition 20, mm(®) < mm(®) U mm(®'). Upward closure (Def--
inition 12) entails that mm(®) E ¥ — mm(®) U mm{®') & ¥; in partic-
ular, mm(®) U mm(®) & &. Similartly, mm(®) U mm(®') | &'. Thus,
mm(®) Umm(®') = @ U @', and mm(@ U &) < mm(®) U mm(¥’).

The converse is shown as follows. By Definition 13, mm(®) < mm(® U &).
Similarly, mm(®’') < mm(® U &’). But mm({®) Lt mm(®’) is the least model obey-
ing these subsumption relations. Thus, mm(®) U mm(®') < mm(® U ®'). Since
subsumption is antisymmetric {Lemma 14}, mm(®)Umm(®) = mm(d U P'). O

It follows from Lemma 35 and the definition of U that for models M and M’
in the range of mm, if there is a model N such that M < N and M’ < N then
M U M’ is defined and M U M’ < N. In this case, we will say that M and M’ are
consistent, overloading the term as applied to formulas.

36 Parsing and Type Inference for Natural and Computer Languages

Lemma 36 mm(®)\p=mm(8[{} — p])

Proof: By Lemmas 16 and 17, mm(®) |= U if and only if ® + ¥. Since M\pis
the least model M’ such that M'/p = M (by definition) and M'/p | @ if and
only if M’ = ®[() — p] (again by definition), then by compactness (Property 11),
for all formulas X, M\p k= X if and only if there is a ¥ such that M | ¥ and
¥[{) = p] F X. So mm(®)\p E X if and only if mm(®) = ¥ and ¥[() - 2] F X,
that is, ® - ¥ and ¥[() — p] F X. By logical transparency (Property 2}, this holds
if and only if ®f() — p| + T[() — p] and ¥[(}) — p] F X, from which, by transitivity
of entailment, ®[() — p] - X and by Lemma 17, mm(®[{} — p]) = X. Thus,
mm(®)\p | X if and only if mm(®[{}) — p]) = X. Since models are categorical
(Proverty 8), mm(®)\p = mm(8() — 7). | 0

Lemma 37 For all formulas & and paths p, there exists a formula ¥ such that
mm(®)/p = mm(¥).

Proof: Define the class of atomic formulas 5,, as the set of atomic formulas ¢ such
that ® F ¢ and ¢ = ¥[{) — p] for some atomic formula 3. There is a finite subset
of ®, that consists of those elements of &, that can be proved from & without
using any elements of Tfp {except as the consequent of the proof, of course). Call
this subset ®,; it is a well-defined formula. Any element of &, follows from &,, so

mm(®)/p = mm(2,[p — (}])- - o
Lemma 38 (idempotence of U) For all models M and M', M < M UM’
Proof: Follows directly from Definition 20. _ a

Lemma 39 dom(M\{f)-q) = {f}

Proof: We examine the labels g such that M\(f)-¢ |= (g} = {g). By the argument
given in the proof of Lemma 36, M\p |= X ifand only if M | ¥ and ¥[() — p] - X.
In particular, M\{(f)-¢ = (g} = {g) if and only if M = ¥ and ¥[{) — (f)-q F
{g} = (g). By Property 1, (g) must be a prefix or extension of (f)-gq,i.e., g=f.
Thus, f is the only element in the domain of M\{f) - g. . =

Lemma 40 (M UNM\p= M\pUN\p for M and N in the range of mm.
Proof: Suppose M = mm(®) and N = mm(®’). Then

M\pUN\p =mm(2)\puUmm(®)\p S
= mm(@[() — p]) U mm(®() — p]) (Lemma 36) .
= mm(®[{) — p] U ®[{}) — p]) (Lemma 35)
= mm((2 U &")[{} — p]) L
=mm(d U d)\p s (Lemma 36) -
= {(mm(®) U mm(‘I”))\p o - (Lemma 35)
={(MUN)\p : :

Note that the corresponding property for / fails to hold.

Constraint Logics for Linguistic Information 37

Lemma 41 (M\p)/p=M
Proof: Follows trivially from Definition 22. ' ' o
Lemma 42 If f # g then M\{f)/{g) is undefined.

Proof: The proof is by contradiction assuming f # g. Suppose M\{ f /{g) is
defined. Then it satisfies the equation () = () and M\(f) satisfies (g) = (g} so
g € dom(M\(f}). By Lemma 39, f = g contra hypothesis. !

Lemma 43 The following equality holds:

(MMFD/ o) = { Mig ifgeif}

undefined otherwise

Proof: Similar to those for Lemmas 41 and 42. G
Lemma 44 MMfY <M _ .

Proof: Direct from the definition of |\ (Definition 23) and Definition 13. =
Lemma 45 M/(p-q) = (M/p)/q.

Proof: Direct from definition of / (Definition 21). _ _ T =

Lemma 46 M/(f)\(f} < MM/}

Proof: By the definition of \ and compactness (Property 11), M/(fI\{f) E &
if and only if M/{f) = ¥ and T[{) — (f)] - ®. Expanding the definition of /,
this holds if and only if M E ¥[{(}) — (f)] and ¥[{) — (/)] F &. Now M |
W[() — (/)] just in case MM f} = ¥[() — (f)], so we have that M/(F)\(f) | @
if and only if MM f} = ¥[() — ()] and Y[() — (f)] + @. Logical soundness
guarantees that if MM f} & C[(} — (f)] and I[{) — (f)] + &, then MMf} = &
(though not necessarily conversely). Thus, if M/{\(f) = & then M]{f} }= .
By Definition 13, M/{/I\(f) < MM }. @]

Actually, for £ ¢, this theorem can be strengthened to equality, though this
does not hold in the general case.

Lemma 47 (identity for ') For all models M, M)dom(M)= M

Proof: Suppose M k= R(#). For each nonempty path p in ¥, M }= p = p. By the
Reflexivity inference rule, M = (f) = (f) for f the first element of p. We conclude
that f € dom(M) for all such f, and MPMom(M) = R(7).

Since M{'dom(M) < M (proved as Lemma 44 above), by upward closure (Defi-
nition 12) Mjdom(M) = & » M }= ®. Thus, M|dom(M) and M satisfy exactly
the same formulas; by categoricity they are therefore identical. a

Some extended versions of compactness (Property 11) will be employed in the-
sequel. These require that formulas satisfied by a union of models follow from finite
formulas that hold of the models separately. Similarly, if a union is undefined, an
inconsistency must follow from finite formulas that hold of the models as well.

38 Parsing and Type Inference for Natural and Computer Languages

Lemma 48 If M U M' is defined and M U M' |= U then there are formulas & and
& suchthat ME® and M2 ® and U S+ T,

Proof: The model M U M’ is the least M"” such that M < M" and M’ < M",
that is, M" |= @ for all ® such that M = @ or M’ |= ® (by Definition 13). By
compactness (Property 11), if M UM’ |z ¥ then ¥’ F ¥ for ¥’ a finite subset of
{¢ | M por M | ¢}. Let & be the subset of ¥’ satisfied by M, and &’ the
subset satisfied by M’. Then M |= ® and M' = &' and QU P’ F . o

Lemma 49 For M and M’ in the range of mm, if M UM’ is undefined tﬁen there
are formulas ® and ® such that M = ® and M’ = &' and @ U @’ is inconsistent.

Proof: We prove the contrapositive. Let M = mm(¥) and M’ = mm(¥’). Suppose
there are no ® and &’ such that M k= ® and M’ = & and ® U &' is inconsistent.
Since M |= ¥ and M' = ¥, the formula ¥ U ¥ is consistent, and mm(¥ U ¥') is
defined. Then by Lemma 35, M U M' = mm(¥ U ¥’), so M UM’ is defined. o

2.9.3 Monotonicity of Operations

We define a notion of monotonicity for operations on models.

Definition 50 An operation op on models is monotonic if and only zf whenever
M < M, op(M) < op(M').

Lemma 51 For all paths p and features f;, the operators [p, \p, and]‘{ f;} are
monotonic.

Proof: Suppose M < M’. Choose an arbitrary formula @ such that M/p = &.
Then by definition of extraction (Definition 21), M & &[({} — p]. By upward
closure (Definition 12), M’ |= ®[() — p], so M'/p |= ®. Finally, Definition 13 yields
Mip< M'/[p. L

The proofs for \p and [{f;} are only slightly more complex O

2.10 Existence of Appropnate Models for £LC

Figure 2.6 summarizes the propert:es of appropriate models for constraint logics.

In the illustration, an arrow connects one property with another if the property at
the tail is used in the proof of the property at the head. Several incoming arrows
depict the fact that several properties are needed in the proof. Properties with no-
incoming arrows are unproved in general, i.e., postulated to hold of an appropriate’
logic. These properties are either definitions (shown in italics), or must be proved
of an individual logic to demonstrate its appropriateness (shown in boldface). The
figure reveals that, although numerous, the properties rely on just a few of these
assumptions as a basis. Nevertheless, at this point, the reader might be wondering

Constraint Logics for Linguistic Information 39

Denotational Logical Denotational Logical
Soundness Soundness Completeness Completeness

Minimal-Model Definition of Minimal-Model
Soundness Minimal Model Esompleteness

Minimal-Model Canonical-Model Upward Idempotence
Uniqueness Existence Closure of Union

Subsumption is a Minimal-Model Defintlion of Definition

Partial Order Existence Subsumption of Union
Categoricity Subsumption Union Preserves
Respects —— Minimal

Entailment Modelhood

Figure 2.6 Summary of Properties

whether an appropriate class of models can be found for even the simple logic
Lrc. Unfortunately, an affirmative answer must wait until Chapter 4, when we
discuss at length the possibilities for classes of models for £, . Those especially
concerned that the set of appropriate model classes might be empty can skip ahead
to that chapter. More patient readers will be presented in the next chapter with a
discussion regarding the uses of appropriate logical systems for grammar definition
and parsing, granted the premise that such systems do in fact exist.

g

Grammars and Parsing

Given a logical system with the requisile properties, we can define a .
grammar formalism based on logical constraints over information asso-
ciated with phrases. The definition is quite abstract: any logical system

of sufficient expressiveness satisfying the properties outlined in Chap-

ter 2 will serve to define @ formalism. It is this abstraction that justifies
considering these methods as characterizing constraint-based formalisms

in general, rather than an individual formalism.

Furthermore, so long as the models of the logic have some further [quite
strong] computational properties, a general algorithm can be defined for
parsing phrases with respect to a grammar in the constraint-based formal-
ism. The consiruction of the algorithm and a proof of ils correciness is
given independently of the details of the logic upon which the formalism
is based. A further abstraction in the definition of the algorithm makes
the algorithm and its correciness proof independent of the control regime
employed. Thus, at one stroke, a wide range of parsing algorithms are
proved correct for any constraint-based formalism. Particular instances
of the algorithm, including an incarnation as an eztended Earley’s al-
gorithm and a simulation of LR parsing, are discussed. The latter is
especially important because of its ties to psycholinguistic effects. The
definition of grammar formalisms and their parsing algorithms takes up
" Chapter 8. ' ' :

3.1 Deﬁning.Constrairit—Baséd Formalisms

We return now to our original motivation for developing the constraint logics of
the previous chapter, the definition of constraint-based grammar formalisms. As
mentioned in Chapter 1, we will define constraint-based grammar formalisms—in
keeping with our efforts to maintain as abstract a view of grammar as possible—by
making explicit their dependence on a particular logical system of the sort described

41

42 Parsing and Type Inference for Natural and Computer Languages

in the preceding chapter. We merely require that the logical system possess the
various properties previously stipulated or proved, so that we can avail ourselves of
the structure, partiality, and equationality of the logic. Beyond this requirement,
almost any logic will do.

For the formalism to be computationally effective, however, stronger require-
ments are imposed upon the logical system, namely, that the various operations on
models in the logic (i.e., /, \, |, and U) be easily computable and that they preserve
the finiteness of models. This is because the parsing algorithms we develop in this
chapter make free use of these operations as steps in the parsing process. Thus,
the operations must be computationally interpretable, and the solutions finitely
representable, so that they can serve as the input to further computation.

Preservation of finiteness is given by Lemmas 35, 36, and 37, together with a
requirement of the finiteness of minimal models for atomic formulas. Computability
of operations, especially informational union, is a more interesting question that will
receive a good deal of attention in the next chapter. For the nonce, it suffices to
note that the feature graph models developed in Chapter 4 are finite for atomic
formulas, and that an algorithm for informational union will be provided.

The class of formalisms (parameterized by a constraint logic) that we will pre-
suppose is quite simple. We assume that we are given a logical system including a
logic £ over a set of labels L and constants C, where L is required to contain the
labels 0,1,2,--+,1,2,.--.

Given such a logical system, a gremmar G in the formalism defined by that
system is a triple {Z, P, pa), where ¥ is the vocabulary of the grammar, P a set of
productions, and pg a designated element of P, the start production. Each produc-
tion is a pair of one of two forms: phrasal or lexical. A phrasal productionis a pair of
the form {a, ®). The first component is a non-negative integer (that is,a € N), and
is called the arity of the production; it corresponds to the number of subconstituents
the production allows combination of. ¥ a is 0, the rule allows empty constituents;
if a is, say, 2, then the rule engenders binary branching. Thus, « is analogous to the
length of the right-hand side of a context-free rule. The second component of the
production, &, is a formula in L. We impose the stronger requirement that all paths
in ® have an integer from 0 to a as their first component.! Informally, the formula
provides mutual constraints on the a + 1 constituents over which the rule applies:
the parent constituent, numbered 0, and the a child constituents, numbered 1 to a
from left to right. As an example, the rule given as (Rz) in Section 2.2 would be
stated as

*We will use the notation [i..j] to denote the set of .i.n.t'éiger' labels between i and j inclusive, and
similarly for [i..7]. Thus, the requirement might be stated as follows:’ all paths in @ have a
member of [0..a] as first component. :

Grammars and Parsing 43

(0 éat) = .5';

(1 cat) = NP,
2, (2 cat) = VP,)

(1 agr) = (2 agr)
A lezical production is a pair of the form (w, ®), where w is a lexical item in T, and

® is a formula, as before, all of whose paths begin with the integer 0. Rule (R3)
defining the lexical item ‘Nature’ would be expressed as

{0 cat) = NP
(‘Nature’, < (0 agr num) = singular)
(0 agr per) = third

‘Finally, the impbrtance of the distinguished production py = (ag, ®o), ‘the start
production, is that only phrases admitted using it as the topmost product:on are
considered sentences in the language of G.2

3.2 Grammar Interpretation

Semantics for context-free grammars have traditionally been given in one of two
ways: in terms of derivations of sentential forms or fringes of admitted parse trees.
The former seems to be especially prevalent both in the computer science and
natural-language-processing literatures.®> Aho and Ullman (1972) define the lan-
guage of a grammar in terms of derivations of sentential forms, returning to the
definition of parse trees as a “convenient graphical representation of an equivalence
class of derivations” some 50 pages later. Similarly, Winograd’s introductory text
(1983) describes the mterpreta,tlon of context-free grammars in terms of derivations
of parse trees. _
Because of the unique character of constraint-based formalisms, a semantics for
a formalism based on a naive redefinition of the notion of derivation is problematic,
not only because it introduces a procedural notion where one is not needed, but also
because information flow in a derivation is not easily captured by working only top-
down-—as in a derivation—or, for that matter, only bottom-up. Though possible,
such a semantics would be geared to proving the correctness of a purely top-down
or bottom-up algorithm. We would like to be more procedurally agnostic than that.
Consequently, we will define the language of a grammar directly in terms of an
analog to context-free parse trees—rather than define parse trees in terms of classes

2Context-free grammars use a start symbol, as opposed to a start production. Nothing crifical
rests on this distincticn, since if a start symbol is desired, one could just add a unary production
to the grammar with that symbol as the only child and make this the start production. Thus,
no generality is lost by using a start production. .

%A third method, based on solution of systems of set equations over union and conca.tenatlon,
follows from the work of Chomsky and Schutzenberger {1963). - Although less prevalent these
days, a similar idea underlies the original semantics of PATR-II (Pereira and Shieber, 1984).

44 Parsing and Type Inference for Natural and Computer Languages

of derivations as is traditional with context-free grammars. The approach, therefore,
is more reminiscent of treating grammar rules as node-admissibility conditions in
the manner of Peters and Ritchie {1973) than as a product of a generative process
or derivation. Informally, a parse tree can be thought of as being composed of a
hierarchically structured group of local sets of nodes, each of which is admitted by
a tule of the grammar. Instead of defining an entire new mathematical structure for
this purpose, we will adopt the expedient of modeling parse trees with the existing
feature structures. A local set of parse tree nodes must provide information about
each separate node. This will be done by placing information about each node under
the labels 0 through a, where a is the arity of the rule. Such a local set of nodes must
be admitted by a production p = (@, ®) in the grammar, so we require that the local
set of nodes be a model for &. We must also provide for the structural relationships
among the local sets of nodes. For the ith child of 2 node, we will place a feature 7 in
the parse tree whose value is the parse tree of that child. Finally, we must guarantee
that the child information in a local set of nodes matches the parent information in
the lower set of nodes corresponding to that child; this is easily ensured by requiring
that parse trees satisfy equations of the form (7 0) = (i). (Here, of course, we are
relying on the minimal expressivity of Lr,¢ allowing such equations.).

More formally, a parse tree 7 is a model that is a member of the infinite union of
sets of bounded-depth parse trees Il = [J;»o ILi, where the II; are defined as follows:

1. IIy is the set of models 7 for which there is a lexical production p = {w, &)
and 7 |= ® and dom(r) = {0}.

2. ; fori >0 is the set of models 7 for which there is a phrasal production
p = {(a,®) such that 7 = & and dom(r) € {0,1,...,0,1,...,@} and, for
1< i< a, /(i) is defined and 7/(2) € Uj; II; and 7 }: (z 0) {@.

In either case, the production p is said to license the pa.rse tree.

The yield of a parse tree is defined in terms of the licensing productlon If lexical
production {(w, ‘IJ) licenses T, then w is 2 yield of 7. If phrasal production (a tI))
licenses 7 and wy, ..., w, are yields of 7/(1),...,7/(@), respectively, then w; -
is a yield of 7.

The definition of parse tree can pla,y the role that derivation does in a context-
free grammar. Existence of a parse tree whose root satisfies some formula and whose
yield is the required string of terminals replaces a nonterminal deriving a string of
terminals.

The Ianguage of a gramma,r can be defined in _]ust thxs way Tt is the set of
yields of all parse trees admitted by the grammar that are hcensed by the start
production.

An Example Parse Tree

As an example of the foregomg deﬁmtlons, we present the parse tree for the saIm-
ple sentence and grammar described in Section 2.2. The sentence ‘Nature abhors

Grammars and Parsing 45

third singular third plural

Figure 3.1 An Example Parse Tree

vacuums’ is admitted by the grammar, as witnessed by the parse tree in Figure 3.1.
The interior parse tree nodes in the figure have been labeled with the rules that wit-
ness them. Note that the root, its immmediate parse tree children (the values of the
features 1 and 2), and their parse tree children, and so forth, are all appropriately
witnessed. For each of these children, the equation (i 0) = (i) is satisfied.

Some of the information inherent in the parse tree of Figure 3.1 can be displayed
in a more traditional format, as in Figure 3.2. Here, we have used the values
of the 0 feature to label a traditional parse tree node, with ordered child nodes
(corresponding to the z values) similarly displayed. Of course, this representation
does not capture all of the information of Figure 3.1—in particular, shared structure
among the subconstituents is lost—which is why this more traditional representation
was eschewed for the purpose of furnishing grammar semantics. However, it may
be useful in conveying an intuitive notion of the role of parse trees, especially when
partial parse trees and derivations are discussed later.

The parse tree given in Figure 3.1 is the minimal tree whose yield is the sample
sentence. Note that the same parse tree also has a yield ‘Nature abhorred vacuums’,
as the node labeled by the rule (Rg) is also licensed by the rule {R7). In this case,
the node corresponding to the lexical item ‘abhorred’ is marked as third-person
singular, even though the lexical production itself states no such requirement. In a
sense, the agreement features of the verb have been inferred from the surrounding
context, namely, from the use of the verb with a third-person singular subject.

46 Parsing and Type Inference for Natural and Computer Languages

cal

ca

NP

agr

nu

singular

ca agr
VP

er ny

third singular
ca agr
v
num er
singular third|

ci

NP

agr

S RuUMm

plural

er

third|

) Figufe 3.2 The Example Parse ’I‘fée Represented More Tradjtibnally "

Grammars and Parsing 47

3.3 The Abstract Parsing Algorithm

The parsing algorithm defined here is abstract, not only by virtue of its abstraction
from a particular formalism, but also its abstraction from any particular processing
regime. In effect, we define the “logic” part of the “logic + control” that Kowalski’s
decomposition of the notion of “algorithm” makes explicit (Kowalski, 1979). (The
“control” part is discussed in Sections 3.6 and 3.6.3.) In so doing, we define a
whole family of parsing.algorithms by defining the logic .of parsing and proving
the soundness and completeness of this logic with respect to the abstract parsing
problem. Then, any control method will serve to generate a particular parsing
algorithm.

The parsing logic is based on items, structures that encode information about
contextually allowed partial phrases. The item concept stems originally from the
dotted rules of Knuth’s LR table-building algorithms (Knuth, 1965) and is the basis
of Earley’s algorithm for context-free parsing (Earley, 1970). Items are found in
the so-called chart-parsing algorithms (Kay, 1980; Kaplan, 1973; Thompson, 1981)
under the guise of edges in the chart.

Here, an item will be a quintuple (¢, j,p, M, d), where ¢ and j are indices into
the string being parsed; p = {a, F) is a phrasal production in the grammar; M is
a model in the model structure for the logic; and d is an index into the production
», the dot position,* such that 0 < d < a. Informally speaking, an item establishes
a claim about the string, namely, that the substring between positions ¢ and § is
admitted under the grammar as the first ¢ subconstituents of production p, that
the local set of nodes in the corresponding parse tree is M, and further, that such
a constituent is appropriate in the context of the string preceding position 1.

Rather than make this informal characterization precise, we will give the logic
for the algorithm, then returning to the issue of the intended meaning for items, in
preparation for proving the correctness of the algorithm relative to that intended
meaning,. :

The Logic of the Parsing Algorithm

The parsing algorithm specifies nondeterministic rules for generating items given a
grammar G = (X, P,po = (a0, Bo}) and a string w;+--w, € T*. These rules can
be seen as inference rules in which the items and grammar rules as the sentences of
the logic.

We start by generating an item for the start production. This corresponds to
the inference rule

Initial Item:
(03 01 Po, mm(q)ﬂ)a 0)

*The dot position is so named for historical reasons; the index in Knuth’s dotted rules was notated
by insertion of an actual dot between two elements of the right-hand side of a production.

48 Parsing and Type Inference for Natural and Computer Languages

Whenever an item has been generated whose dot position has not reached the
arity of the grammar rule from which the item has been instantiated (an active
item), and when the next word in the string being parsed can match the position
after the dot, we move the dot one position to the right and add the information
about the word recorded in the lexicon. This corresponds to the inference rule

(3,5, = {(a, ®), M,d)
{i,7+ 1L, p, MU ((mm(@)/{O)N\{d+ 1)),d+ 1)

whered < a and {wjt1, ﬁ} ye P.

Scanning:

Active items also lead to the generation of items for rules that might match
the position immediately after the dot. These items cover no part of the string,
merely serving as predictions that such a constituent might be built through later
applications of the inference rules.

('iajap = (a, (E),Mad)
(7, 5,9, mm(@") U (p(M/{d + 1))\(0)), 0) -
where p' = {o/, 8’} € P and d < a.

Prediction:

Here p is any monotonic operation on models obeying the restriction that for
every formula & there is a formula & C & such that p(mm(®)) = mm(P’). As
a consequence, p(M) < M for M in the range of mm. For instance, the identity
would suffice, as would the constant function yielding the trivial model. The utility
of p will be explained later, in Section 3.6.2.

This inference rule, and the others presented is applicable only if the consequent
item is well defined, of course. In this case, the minimal model and the U must be
defined.

Finally, whenever the subconstituent after the dot position in an active item
matches some inactive item that follows it contiguously, they can be combined.

Goip= (@) M,d) - Uik = (@), M a)
Gk, p, MU (GP TN T 1), dF 1)

Compietion:

where d < a.

Given a grammar G = (2, P, po = {ao, Bo)), the algorithm will be said to accept
a string w; - - -wy if and only if it generates an item of the form {0, m, po, M, ag).
The later proof of correctness of the algorithm (Corollary 56) essentially involves
proving that this notion of admitting a string and the one presented in Section 3.2
amount to the same thing.

Grammars and Parsing 49

An Example Parse

We consider the parsing of the canonical sample sentence ‘Nature abhors vacuums’
by the parsing algorithm just outlined. For purposes of demonstration, the function
p used in the Prediction rule will be assumed to take any model onto a model with
values for at most the paths {cat) and {agr num), for which the values are the same
for both argument and result. In particular, the following equation holds:

cat agr : cai agr

el vp N = VP
nu per nu

singular third " singular |

The Initial Item rule gives us the item

(0,0, By, gy cat/” agr agr cat

S NP VP

The minimal model for the formula associated with the word ‘Nature’is

cat agr

NP

nu per

singular third -

which is used in the scanning of the word to yield the item

third singular

This item can feed the Predmtlon rule, as it requires a VP potentla.ﬂy defined by
Rule (R4). The predicted item is :

singular
Although the required VP was marked as third-person singular, the predicted item
includes only the singular agreement feature, because the person feature was elimi-
nated by p.
The predicted item and the following word ‘abhors’ participate in the Scanning
rule again, leading to the item

singular third

Another use of Scanning produces

(1,3,R4, cal 72)
VP
pum
singular third third plural

This item is not partial; its dot position is equal to the arity of the rule. It can
therefore be used by the Completion rule, and is, in conjunction with the item

third singular

generated above. The output of Completion is the item

Grammars and Parsing 51

. cat

(0a3:R21 S NP

third singular

" This final item is of the form {0, n, po, M, ag) for the g.r'an'imar',' thus demonstrat-
ing the well-formedness of the string according to the grammar.

3.4 Auxiliary Notions for Item Semantiés

We now turn to defining the meaning of an item such that the mference rules above
are correct. We require certain auxiliary notions.

In discussions of context-free grammars, it makes sense to think of a string
of nonterminals deriving some sentential form. For instance, the meaning of the
Earley’s algorithm context-iree item

(i,j,A—".CE 'ﬁ)
is that there exist strings of nonterminals or terminals v and § such that

Q= Wigp W5
S 3 yAS
MG

The first condition establishes that the substring between positions ¢ and j can be
admitted as part of an A constituent, including the subconstituents listed before
the dot, but excluding those after the dot. The remaining conditions establish that
the left context allows such a constituent. Note especially the use of a string of
nonterminals («) deriving a string of terminals (w;yq - -~ w;).

A natural way of achieving this effect with the more general class of items—
without resorting to a notion of derivation—is to require the existence of a set of
parse trees, one for each element of a, whose yields encompass wijy «--w;. As it
turns out, we cannot resort to modeling such derivations by this method because it
ignores the fact that the production and left context from which the item was derived
may place informational constraints that hold across the various subconstituents.
Instead, we will define a partial parse free to capture just the subcase of sentential-
form derivation needed to construct the analogical version of the constraint o =
wiy1 - w;. Note that « is always a prefix of the production right-hand side. A

52 Parsing and Type Inference for Natural and Computer Languages

partial parse tree will be a parse tree where only a prefix of the 1---@ sub-parse-
trees is required to exist. The arity of the partial parse tree is the number of
sub-parse-trees that do exist.

Formally, r is a partial parse tree of arity d if and only if 7 is a model that obeys
one of the following two conditions:

1. T € I, that is, there is a lexical production p such that 7 is a parse tree
licensed by p as defined before. In this case, the arity of 7 is 1.

2. There is a phrasal production p = {a,) € G such thatd< ¢ and 7 = @ and
dom(t) C {0,1,...,a,1,...,d} and for 1 < 7 < d, the value r/{1) is defined
and 7/(i) € L and 7 = (i 0) = (3).

The yield of a partial parse tree is defined analogously to the yield of a full parse
tree, except that the yields of only the first d sub-parse-trees are concatenated, where
d is the arity of the partial parse tree.

When a partial parse tree of arity d is strictly partial—i.e., it is licensed by a
production p = {a,®) and d < a—the information given by 7/{d + 1) corresponds
to the next constituent that would be needed to augment the tree to make it less
partial. This information will be called the need of the partial parse tree.

The existence of a partial parse tree covering the portion of the string that the
item itself covers is only one part of an item’s meaning. Existence of an item also
implies that such a partial parse tree matches the left context of the string as well.
That is, there must be some other partial parse tree for a section of the string to
the item’s left that the item’s partial parse tree fits. This new partial parse tree
itself must fit its own left context, and so on, until a partjal parse tree licensed by
the start production and covering the very beginning of the string is found.

To render this intuition concrete, we define a derivation as a cascade of partial
parse trees, each fitting the context of the previous.

Definition 52 A derivation is a finite sequence of partial parse Lrees To, - - - Tk Such
that

1. For0 < i<k, 7; is licensed by pi = (a,,ti’) and has anty d;, and
2. dy < ay (i.e., T may be a full parse tree), and

3 For0<i<k,d;<a; (ie., 7 is sirictly partzal), and p(r,/(d +1)) < 'r,+1/(0)
(i.e., Tiy1 fits the context of i)

“An mformal gra,p]ncal representa,tmn ofa denvafcxon is given in Fxgure 3. 3 Each
partial parse tree covers a consecutive piece of string, and each nests in the previous
one in the sense that the root of each is subsumed by [some restricted portion of]
the need of its predecessor. :

- Grammars and Parsing 53

/)] [/ @]~ + + [ro/tde)| [rofdatD)
/\ /\ A ES ' TO
T1/(0)

O[]+« « [m/id)) [r/(dn)

>0
>
>

¢ T1

Pommmm—] 280

| 'T'k/ (D] |7a/@} « oo |7e/{ds) 7/ [ty

/\/\ A

Figure 3.3 A Derivation 79, 7,-.., 76

54 Parsing and Type Inference for Nalural and Computer Languages

The yield of a derivation is merely the concatenation of the yields of each of the
partial parse trees. The notation yield(7p, ...,) will be used for this concept.

The analogous method for defining the meaning of a context-free item {z, 5, A —
«-f3) would require that there exist a cascade of partial context-free parse trees, the
first rooted in S, the last covering the string from < to 7 and licensed by 4 — af,
such that the root of each partial parse tree is the need of its predecessor. In the
case of context-free grammars, we could collapse these partial parse trees into a
single requirement that '

S wign - w;
S = yAS
ME G-

Thus, this definition is equivalent to the earlier requirement. We have merely
replaced the iteration in the § = yAé requirement with a sequence of partial parse
trees. The requirement that « = wy - - ~w; is a side effect of the constraints on that
sequence. The advantage of this definition is that it can be expressed completely
statically, that is, nonderivationally, using only the notion of a partial parse tree.

One final observation is needed before turning to the correctness proof. An
important feature of the parsing rules is that all the generated models in the items
are in the range of mm. This is easily shown by induction on the depth of proof
of an item. For the base case, the Initial Item rule, Mg = mm(®o) is clearly in
the range of mm. For the other rules, the output model is constructed using the
models from the antecedent items and minimal models of rule formulas, along with
the mm-preserving operations U, \, /, and p. The mm preservation of the first
three operations has been proved in Lemmas 35, 36, and 37, respectively. That
p preserves minimal-modelhood follows directly from its definition. The minimal-
modelhood of the output models can thus be assumed in the correctness proof in
the next section.

3.5 A Correctness Proof for the Algorithm

Having defined partial parse trees and derivations of them, the meaning of an item
generated by this algorithm is codified by the following algorithm invariant:

Proposition 53 (partial correctness of abstract algorithm) Given a gram-
mar G = (X, P,po} and a string wy ---wn, € X*, there is a derivation To,...,Tk
such that®

1. yield(mo, ...y Tg—1) = wy ---w;, and

2. yield(mi) = wiy1 - w4, and

5When i = 0 or i = 7, the notations w; --- w; and wi4s -- - w;, Tespectively, are to be interpreted
as denoting the empty string, as is standard.

Grammears and Parsing &5

3. 1o is licensed by po, the start produciion, and
4. T is licensed by p = (a, @), and

5 d=arity(mr) < a

;f and only if there is a model M < ﬁ-NO..a] such that the algorithm generates the
item (i,j,p, M, d).

By proving that this invariant holds, we are proving the correctness of the al-
gorithm. The proof contains two parts: first, we must prove the ‘if” direction, that
is, the algorithm generates only appropriate items, thereby yielding soundness of -
the algorithm; then, completeness can be proved by showing the ‘only if’ direction,
that all appropridte items are generated.

Proposition 54 (soundness of abstract algorithm) Given a grammar G =
(E,P,po = {(ag,Po)) and a string w;---w, € I*, if the algorithm generates an
item (i, 7,p, M, d) then there is a derivation T,. .., 7 such that

1. yield(rg,...,Te-1) = wy---w;, and
yield(Ty) = wiyy - - - wj, and
To s licensed by pg, the start pfoductién; and
Tk is licensed by p = (a,), and
d= am‘ty(rk) < a, and

= 1}0..a].

P‘P“P‘-F@‘E\"

Proof: (Note that thlS theorem proves a stronger result than the invariant requires,
as the condition on M in (6) is equality as opposed to subsumption.)

The theorem is proved by induction on the depth of the proof tree for the
generated item.

Initial Jtem: The base case occurs with proofs of depth 0, i.e., those based on the
Initial Item rule. We must show that if the item (0,0, po, mm(®o),0) is generated,
then an appropriate derivation exists. The partial parse tree iy = mm(®;) obeys the
various requisites. The singleton sequence containing just 7y is tr1v1ally a derivation.
We discuss the six conditions in turn.

1. Trivial.
2. Since arity(re) = 0, its yield is empty as required.

3. 70 = mm(Po), so 19 = @ by definition of mm.

56 Parsing and Type Inference for Natural and Computer Languages

4. See (3).
5. d = arity(mp) =0 < a.
6. By construction (and Lemma 47), 7o['[0..a] = 1o = mm(‘I)g)

To carry out the induction, we must show that each of the remaining three
inference rules preserves the invariant. Since the antecedent items for application of
these rules are proved by shorter proofs, we can assume that the proposition holds
for them.

Prediction: We assume that the proposition holds' for the antecedent item
(',j,p = (a,®),M,d), where d < a, and that p’ = (d’,®') is the produc-
tion in G to be predicted. We must show that the theorem holds for the item
{3,3,0, mm(@") U (p(M/[(d + 1))\(0)),0).

By the induction hypothesis, there must be a derivation 1p,...,7x—1 obeying
the six constraints of the theorem. Consider the partial parse tree 7, = mm(®’) U
p(M/{d+1))\(0)) This model was assumed to exist as a prerequisite for application
of the Prediction rule. It is easily verified that 7y is a partial parse tree of arity 0
and that its yield is the empty string, since, by Lemma 39, it is undefined for any
labels 7. It is licensed by p’ because it is subsumed by the minimal model for ®'; by
upward closure, 1, = ®'. Finally, 74}[0..e] = 71 by construction and Lemma 47.

The sequence 7o, - ..,Tt—1, Tk is a derivation because 7p,...,Tk—1 is, and

p(m_r/(d + 1))

= p(rx-1[M0..a)/{d + 1)) (Lemma 43)
= p(M/{d+ 1)) (induction hypothesis)
= (p(M/(d+ \(0))/(0) (Lemma 41)
< (mm(®) U (p(M/{d+ IV\{0)))/{0) (Lemmas 38 and 51)
= 1/(0) . (Definition of %)

We show that this derivation obeys the six constraints.

yield(To, . ..y The1) = wy + - w; - yield{Tp_1) = w1 ---w

Since arity(mi) = 0, yield(rs) = e

By the induction hypothe51s _ .

mm(®') < 7, (by Lemma 38), so 7 I= ' by upwa,rd closure (Deﬁmtlon 12).

SR SRS

d=arity(me) =0 < a.
6. Follows from the fact that 7 = m:}M0..a].

Thus, the proposition’s conditions on the item
(G,3,7, mm(®") U p(M/{d + 1)\(0),0)

are satisfied.

Grammars and Parsing 57

Completion: We assume that the proposition holds for the two items (4,j,p =
(a, F), M,d) (with d < a) and {(j,k,p' = {(a’, ®'), M’, &), since they have shorter
proof depths, and consider the case of the item inferred by Completion, {i,%,p, M U

((M'/OO\(d + 1)), d +1).

By the induction hypothesis applied to the first item, there exists a derivation
To,. .., T meeting the six constraints, especially that 7 be licensed by p. Similarly,
the second item gives us a derivation 1g,...,7/,.

Now consider the model

=Tkl T:R\(m) umm((d+1 0> = (d+1))

We show that 7. is a well-defined parse tree, and that wg,...,7¢~1, 7+ i5 an appro-
priate derivation for the item generated by Completion.

The model 7. is well-defined because 74 is undefined for the feature d_ﬁ,
whereas 7/, \{d + 1} is defined only for that feature (by Lemma 39). The only inter-
action between the two models, then, is due to the condition (d +1 0) = (d 4 1).
Addition of this constraint is consistent just in case

(A \@FIN/@FT 0y Umf(d +1)
is (by Property 28). But (Lemmas 45 and 41) this is just
/U +1)
which, by construction of 7, and 1/, and Lemma 43, equals
M IOYuM/{d+ 1)
Since embedding is always defined, the latter is solvable just in case
(M'/@)yuM[{d+ 1)\(d+1)
is, but by Lemma 40, this reduces to
R IONCESTE /.
which was assumed to I;é well defined as a prerequisite of a;)pljring the C'oxﬁpletion
1‘ule'.I‘he derivation 7y,..., Tk1,7r is easily proved to be well formed; we must only
show that p(7e—1/{arity(Te-1) + 1)) < 7./(0). But this follows from the fact that
T < 7 (by Lemma 38) and p(7p—1/{arity(me—1) + 1)) < 7% /(0) (since 10,...,7% is

a derivation by the induction hypothesis).
Finally, we prove the six conditions on the derivation.

1. By induction hypothesis.

€

58 Parsing and Type Inference for Natural and Computer Languages

]

e

<

. yield(r,) = yield(ry) - yield(Tm) = wigy -+ Wj - Wjigy -~ Wk = Wigy "~ Wk

. By induction hypothesis.

7% < Tr, 80 77 is licensed by p.

. arity(ry) = arity(r) + 1=d+1 < a.

. We must show that 7.}[0..a] = M U M'/{B)\(d + 1).

Expanding the definition of 7., we obtain

(3.1) 7 M0..a) = (s U 7L \(d + 1)U o
. mm({{d+10)={d+ 1)}))N0"‘_1]

Now any tree node 7, with arity d,, satisfies (i0)= (i) for 0 < i< dy, 50
in particular, ¢ is defined at {d + 1) and 7/, is defined at {0} from which it
follows that 7/ \(d + 1) is defined at (d + 1 0). Furthermore, the domains of
7 and 7/, \(d + 1) are disjoint. Thus, Property 29 gives us that

(U \{d+1)u mm({(d-l- 10)=
=7 U (m, \(d+1))/{d+
= Ut /(O\{d+1)

1)}))dom(m)

{(d+
?i'” 10)\(d+1)

this last step by Lemmas 45 and 41. Restricting both sides further yields

(i \{d+ 1) umm({{d+1 0) = (d+1)})MO..q]
(3.2) = (1 U, /(O\(d + 1))NO..q]
- = 74 [0-.a] L 74, /(Q)\(d+ 1)

This last step follows from Property 30, which is applicable because dom(7) =
[0..a] is disjoint from dom(r%\(d + 1)) = {d+ 1}, and neither is top-cyclic (a
consequence of Lemma 27). Substituting (3.2) into (3.1) we derive

. wlM0.qf.
(3.3) = 7 MB..] U 74, {0\ (d + 1), EEETE R
) = 73 [\[0..a} U (71, MO. a])/(U)\(d+ 1) . (Lemma 47)

=MuUuM/0)\(d—!— . (Deﬁmtlons of M and M')

Thus, for the generated item (i, %,p, M U((M'/(0)\(d+1)),d+ 1), an éppropriate

derivation exists.

Grammars and Parsing 59

Scanning: We must show that the proposition holds for the item inferred by Scan-
ning, (i, 5 +1, p, MU((mm(#')/(0)\(d+1)), d+1), given that (i, j,p = (a, F}, M, d)
was generated, that d < @, and that (w41, ') € G. By induction applied to the an-
tecedent item, there exists a derivation 7y, ..., 7% such that the six constraints hold.
Now, consider the model 7. = 7 Umm(®\(d+ 1) U mm{{d+1 0) = (d + 1)).
The proof of the well-formedness of 7. as a partial parse tree, as well as of
the well-formedness and appropriateness (with respect to the six conditions) of
T0,- -, Tk—1,Tr a$ a derivation for the generated item, follows the arguments al-
ready seen in the proof for Completion. a

Proposition 55 (completeness of abstract algorithm) Given :
a grammar G = (&, P,ps = (a0, ®o)) and a string wy -+--w, € T*, if there is a
derivation 1o, ..., 7 such that

1. yield(ry,...,Thk=1) = wy ---wj, and

2. yield(T) = wigr -+ - wj, and

3. 7o is licensed by py, the start production, and
4. Tk is licensed by p = (e, ®), and

5. d = arity(n,) < q,

then there is a model M < 74]M0..e] such that the algorithm generates the itemn
(i,7,p, M, d).

Proof: We define a size metric on partial parse trees as follows:

d
s(ry=d+3 s(r/G@)

i=1
where d = arity(r), and extend it to derivations as follows:

k .
(70, Ty = k423 8(n3)

1=0
We prove the theorem by induction on the size of the derivation TOyevos Th-

Base case: Suppose o(mg,...,7%) = 0. It follows from the definition of o that
k = 0, and s(1x) = s(rp) = 0, so arity(rx) = d = 0. Since 1y is licensed by
po = (ao, Po}, so is 7. Finally, since arity(ry) = 0, we have that yzeld(rk) = ¢, S0
i =7, and ¢ = 0 because of the condition that yield(rg,...,) = w;

Given, then, that i = j = d = 0 and p = pg, we must show tha,t the item:
(0,0, po, M,0) is generated, for some M < 7P0..a]. Since 7 is licensed by po,
it must be the case that 7, = @, so mm(®y) < 74. Since all paths in &, have

60 Parsing and Type Inference for Natural and Computer Languages

prefixes in the path set {(0),(1},...,{a)}, by logical locality, if & = {f} = (f),
then f € [0..a], so that dom(mm(®o}) C [0..¢]. By Lemma 47 and the monotonicity
of } (Lemma 51), we can conclude that mm(®p) = mm(®o)}M0..a] < 7¢[M0..a}. Now,
let M be mm(&o). By the Initial Item rule, (0,0, po, M, 0) is generated.

Induction cases: Assume that o{7o,...,7x} = » > 0 and that the proposition
holds for derivations of sizes smaller than n. Note that since n > 0, the derivation
‘To,...,Tk has at least two elements.

We prove the induction step by three mutually exclusive and exhaustive cases.

Case 1: arity(i) =0

Case 2: arity(ry)=d+ 1> 0and 7/{(d+ d + 1) is licensed by a phrasal production.
Case 3: arity(ry) = d+ 1> 0 and 73/(d + 1} is licensed by a lexical production.
Case 1: Suppose arity(ri) = 0. Then s(rx) = 0. Consider the derivation

Tgy ..., Th—1 With size n — 2s(r;) — 1 = n — 1. For some i’ < 7 and phrasal pro-
duction p/,

1. yield(ro, ey Tk_z) = Wy - --wy,

. yield(Tp—1) = Wirgy -+ - wi,

2
3. 7o is licensed by pg, the start production,
4, -1 is licensed by ¢’ = (¢/, 9}, and

5

. d = arity(Te—1) < @’ (not merely <, since 73 — 1 is a strictly partial parse tree
as part of the derivation 7o,..., k).

By the induction hypothesis, therefore, an item (#',,p’, M’,d’) is generated,
where M’ < 11]MO..@'}. '

Consider the item {(i,7,p = {(a,®), M,0), where M = mm(®) U (p(M'/(d" +
1)\(0)). Recall that mm(®) < 7%M0..a] and p(1p_1/{d" + 1)) < 7/(0}, from the
definition of derivation. Thus,

p(M'[{d + NO) < p(h1/{d' +1)\(0) (Lemma 51)

< 7/ (0)\(0) ~ (as just noted)
< M0} (Lemma 46)
< P0.a] . {Definition 13)

Since both mm((I)) and p(M'/{d" + 1})\(0) subsume 7:]\[0..a}, they must be con-
sistent in the sense that their informational union must be defined; furthermore,
M = mm(®)Up(M’/{d'+1))\(0} £ 7%][0..a], by Lemma 35 and the definition of in-
formational union. (See the comment following Lemma 35.) Therefore, {,, p, M, 0)
is just the item generated from (¢,%,p', M',d'} by Prediction. Thus, in this case, an
appropriate item is generated.

Grammars and Parsing 61

Case 2: Suppose that arity(rr) = d+ 1 > 0 and that 7;,/{d + 1) is licensed by
a phrasal production p’ = {a’, ®'). As before, 7 is part of a derivation 7,..., 7%
whose size is n and that satisfies the various antecedent properties of the theorem.
In particular, yield(7o,...,Tk—1) = wy---w; and yield(ry) = wip1---w;. Let us
assume that yield(ry/{d + 1)) = wyy; - -w;, for some & such that i < i < 7.

We consider two shorter derivations. The first,

T0y- - «y Th=1, Tk['[0.-@, 1..d] ,

has size

n = 25(7e) + 2(s(mi) = s(me/(d+ 1)) - 1) o
=n-—-2s(re/{d+1))~2)
which is less than n, so that the induction hypothesis can apply. In addition, the
antecedent conditions necessary for the induction hypothesis hold for this derivation,
with yield(rg,...,7k~1) = wy---w; and yz’eld(rk]\[(}..a,iﬂ]) = Wiy Wy, By
the induction hypothesis, then, there is an M < 7}[0..e] such that the algorithm
generates the item (7,7, p, M, d).
The second derivation

0y« + vy The1, Tk['[0-.0, T..d], 7/ {d + 1)

has size :
n—2s(re/(d+1)) = 2+ 2s(n/(dF D)) +1=n—-1

wluch is again less than n as required for induction to a.pply This is a well- formed
derivation since 7o, ..., Tk—1, 7c}[0..2,1..d] is, and

p(riM0.a, T/ (d+ 1)) < p(re/{d+1)
p(rs/({F10))
(/T DY)
(re/(@FT))/0)

as required, Again, this derivation meets the antecedent conditions of the propo-
sition, with yield(ro,...,Tk=1,Tk}[0..a,T..d]) = w;---wy and yield(ry/(d+ 1)) =
Wiy - -wj. By the induction hypothesis, there is an M’ < (7/{d + 1))]MO0..a"] such
that the algorithm generates the item (¢, 7, ', M', a').

We must show, then, that the model MU((M’/{0))\(d+1))is well defined as the
final precondition for applying Completion. Now, from the induction hypothesis,
M < m[0..a] and M’ < (r/{d + 1))}0..a7], so

(M'/O\(d+1) < (((re/(d+T))No. ﬂ’])/(ﬂ))\(d+ 1)
(re/{(d+TO)\(d+1)

(me/{d + 1))\(d + 1)

TP {d + 1} < 7} [0..q]

IA

IA 1

1IA A

62 Parsing and Type Inference for Natural and Computer Languages

Consequently, the two models are consistent, and, furthermore,
MU ((M'/O)\(d+1)) < 7f0.a]

as required. Thus, the item _
(3, 4,0, MU (M [(O\(d+1)),d+ 1)

~ is generated by Completion.

Case 3: Suppose that arity(mz) = d+ 1 > 0, as in Case 2, but that 7./{(d+ 1)
is licensed by a lexical production p’ = (w;41,®’). Once again 7 is part of

a derivation 7g,...,7: whose size is n and that satisfies the various antecedent
properties of the theorem. In particular, yield(rg,...,Tk-1} = wy---w; and

' yield(‘rk) = Wipy Wi o
Construct the smaller derivation to,...,7e—1,7%}'[0..a,1..d]. Note that

yield(7i[\[0..a,T..d]) = wiyy1 - - -w;. The size of this derivation is

n — 2s(7%) + 2s(rx}0..a, T. fi‘])
_n—2(s(rk[\[0 .a, 1. d]) e
+s(m/{d + d+ 1)) +1)+ 23(Tk[\[a,1..d))"
':n—ZS(TL/(d-}- 1)) -2)
which is less than n, so that the induction hypothesis applies. By the same argument
as in Case 2, this derivation is well formed, leading us to conclude that an item
{i,3,p, M, d) was generated for some M < 7¢][0..a].

We must show, then, that the model M U ({mm(®)/{0))\{d+1))is well defined
as the final precondition for application of the Scanning rule. From the induction
hypothesis, we conclude that M < 7}0..a]. Since 7/ (E!":}"«_l) is licensed by p, we
can conclude that 7./{d + 1) = &, so mm(®') < 7e/{d+ 1) From this, we have
that

(mm(@/(O)\(d+1) < (mm(re @F DY/ ON+1)

whence, by the analogous argument in Case 2,

(mm(@")/(0))\(d+ 1) < 7:]0..a]

Thus, the two models are demonstrated consistent, and, furtherm'b're,_. _ '
MU ((mm(@")/(0)\(d+ 1)) < CICDR
as required. Therefore, the item '
(i,5+1,p, MU ((mm(‘I")/(O))\(d+ 1)) ﬂ!+ 1)

is generated by the Scanning rule.
Since the three cases are exhaustive, the induction step has in general been
proved, and thereby, the proposition itself. ' O
The preceding theorem allows us to prove the following corollary, a simple state-
ment of the correctness of the algorithm for recognizing the language of a grammar.

Grammars and Parsing 63

Corollary 56 Given a grammar G = (Z,P,po = (ag, o)) and a string in B¥,
wy - - - Wn, the algorithm generates the item (0,n,po, M, ag) for some M if and only
if wy---wy is grammatical according to G.

Proof: We prove the two implication directions separately, the “if’ direction first.
Assume that w, ---wy, is gra,mmatica.l. Then there is a parse tree 7 such that 7 is li-
censed by pg and yield(T) = -+ wy. By Proposition 55, the trivial derivation con-
sisting of the single parse tree T guarantees the generation of an item (0, n, po, M, ao)
for some M. '

For the ‘only if’ direction, we assume that the algonthm generates
{0,7n,po, M, ag) for some M. Proposition 54 guarantees the existence of a deriva-

tion 7g,...,7% such that yield(7y) = wy-.-w,, and 74 is licensed by pg and
arity(7e) = ag. Thus, the parse tree 1 provides a w1tness for admitting Wy - Wy
as a sentence of the language of G. a

3.6 Instances of the Abstract Algorithm |

The process of parsing (more properly, recognition) as described by the abstract
algorithm just presented involves searching a [potentially infinite] space of items for
one of the form (0, n,po, M, ap). The partial correctness of the algorithm, proved as
Corollary 56, guarantees that any method for complete search of this space yields
a partially correct parsing algorithm. However, the problems of termination and
efficiency of the search method have not been addressed.

Two basic problems in this vein are considered in this section. First, the search
space can be massively redundant; exhaustive search will therefore entail superfluous
work in general. Second, in certain cases, the Completion and Prediction rules can
feed themselves recursively and indefinitely, thus leading to nontermination in an
exhaustive search.

3.6.1 Eliminating Redundancy

To eliminate the redundant generation of items, we can import the idea of a chart
or tableau from tabular context-free parsing schemes, or a cache of lemmas as used
in automatic theorem-proving algorithms. The analogous modification for parsing
with the more general constraint-based formalisms is more akin to the subsumption
check in theorem-proving than to the tableau of Earley’s algorithm. _
The central observation is the following: We augment the algorithm thh a
tableau or cache of generated items. Then an item (4,7,p, M,d) need be added
to the tableau only if no previously generated item (2, 7, p, M’, d) exists therein for
which M’ < M. Traversal of the search space below the omitted item can be pruned
as well. o |) | -
This modification of the abstract algorithm is clearly sound because although
a subset of the items in the full search space is generated, no item outside of the

64 Parsing and Type Inference for Natural and Computer Languages

full space is. Recall that completeness (Proposition 55) requires that if there is a
derivation Tg,. .., T satisfying the antecedent criteria, then an item (3, 3,p, M, d) be
generated such that M < 7;}[0..a]. Now, if the item (1,7, p, M, d) is omitted in the
tabular modification of the algorithm, there must have been an item (4,7,p, M’, d}
generated for which M’ < M < 7;,}[0..a], so that completeness is still guaranteed. In
sum, the modified algorithm is complete because an omitted item makes a stronger
“claim” about the string than the subsuming item.

3.6.2 Nontermination

Addition of a tableau and the subsumption check can dramatically improve the effi-
ciency of parsing while retaining the soundness and completeness results. Even with
such improvements, nontermination is a possibility, stemming from two sources: the
Prediction and Completion rules.

Prediction Nontermination

Since items inferred by Prediction are of the form of the antecedent, the Prediction
rule can (potentially at least) feed itself recursively. For example, imagine a rule
p' = {a', ') such that mm(®)/(1) is consistent with mm(%’)/(0); suppose also that
p is the identity function. Then an item

(3,4, 9, mm(®'), 0)
would predi.ct the item __ L
(i,i, 7', mm(@') U mm(&")/(D\(0),0)
(which is consistent by assumption), in turn predicting

(6,4, 0/, mm(@) U (mm(@") U mm(@')/(l)\(o))/(1)\(0.),0.). ;

and so forth, indefinitely. In general, none of the various models in these items need
subsume any of the others, so that subsumption checking does not break this chain
of prediction. The example given involves an immediate left recursion of sorts in the
rule ¢/, but nonimmediate recursions (even involving some interspersed Completion
steps if both antecedent items cover the empty string) can also manifest this kind
of nontermination. ' :
A simple condition guarantees, however, that this potential nontermination will
not be realized. It is at this point that the importance of introducing the function p
into the parsing algorithm is revealed. If the range of p is finite in size, say r, then
there is only a finite number of items that could ever be generated by the Prediction
rule, namely 7 |G| where n is the string length and |G| is the number of phrasal
productions in G. Consequently, after a finite number of applications of Prediction,
a previously generated item would be built and the subsumption check would prune

Grammars and Parsing 65

further applications. Since the correctness proof for the algorithm holds for any p,
we can choose a p of finite range without sacrificing soundness or completeness, but
regaining termination in these cases. :

In a sense, p serves to specify how much information is to be used in the top-
down phase of parsing. If p is the constant function yielding the trivial model,
no top-down information is used; all productions are predicted at each point in
the string and parsing proceeds strictly bottom-up without taking into account any
aspects of the preceding context. If, on the other hand, p is the identity function, all
available information from the left context is used top-down in predicting production
instances. As long as we are satisfied by a finite amount of top-down information
employed in guiding the parse, we can guarantee termination of the prediction
process. '

Furthermore, by tuning the p function—théreby adjusting which finite subset of
the available information is used in processing—the behavior of the algorithm can
be fine-tuned to the grammar. Indeed, this possibility was the original motivation
for adding p to previous implementations of parsers for the constraint-based PATR
formalism. As previously described by the author (1983c), appropriate choice of p
can be used not only to regain termination when parsing left-recursive grammars,
but to greatly reduce the number of generated items in parsing by using infor-
mation top-down that restricts parsing possibilities, but not using top-down that
information that merely makes distinctions that are unimportant for later parsing.

Completion Nontermination

The most insidious form of nontermination is associated with the unconstrained ap-
plication of Completion. We will have little to say about this problem here. Fortu-
nately, it has not appeared historically as a factor in the natural-language-processing
work that has been based on constraint-based formalisms, unlike prediction non-
termination; the latter is responsible, for instance, for the well-known difficulty of
parsing with left-recursive definite-clause grammars.

It is important to realize that no complete solution to completion nontermina-
tion is possible, even in principle. As has been previously observed, recognition of
constraint-based formalisms such as PATR or DCG is in general undecidable. A
complete solution to nontermination would contradict this undecidability. '_

However, partial solutions are possible. For instance, we can allow only gram-
mars with a decidable property sufficient (though not in general necessary) to guaz-
antee the termination of Completion. The lexical-functional grammar constraint of
off-line parsability described by Kaplan and Bresnan (1982, page 266) and Pereira
and Warren {1983) is one such sufficient condition. Generalized for the more ab-
stract setting of constraint-based grammax formalisms, an off-line-parsable grammar
can be defined as follows:® :

8This definition of off-line parsability is more general than the definition implicif in LFG; there a
particular p is given a priori, namely, the function taking [the LFG correlate of] 2 model to one

66 Parsing and Type Inference for Natural and Computer Languages

Definition 57 A grammar G is off-line parsable if and only if there exists a finite-
ranged function p on models such that p(M) £ M for all M and there are no parse
trees T admitted by G such that ,o(r/(O)= p(7'/(0)) for some 7' a sub-parse-tree of
T with identical yield.

This is a sufﬁcient condition for guaranteeing completion termination (by a
pigeonhole argument analogous to that given above for prediction termination).
However, there are non-off-line-parsable grammars for which termination holds.
Nonetheless, if off-line parsability can be proven of a grammar, we at least know
that it can safely be employed.

3.6.3 Specifying a Control Regime

Even with subsumption checking and the various techniques for guaranteeing ter-
mination, considerable latitude remains in how to search the space of items. In this
section we describe how this flexibility can be used to develop constraint-based ana-
logues of standard context-free parsing algorithms by specifying particular control
regimes for searching. Given that all such regimes that completely search the space
generate identical items, the ability to mimic various complete parsing algorithms
may be of only academic interest. However, certain incomplete context-free parsing
algorithms—which, as we have argued in previous work, provide a good model for
human sentence-processing behavior as illuminated by psycholinguistic research—
can also be modeled. Their psycholinguistic quality makes these variants of more
immediate interest.

Finally, the ability to specify a control regime permits the basic parsing archi-
tecture explored here to be used for generation as well. This possibility has been
described in separate work (Shieber, 1988).

Modeling Earley’s Algorithm

As a simple example of the use of the abstract architecture to model a standard
context-free parsing algorithm in the more general setting of constraint-based gram-
mar formalisms, we describe a search strategy for mimicking Earley’s algorithm.
Simply put, Earley’s algorithm corresponds to the tabular variant of the abstract
architecture under a strictly left-to-right control strategy. That is, items ate gener-
ated in such a way that if an item {4, 7, p, M, d) is generated before {(¢/,j',p’, M’, d'}),
then j < j'. This constraint on ordering does not fully determine the order of search-
ing the item space. It should be noted, however, that the standard nondeterministic
statement of Earley s algorithm allows exactly the same ordermg; freedom

of a finite set of atomic syntactic categories. Johnson (1987), for instance, presents an argument
contending that a particular LFG analysis of the Dutch cross-serial verb construction violates
the LFG off-line-parsability constraint. However, it should be possible to prove that the analysis.
is off-line parsable in the more general sense just presented, although the details are not pursued
here.

Grammars and Parsing 67

This algorithm, as applied in particular to the PATR formalism, has been pre-
viously proposed by the author (1985c). This chapter constitutes the first proof of
the correctness of that proposal—in a more general setting, of course.

Modeling Shift-Reduce Parsing

As another example of the use of the control abstraction, we turn to the mimicking
of shift-reduce parsing. Pereira and the present author independently observed that
certain psycholinguistic phenomena could be modeled by postulating that the pars-
ing algorithm used to interpret a standard formulation of a competence grammar
was an incomplete shift-reduce algorithm utilizing certain quite simple disambigua-
tion strategies. Pereira (1985a) used the technique to model the phenomena of
right association and minimal attachment described by Frazier and Fodor (1978)
and first observed by Kimball (1973). In previous work (Shieber, 1983), we extended
the method to the lexical-preference phenomena of Ford (Ford et al., 1982), as well
as to the garden-path phenomena whose computational analysis was pioneered by
Marcus (1980).

Simply put, the technique rests on the following observation. A’ standard
context-free grammar for a natural language, say English, will exhibit certain local
and global ambiguities. These ambiguities make it impossible to build a correct
and complete shift-reduce table in accordance with any of the standard methods
(SLR, LALR, and so forth) since these algorithms will generate multiple actions
for a single table entry. These are the so-called shift/reduce and reduce/reduce
conflicts.

In general, a strategy for resolving these conflicts—to determine whether to shlft
or reduce, or which possible reduction to choose—defines a disambiguation of the
language. A particular strategy was shown to model right association and minimal-
attachment phenomena, namely:

¢ In case of 2 shift/reduce conflict, choose the shift operation.

¢ In case of a reduce/reduce conflict, choose the longer reduction.

A slight variation models the lexical preference data as well. Furthermore, the
resolution of local ambiguities in a globally unambiguous string in conformance
with this strategy can lead to the incorrect local choice, thus causing the parser to
fail to parse a grammatical string. This garden-path phenomenon has been shown
to accord well with the corresponding psycholinguistic phenomenon of garden- path
sentences.

There are problems with the shlft-reduce techmque for modehng human sen-
tence disambiguation. First, the technique assumes that the competence grammar’
is stated in the form of a context-free grammar. As current theories of competence
grammar eschew such simple formalisms, it is unclear how the results can be carried
over to current theories of linguistic competence. Second, all information used to

68 Parsing and Type Inference for Natural and Computer Languages

guide the parse must be encoded in the finite set of atomic nonterminal symbols
of the grammar. Thus, semantic or contextual information is not available to the
disambiguation strategy, eliminating any simple solution to the modeling of the
contextual priming effects of Crain and Steedman (1985) by means of more com-
plex disambiguation strategies. Finally, since all the [finite amount of] information
associated with a phrase is used to guide the parse (that is, to build the shift-reduce
tables), the parser cannot be fine-tuned to differentially use only certain information
in the top-down guidance phase of processing. For any given kind of information, it
must be either used in guiding the parse or eliminated from the grammar entirely.

These problems can be solved by developing an instance of the abstract parsing
algorithm to mimic a shift-reduce parser operating under a disambiguation strategy
such as the one above. In a context-free grammar, all possible distinctions that
could be pertinent to guiding a parse are explicit in the grammar itself as the set of
nonterminal symbols. In a constraint-based grammar, this is not so. The number of
distinctions among phrases is potentially infinite (since the set of informational ele-
ments is); thus, precompilation of an exhaustive set of tables is impossible. Instead,
we must mimic the shift-reduce parsing regime on the fly, building the pertinent
portions of a potentially infinite shift-reduce table at run time.

The states of an LR parser correspond to sets of items quite similar to the items
that the abstract algorithm generates. All state sets are closed under the Prediction
inference rule. States are associated with positions on a stack, but we will take them
to be associated with positions in the string, distinguishing at any point a current
string position to mark the top of the stack (and hence a current state). Rather
than move elements to and fro between a stack and an input buffer, we will merely
move the current string position to mark the boundary between the stack and the
input buffer. A shift operation corresponds to the completion of a set of items
in the current state by a lexical item. The new state is the prediction closure of
the completed items, and is associated with the position following the lexical item
shifted. A reduce operation corresponds to the changing of the current state to the
one at the current left edge of an inactive item (one in which the dot position d
equals the arity of the rule e) in the current state set, followed by a shifting of the
item thus traversed. In sum, the inactive item is incorporated into a previous state
set by Completion. The output state is again achieved by closing the resultant item
under Prediction.

Disambiguation is simply modeled. If the current state set both can incorporate
the following lexical item (allowing a shift) and includes a inactive item {allowing
reduction), the shift operation is chosen and parsing proceeds from that generated
state. Since the new state has no record of the old, the ability to perform the
reduction is thus lost forever; that Completion operation will never be performed.
If the current state has no shift possibility, but several inactive items, the one based
on the longer rule will be chosen. Again, parsing possibilities may be lost by this
choice. . '

A Compendium of Model Classes 73

@

Figure 4.1 Failure of Upward Closure

(written t |= ®) just in case it models all the #; individually. For atomic formulé.s,
t = p = ¢ if and only if the subtrees at p and ¢ are identical, i.e., {(p) = #(q);
t }= p = c if and only if the subtree at p is the constant ¢, i.e., {(p) = c.

As it turns out, the extraction operation t/p corresponds exactly to the iterated
application #(p). We can show that this definition actually satisfies the definition
of the extraction operation, namely that t/p k= ® if and only if ¢ | ®[{) — p]. We
need only consider cases where @ is atomic. For the ‘if’ direction, suppose that
t = ®[{} — p]. If ® is of the form ¢ = r, then ®[{) — p]is of the form p-g=p-r.
Since t satisfies this equation, t{p-q) = i(p-7), i.e. t(p)(q) = t(p)(r). The extraction
definition entails that (¢/p)(q) = (¢/ p)(r), sot/p }: g = r. A similar argument holds
for atomic formulas of the variety ¢ = c.

Proof of the ‘only if’ direction presupposes that t/p = ®. Again, we consider
only the case of ® = g = r; the other atomic case is similar and the nonatomic case
trivial. By definition of extraction for finite trees, t{p) k= ¢ = r, so ¥(p)(g) = t(p)(r),
and ¥(p-q) = t(p-r), from which ¢ |z p- ¢ = p - r follows immediately.

We thus conclude that, for the finite-tree models, extraction is iterated ap-
plication. Similarly, we can discover definitions for restriction {corresponding to
restricting the domain of the partial function), subsumption, and embedding.

As a side note, observe that feature trees fall under a natural partial ordering,
determined by the hereditary partiality of functions. Under this ordering, ¢ < ¢’ if
and only if £ is L or both are identical atomic trees or both are compound trees such
that for all f € dom(t), t'(f) is defined and t(f) < ¢/(f). That subsumption on trees
is a partial ordering is obvious from the definition. However, this naive ordering is
not the notion of subsumption required by Definition 9. In particular, this ordering
respects entailment (Definition 13) but is not closed upward (Definition 12). For
instance, consider the trees in Figure 4.1. The tree in Figure 4.1(a) is less than
the one in Figure 4.1(b) in the naive ordering, yet the former satisfies (f) = (g}
and the latter does not. The true finite-tree subsumption ordering must leave these
two trees unordered with respect to each other. We will return to this problem in
Section 4.2.2. :

74 Parsing and Type Inference for Natural and Computer Languages

4.1.1 Properties of Finite-Tree Models

This simple model of feature structures generates a logical system possessing cer-
tain of the potential properties of logical systems defined above. In particular, the
soundness properties, both logical and denotational, hold.

Proposition 58 (logical soundness of finite-tree models) For all t € Ty ¢
and ® € Lo, ift|E® and @+ ¢, theni = ¢.

Proof: The proof is by induction on the depth of the proof tree for @ F ¢. The
base case occurs where ® F ¢, either by Triviality or because ¢ € ®. For these, we
must show that t |z () = (Y and ¢ |= ¢ if $ € @ and ¢ = &. The former follows from
the fact that /() is always defined and is t. The latter follows from the definition
of modeling a set of equations.

For the induction step, assume that the theorem holds for proofs of dépth n
or less. We must show that if 1 = ¢; for ¢; the antecedents of the final proof
step, then ¢t |= ¢. Since & F" ¢;, the induction hypothesis guarantees that £ |= ¢;,
which is why the antecedents can be assumed to be modeled. The proof is by cases
depending on the rule invoked in the final step. If Symmetry is used, we assume
that t = p = g. Then t/p and t/q are defined, t/p = t/q; consequently, t/q = t/p
and ¢ |= ¢ = p. For Reflexivity, assume that t |= p- ¢ = v. Then t/(p-¢) = (t/p)/q
is defined, and therefore so is ¢t/p. Thus, t/p = t/p and t = p = p. H the final step
is Substitutivity, we assume that t = ¢ = pand t |z p-r = v. Then t/qg = 1/p
and t/(p-r) = t/v (or v depending on whether v is a constant or a path). So
t/(g-7) = (t/q)/r = (t/p)/r = t/(p-T) = t/v (respectively v). Thus,tf=¢-7 = v.

[

Proposition 59 (denotational soundness of tree models) For all sets of
equations ® € L1 ¢, if there exists a feature tree t € Tp o such that 1 = @ then
® is consistent.

Proof: Suppose that t = & but & is inconsistent, that is, ® derives a clash. We
consider the two cases of clash type. If the clash is a constant clash, then ® Fp = a
and & + p = b for some p, @, and b such that @ # b. Now, since t = @, t/p=a
and t/p = b by Proposition 58, so a = b, contradicting the assumption. Similarly, if
the clash is a constant/compound clash, then ® - p=qa and & Fp- (f) = v. Then
t/p=aand t/(p-(f))is defined. So t/(p-{f}) = (t/p)(f) = a(f) is defined. But a
is not a partial function, so a(f)} cannot be defired. Thus, no clashes can exist, so
@ must be ccmsistent o . o

4.1. 2 Problems Wlth lete Tree Models

However, finite feature trees do not prowde a compiete model structure for the loglc
For example, consider the cyclic formula {{f) = a,{g} = (}}. This formula derives

Grammars and Parsing 69

In this way, the abstract algorithm can be emploved to mimic a generalized
shift-reduce parser operating over constraint-based grammars in a provably sound
(though clearly not complete) manner. The psycholinguistic results demonstrated
for context-free grammars thus apply more broadly, and in a more linguistically
attractive formal setting. Since the informational elements are much richer, more
complex disambiguation schemes involving arbitrarily large amounts of information
built up by the grammar (for instance, semantic or contextual information) can be
envisaged. Finally, the ability to use the p parameter allows certain information
to be excluded in the top-down guidance of the parse, even though the grammar
maintains that information correctly.

4

A Compendium of Model Classes

In this chapter we return to the topic of appropriate classes of models
for the constraint logics, and develop a series of possible classes of mod-
els for the logic L1 ¢, with an eye towards their utility for logical and
computational purposes. We begin with the class of finite-tree models,
but a desire for completeness requires that we allow infinite trees as well.
Both types of tree models, however, are too erlensional, compelling us
to augment them with a stronger notion of intensional identity which
we make precise in the eqiree models. Although the eqtree models serve
as a perfectly acceptable semantics for L ¢, they do not possess the
computational properties required for use in the parsing algorithm of the
preceding chapter. To serve this purpose, we develop the graph models
as finite encodings of the rational egtrees. This exercise of developing
models for L1, c explicates the trade-offs that have onIy been zmphczt in

* previous research in this area.

Having defined the a.ppropriate desiderata with which to evaluate the logical
systems in Chapter 2 and having seen the use of the models for definition of gram-
mars, languages, and parsing algorithms in Chapter 3, we can now return o the
task of describing some of the possibilities for models of £, ¢ and examine how the
logical systems based on them fare.

In general, to define an appropriate logical system incorporating L ¢, we must
specify a class of models M along with a satisfaction relation. These, in turn, will
determine a subsumption ordering, and operations of informational union, extrac-
tion, embedding, and restriction in accordance with the definitions in Chapter 2.
The set of independent properties that must be proved of the logical system are -

¢ Denotational soundness
" » Logical soundness

o Logical sompleteness

71

72 Parsing and Type Inference for Natural and Computer Languages

o Minimal-model existence

¢ Categoricity
For computational reasons, we also require (as stated in Section 3.1)

o Finiteness of minimal models of atomic formulas
» Finiteness preservation for model operations

o Computability of operations

Figure 2.6 codifies the dependence of other properties on these.

The development of an appropriate class of models for L ¢ will progress in
stages, each triggered by a frailty in the previous. The finite-tree models fail to pro-
vide models for all formulas; in particular, the existence of cyclic formulas underlies
the need forinfinite trees. The infinite-tree models, in turn, are too extensional. The
eqtree class of models makes the necessary intensional distinctions lacking in the
tree models. Computational considerations will impel us toward the graph models
introduced informally and used extensively in previous chapters. The progression
provides grounds for the use of graph models over other alternatives in the present
work and elsewhere, as well as serving as an exemplar for the development of similar
models for the extended logics of Chapter 5.

4.1 Finite-Tree Models .

The finite feature trees constitute by far the simplest of the proposed model classes.
The class of finite feature trees is defined as the infinite union of a hierarchy of larger
and larger bounded trees. The smallest trees comprise the class 7g and include just
the constants C plus an element for the undefined tree, L. Classes of larger trees,
T; for i > 0 are given as all partial functions with finite domain from L to {;; 7;.
Then 71, g, the set of finite feature trees over L and C, is the infinite union of the
T;, that is, .
Tro=T

o . 20 _ S

The finite feature trees look at first glance like excellent models for £, ¢ as they-
possess a natural hierarchical structure, modularity, and partiality. Hierarchical
structure is given by the recursive definition. Modularity, the ability to extract sub-
parts is achieved simply by function application. Partiality of the trees supervenes
on the partiality of functions that define them.

A logical system based on finite feature trees can be fixed by defining a no-
tion of satisfaction. First, we extend the function application notation to apply to
paths as well as labels: $({fy - - f)) will be used to express the iterated application
t(f1)-+-(fa). A finite feature tree satisfies or models a formula @ = {¢y,...,¢n}

A Compendium of Model Classes 75

all equations of the form {¢* f) = a for i > 0. Now, since every finite feature tree ¢
is a member of some 7; and since all elements of 7; have a maximum defined path
length 7 —~ 1 (by a simple induction), any finite feature tree has a finite maximum
path length. Thus, no finite feature tree satisfies all of the equations of the required
form; the logical system is thus not denotationally complete.

Logical completeness also fails. Given a finite label domain L, all models of the.
formula & = {(f 2) = a | f € {f1, fo},= € L} also model ¢ = (f;) = (f5). But
Y . : o .
From these last examples, certain trade-offs are revealed that we will mention
but not demonstrate rigorously. First, the counterexample to logical completeness
relied on the finiteness of the label domain L. If L is taken to be infinite, no such
finite formula ® can exist, and logical completeness will hold (as long as infinite
formulas are excluded from the logic). Similarly, if both cyclic formulas and infinite
formulas are proscribed, denotational completeness can be recovered. Finally, it
might be the case that completeness properties are incidental to the proposed use
for the logical system, in which case tree models such as these would be effective.

Looking ahead to Section 4.2.2, however, we note in passing that even if ap-
propriate restrictions are placed so that the models are sound and complete both
logically and denotationally, the simple finite feature tree model cannot satisfy the
property of minimal-model existence, which we desire for computational reasons.

4.2 Infinite-Tree Models

To regain denotational completeness, we can augment the class of models with infi-
nite trees. Infinite-tree models have been proposed under various guises by Pereira
and Shieber (the domain F (Pereira and Shieber, 1984)) and Barwise (Barwise,
1988). Rather than define the set of models using recursive domain equations
(Pereira and Shieber, 1984), we will use a technique reminiscent of the method
of Courcelle (1983). We define 7%, the set of [possibly] infinite trees over labels L
and constants C, as the set of all partial functions from Path to C' U {L}, where L
is a distinguished constant not an element of C. Informally speaking, an element
of ¢ defines a tree by supplying, for every path from the root to a node in the tree,
the label of that node. We require an additional provision of prefiz closure, that all
interior tree nodes are labeled with 1. That is, for all paths p, if t(p- (f)) is defined
for some f € L, then #(p) = L, so that only the terminal tree nodes will be labeled
with constants (as was the case for the finite trees). Finally, we require that ¢({))
be defined for all ¢ € 7%

‘We must provide a definition of satisfaction so that infinite trees may serve as
models for £ ¢ in a logical system. As was the case for the finite tree models,
we will use extraction as an aid in defining satisfaction. The extraction of ¢ at
p (written t/p) is defined by the following condition: (/p){q) = v if and only if
t(p - q) = v. Under this definition of extraction, an infinite tree ¢ satisfies atomic

76 Parsing and Type Inference for Natural and Computer Languages

formulas as follows: 1 |= p = ¢ if and only if t/p = t/q and ¢ |= p = ¢ if and only if
t(p) = ¢. Modeling of nonatomic formulas is conjunctive, as for the finite trees.

We can now prove the correctness of the definition of extraction by showing that
t/p = ® if and only if ¢t = B[() — p]. As before, we will restrict attention to the
formulas of the form ¢ = 7. Suppose that t |= p-g = p-7. Then by definition of
satisfaction, t/(p-¢) = t/(p- 1), that is, t(p- ¢-s) = {(p-r - s) for all s for which
the applications are defined. Associativity of concatenation allows the conclusion
that (¢/p)(g- s) = (t/p)(r - 8), so (t/p)(¢) = (¢/p)(r). But this is the requirement
for t/p = ¢ = 7. The proof for & = p = ¢ is similar, and for nonatomic formulas,
trivial.

4.2.1 Properties of Infinite-Tree Models

We demonstrate that certain soundness and completeheés properties hold for
infinite-tree models.

Proposition 60 (logical soundness of infinite-tree models) For allt € I??C
and @ € Lpc, iftl=® and @+ ¢ thent = ¢.

Proof: The proof is similar to that for Proposition 58. We must verify that if
t € 7% is a model for @, then itisa model for ¢ as well. The proof is by induction
on the depth of the proof tree for & - ¢. The base case occurs when & - ¢, either
by Triviality or because ¢ € ®. In the former case, if ¢ = () = (), then t |= ¢, since
t/{) =t =t/() for all t. In the latter,if € @ and { |= @, then t l= ¢ by definition
of satisfaction.

The induction step requires a demonstration that the other rules of inference
preserve modeling. For the Reflexivity rule, assume & - p-¢g = v. By the induction
hypothesis, ¢ | p-¢ = v, that is, ¢/(p-¢) = t/v (or v, depending on whether
v € Path or v € C, tespectively). Thus, (t/p)/q = t/v (respectively v) and t/p
is defined. Since t/p = t/p if defined, t | p = p. Preservation of modeling by
the Symmetry rule follows in the same manner. For Substitutivity, we assume that
dhtg=pand ®Fp-r =, givingust |5 g=pand | p-r = v by the induction
hypothesis. So t/q = t/pand t/(p-r) = t/v (respectively v) = (¢/p)/r. Substituting
for ¢/p, we obtain (/g)/r = t/v (respectively v) = t/q-r. We can conclude that
tl=g-r=2. ' - ' |

Proposition 61 (denotational soundness of infinite-tree models) For ~ all
® € Lrc, if there is at € TEY, such that t k= ®; then & is consistent.

Proof: Suppose ¢t |= ® and @ is inconsistent. Then there are atomic formulas ¢
and ¢’ that follow from & and that clash. By Proposition 60, ¢ is 2 model for both
$ and ¢'. Now, the clash can be either a constant clash or a constant/compound
clash. In the former case, ¢ = p= a and ¢' = p = b for a # b. Thus, #(p) = @
and #(p) = b, contradicting the functionality of ¢. In the latter case, ¢ = p = a and

A Compendium of Model Classes 77

¢' = p-(f) = v. Then t(p) = a and t(p) = L (by the restriction on labeling interior
nodes), again contradicting the functionality of ¢. O

Proposition 62 (denotational completeness of infinite tree models) For
all @ € L1 ¢, if © is consistent, then there isa t € I such thatt = &.

Proof: Define ¢ = itm(®), an infinite-tree model of & as follows: i(p) = » if and
only if either

l.LveCand ®Fp=v,o0r
2.v=Landdtp= p,but@b‘p_cforanycec

We must show that ¢ is one of the models for ®, that is, that it is well deﬁned (a
true function), prefix-closed, and satisfies @, :

t is a function: Suppose ¢ were not a function, that is, the definition of itm(®)

assigned two distinct values v and v’ to a single path p. If v,v' € C, then @ Fp=v
and & + p = o', so ® is inconsistent by a constant clash, contra assumption of

consistency. If v € Cand v' = L, then ®+ p=vand @ i/ p = v for any v € C,

here too a contradiction. Thus, ¢ must be a function.

t is prefix-closed: Suppose i(p- (f)) is defined. We must show that #(p) = L to
conclude that £ is prefix-closed. Now, by definition of itm, either ® F p- {f} = v or
®+p-(f) =p-(f). By Reflexivity, ® I p = p. Since & is consistent, & I/ p = ¢ for
any ¢ € C. Thus, ¥{(p) = L by definition, and ¢ is prefix-closed. Since & + {} = (),
the function ¢ must be defined at (), as required.

t satisfies ®: Tinally, we show that ¢ is a model for & by proving the stronger
result that ¢ is a model for all consequences ¢ of ‘I> Any ¢ such that ® + ¢ is of
one of the two forms of atomic formulas. If ¢ = p = ¢, then #(p) = ¢ by deﬁmtxon
and t = ¢.

If ¢ = p = ¢, we must show that ¢/p and t/q are defined and that ¢/p = t/q,1 e.,
t(p-7) = t(q-r) for all r such that #(p-r) is defined. First, ¢/p is defined because
if&t p=g,then &+ p=p,s0(p)is defined (by definition of itm); similarly for
t/q. Now, suppose t(p - 7) is defined. Then either ® Fp-r=cor®Fp-r=p.r
and @ i/ p.r = c for any ¢ € C. In the former case, we have @ g-r = ¢ by
Substitutivity, so #(g-7) = ¢ = f{(p- r). In the latter case, we can conclude that
®Fg-7r=¢ r by Symmetry and Substitutivity. Also, ® I/ g r = ¢ for any c € C:
(If ® did derive such a formula, then & + p 7 = ¢ by Substitutivity and #(p-7) # L,
contrary to assumption.) Thus, #(g-r) = L = ¢(p- 7). As a consequence, t/ p= t/ q
and ¢ = p = ¢. The tree { is therefore a model for ¢. :

Since ? is a model for any equation that follows from &, it must be a model for
P itself. We have shown that if ® is consistent, there exists a model for ®, namely,
that given by itm(@). : : o

78 Parsing and Type Inference for Natural and Computer Languages

4.2.2 Problems with Infinite-Tree Models

Infinite-tree models are an advance over the finite-tree models because they providé
denotational completeness. Unfortunately, logical completeness does not inhere in
the new class of models. As a counterexample, consider the formula

@c={(:cy)éa|a:,y€L} ’

which requires that the values for each label be the same, namely, a tree taking all
labels to the constant a. Because this specification defines values for every label
on every interior node, only one infinite-tree model can exist for ®.. The unique
model—thus every model—obeys the equation (z) = (y) for all z,¥ € L. But
&, i (z) = (y). The logical system based on infinite trees is thus not logically
complete.

The counterexemplifying formula &, is finite only if L is finite. Thus, if L is not
restricted to be finite, then the argument fails. We conjecture that in this case, the
models are in fact logically complete.

A second problem with tree models, both finite and infinite, involves deﬁmtlon
of the subsumption ordering on trees. As noted in Section 4.1, the natural ordering
on finite trees does not satisfy upward closure. The same holds for the natural
ordering on inifinite trees, given by: ¢ < t' if and only if, whenever t(p) is defined,
t(p) < t'(p), where, for elements v and v’ of C U {1}, we take v < ¢ to hold if
and only if » = v or v = L. It is possible to show that the function itm defined
in the proof of Proposition 62 actually defines the minimal infinite-tree model with
respect to the natural ordering; it might therefore seem a desirable candidate for the
subsumption ordering. However, under this ordering, the trees in Figure 4.1 (now
viewed as elements of 77%) are ordered; Figure 4. 1(a) subsumes Figure 4.1(b). Yet
the former satisfies {f) = (g), whereas the latter does not. Thus, upward closure is
violated, and the ordering is not appropriate for subsumption. :

On the other hand, the subsumption ordering prescribed by Definition 9 leaves
the two trees unordered, for each satisfies a formula unsatisfied by the other. In
particular, Figure 4.1(a) satisfies (f) = (g} and Figure 4.1(b) satisfies (g g) = b. By
enumerating all smaller models in the subsumption ordering—of which there are
only finitely many—we can show that no model smaller than these two satisfies the -
formula ® = {{f f) = a,(g f) = a}. Therefore, no minimal tree model exists for &.

These various problems with tree models arise because the models {both finite
and infinite) are extensional, that is, two nodes in the tree are identical if they take:
the same labels onto identical values. But the formulas in the logic are intensional,
in that all the individual equations for two paths can be the same without entailing
that the paths themselves participate in an equality relationship. :

. In summary, the tree models of both the finite and infinite variety lose informa-
tion, since the only available notion of identity in the models is extensional identity.
Because of this problem, canonical tree models for formulas do not in general exist, -

.. A Compendium of Model Classes 79

thereby removing the possibility of computing over them as an alternative to per-
forming deduction in the logic. A preferable alternative model would restore the
distinction between intensional and extensional identity that the tree models blur.

4.3 Eqtree Models

The most direct method for constructing a class of models that can distinguish
intensional from extensional identity is to augment the infinite-tree models directly
with an intensional identity relation. Eqtree models do just that.

An egiree is a pair (2, R}, where ¢ € 7%, is a [possibly infinite] tree, and Ris a
relation over dom(t) (the paths of the tree) such that

s R is an equivalence relation,
¢ if pRp' then 1(p) = ¢(p'), and
e if pRp' and p- (f) € dom(t), then p- (f)Rp' - {f).

We will use the notation 7 for the class of eqtrees.

As a consequence of the constraints on R, if pRp’, then t/ p = t/p’; the equiv-
alence relation R is a stronger relation than extensional identity. In fact, R will
correspond to intensional identity.

Proposition 63 For all egirees (t, R) and paths p end p/, if pRY', then t/p = t/p'.

Proof: We must show that (¢/p)(q) = (¢/p')(g) for all g such that (z/p)(q) is defined
as well. Suppose that (t/p)(g) is defined. Then #(p - q) is defined. Now pRyp/, so by
a simple induction, p- gRp'+ g and (p- ¢) = t(p’ - ¢). But the latter is just (¢/p")(q)-
(]
Satisfaction will be defined much as it was in the tree models. An egtree (t, R)
satisfies or models an equation p = ¢ just in case t itself models the equation, that
is, if and only if t(p) = ¢. The egtree models an equation p = ¢ just in case pRgq, i.e.,
the subtrees of ¢ at p and ¢ are intensionally identical. This implies that ¢/p = t/q,
which was the definition of satisfaction in the tree models. Thus, satisfaction in an
eqtree model is strictly stronger than the notion for tree models, again because of
the distinction between extensional and intensional identity., -
Subsumption is defined pointwise. That is, (¢, R) < {¢/, R} if and only if ¢ < ¢
and B C R'. Here we are using the natural subsumption ordering on trees. Recall

that for this ordering, minimal infinite-tree models exist. Although, as we have.

shown, the ordering on infite-tree models does not satisfy upward closure by itself,
it does in conjunction with the ordering on B. We show that subsumptlon as here
defined respects entmlment and is upward- closed

Prop051t10n 64 (subsumptlon on eqtrees respects entallment) If
whenever n =@, W = ® for all® € L ¢, thenn < 7.

80 Parsing and Type Inference for Natural and Computer Languages

Proof: Suppose we have two eqtrees n = {t, R) and #' = (¢, R') such that whenever
nkE ® 7 k= ®forall ® € £ ¢c. We examine the relationship between the two
components of the eqtrees sepa,ra,tely

First, if t(p) = ¢, then 7 Ep=csoy |: p = ¢ as well and #(p) = ¢. Similarly,
ift(p) = L, then p = p = p,so 7' £ p = p as well. Now, it either holds or not
that 7' = p = ¢ for some ¢ € C. If so, by definition of satisfaction for infinite trees,
t(p) = c; if not, ¢(p) = L. In either of these two cases t(p) < t/(p) whenever t(p) is
defined, so that t < ¢ in general

Second, if pRq, then n = p=gson p = g as well and pR'g. Hence RCR.
By definition of subsumption on eqtrees, n < 7'. _ o

Proposition 65 (upward closure of subsumption on eqtrees) Ifp < 7,
then whenevernE @, 7w = ® forall® € L.

Proof: Assume that we have two eqtrees 7 = (¢, R) and 5’ = (t', R') such that
n < 7. Furthermore, suppose 1 |5 ®. We must show that 5 |= &, proved by cases
depending on the form of the equations in ®. Without loss of generality, we can
assume that @ is atomic, since the case for nonatomic formulas reduces trivially to
that for atomic ones. _ _

If & is of the form p = ¢, then pRgq. By definition of subsumption, pR'q as well,
son = p =g If®isof the form p = ¢, then #(p) = c. Again, by definition of
subsumption, t'(p) =cso ' Ep =c. o

4.3.1 Properties of Eqtree Models

The appropriateness properties satisfied by the tree models also mhere in eqtrees
We prove them here.

Proposition 66 (logical soundness of eqtree models) For all n = (t,R) €
‘]‘}Jcand‘I’EELc,zfnlzéand‘IﬂFqS,thenn!:qb :

Proof: The proof is by induction on the size of the proof tree for ® - ¢. The base
case occurs where ® | ¢ is proved either by Triviality or because ¢ € ®. Clearly, if
¢ € ® and |= @, then 5 = ¢ by definition of satisfaction for eqtrees. For Triviality,
if ¢ = {) = (), then 7 |= ¢, since for all eqtrees, #({}) is defined, hence (JR{). .=
The induction step requires that we demonstrate that the other rules of inference
preserve modeling. For the Reflexivity rule, assume @ F p-g = v. By the induction
hypothesis, 7 = p+ ¢ = v, so either p- ¢Rv or t(p - ¢) = v (depending on whether:
v € Path or v € C, respectwely) In either case, t/(p-¢) = (t/p)/q is defined,
guaranteeing the deﬁmtlon of t/p. Since R is an equivalence on dom(t), we have.
that pRp; thus 5 |= p = p. Preservation of modeling by Symmetry follows similarly.
Finally, for Substitutivity, we assume that ® - ¢ = pand & F p-r = v, giving
7= ¢=pand gk p-r = v by the induction hypothesis. So gRp and either p-rRv.
or t(p-7} = v (again depending on whether v € Path or » € C, respectively). If the

A Compendium of Model Classes 81

former, a simple induction on the length of r yields {¢ - r)Rv; hence g k= ¢q-r = v.
If the latter, then t/(p-r) = (¢/p)/r = (t/q)/T = t/(g-r) = v, so that once again,
nkEqg-r=uv. a

Proposition 67 (denotational soundness of eqtree models) For all formu-
las ® € Lo, if there exists an egtree 7 = (1, R) € Ti ¢ such that 1] E &, then
® is consistent.

Proof: By definition of satisfaction for eqtrees, if = @, then ¢t | ®. But by
Propositien 61, ® must be consistent. o

Proposition 68 (mm:mal—model existence for eqtree models) If <§ € Lrc
is consistent, then there is a least 1= (1, R) € T such that n |= o.

Proof: Define 7 = metm(®), the minimal egtree model of & as follows: 7 = (£, R).
where ¢ = itm(®) and pRg if and only if ® p = ¢.

We show that 7 is a well-formed egtree, that 7 k= @, and that 7 is the least such
eqtree.

7 is a well-formed eqtree: As proved in Proposition 62, ¢ is a well-formed infinite
tree. Now, if pRq then @ b p = ¢ and @ p = p by Reflexivity. Furthermore, it
either holds or not that & I- p = ¢ for some ¢ € C. If so, #(p) = ¢; if not, #(p) = L
according to the itm construction. In either case, p € dom(t) so R is a relation over
dom(1).

We turn to the three conditions on the well-formedness of R. First, R is an
equivalence relation, since it is reflexive (trivially), symmetric (if pRg, then ® Fp =
g; hence ® - ¢ = p by Reflexivity and ¢Rp), and transitive (if pRq and gRs, then
®Fp=gqgand ®F g =s, so by Substitutivity, ® F p = s and pRs). _

Second, if pRp’, then ® F p = p’. Again we consider two cases as to whether -
it holds that ® F p = ¢ for some ¢ € C. If so, t(p) = ¢, and by Substitutivity
®rp' =ecsot(p}=c Hnot,i(p)= L and @/ p' = ¢ for any ¢ € C, for otherwise
we would have @ - p = ¢ by Substitutivity; hence #{(p') = L as well. In either case,
t(p) = #(p’), as required.

_ Third, assume that pRp’ and p' - (f) € dam(t) Then & F p=yp and @ +
p'+(f) = vfor some v. By Reflexivity, ® I p’-(f) = p'-(f), whence, by Substitutivity,
® Fp-(f) =p'-(f),s0p-(f)Rp'-(f). This concludes the proof of the well-formedness
of R and therefore 7. : :

7 is a model for ®: Suppose ® F p = ¢q. Then by construction; pRg and
nkEp=q¢If <I> k- p = c, then #(p) = ¢ by the itm construction (see Proposition 61);
hence 7 |= p = ¢. Since 7 is a model for any equation that follows from d,itis a
mode] for & itself. :

82 Parsing and Type Inference for Natural and Computer Languages

n is the least model for ®: Consider any model 5’ = (¢/, R') such that ' }= &.
By logical soundness (Proposition 66), 7 |= @' for all & F @’. In particular, if pRg,
then ®Fp=g,s0n | p=gqand pR'g. Thus, RC R Ift(p) =¢,then @+ p=c,
son | p=cand #(p) = c. Similarly,if t(p) = L, then @ p=p,soqn |=p=p
and, by definition of satisfaction, either t'(p) = L or t'(p) = ¢ for some ¢ € C.
In either case, {(p) < ¥(p’), so t < ' in general. By definition of subsumption on
eqtrees, 7 < 7. 0

Proposition 69 (categoricity for eqiree models) If n = ({,R) and 7' =
(¢, R} are distinct egirees in Tf o, then there exists a formula ® € Lic such
that n = @ and 7' = @, or vice versa.

Proof: If n and ' are distinct, they must differ either in ¢ or R. The possibilities
can be divided exhaustively into six cases. The first three cases are as follows:

Case 1: (p) defined and ¢'(p) undefined.
ThenpEp=pbut njEp=p.
Case 2: t(p)=cand t'(p)= L
ThennpEp=cbuty fep=c.
Case 3: pRq but not pR'q.
Then nfp=gbut 7/ p=gq.

The remaining three cases, the symmetric versions of the first three, where t' or R/
is more defined, are proved smula,rly i

Proposition 70 (logical completeness of eqtree models) If foralln € e
such that nl= @, nl= &', then & + @',

Proof: Without loss of generality, we can restrict ourselves to the case where &’
is atomic. (For nonatomic wifs, satisfaction holds just in case it holds for the
atomic elements, so the problem reduces to the atomic case.) Suppose that for
all n € Tfc such that 7 | @, it is the case that 7 k= ®'. Then, in particular,
metm(®) = (t,R) = ¢'. We prove that & + &' by cases, depending on the form
of . H @' is of the form p = ¢, then (t,R) = p = ¢ and pRq. By the metm
construction, & F p = g. If ® is of the form p = ¢, then {{, R) Ep=cand t(p) =¢.
Now, by the itm construction employed in the metm construction, & - p = c. Thus,
in general, ® - &' o

We have proved all five of the crucial properties for demonstrating the appro-.
priateness of eqtree models as a semantic system for the logic Ly c. As described
in Section 3.1, the resulting logical system can be used to define a constraint-based
grammar formalism.

A Compendium of Model Classes 83

4.3.2 Problems With Eqtree Models

The eqtree models comprise the first class of models for £y ¢ for which the engen-
dered logical system satisfies the appropriateness conditions defined in Chapter 2.
As such, eqgtrees can provide a semantics for the grammar formalism based on £ ¢.

The stronger requirements placed on a logical system to allow for the compu-
tational efficacy of the parsing algorithm described in Chapter 3 do not, however,
inhere in the eqtree class of models. There are two related problems. First, the
models are too large. Section 3.1 requires that the minimal model of an atomic
formula be finite, but the minimal model for, e.g., {f) = () is an eqtree whose first
component is an infinitely large infinite tree and whose second component is an
infinite relation over paths. On the other hand, the model is highly regular in its
structure, a fact that we might take advantage of in representing it finitely. This
leads us to the second problem with eqtrees: there are too many of them. Besides
the nicely behaved eqtrees like the minimal model of (f) = (}, there are also eqtrees
that are both infinite and unstructured. For instance, consider the eqtree satisfying
all equations of the form (f® g) = m,, where @, is the nth digit in the decimal
expansion of 7.

These problems are not unique to eqtrees; they apply to the infinite tree models
as well. We delayed their introduction only because other problems with infinite
trees rendered moot any thought of using them computationally, whereas the success
of eqtrees as a model class for £y, ¢ raises hopes that they might serve as the basis
of a computationally appropriate class of models.

Both problems with eqtrees (and infinite trees as well), their size and numer-
ousness, can be solved with one method: elimination of all but the rational eqtrees.
An eqtree (¢, R) is rational if and only if it contains just a finite number of distinct
sub-eqtrees. As usual, we opt for the strong reading of the term ‘distinct’, that is,
the intensional one. Two subtrees are identical if the paths that address them are
R-equivalent, distinct if they are not. This leads to the following formal definition
of a rational egtree.

Definition 71 An egtree (t, R) is rational if and only if R partztwns dom(t) into
a finite set of equivalence classes.

For example, the minimal model of {f) = () has only one distinct subtree—
itself—and one equivalence class of paths—all paths of the form { f*}—and is there-
fore rational. The minimal model for the formula {{f) = (), (g) = e} has as subtrees
the vestigial tree (e, {(} = ()}} and itself, hence is also rational. The two equivalence
classes of paths are (") and (f™ g). The eqtree based on the decimal expansion of
7, on the other hand; contains distinct eqtrees corresponding to the infinite set of
distinct postfixes of the 7 expansion; it is clearly irrational. :

As we will shortly prove, the minimal models for formulas are all rational eqgtrees,
and, since the basic operations U, /, \, and so forth, all preserve minimal-modelhood
(Lemmas 35, 36, and 37), we can safely retreat to using the rational subset as the

84 Parsing and Type Inference for Natural and Computer Languages

(X0
(0, (09))
(o) (o)

& W

Figure 4.2 Egtree and Corresponding Graph

model class. Furthermore, since the rational eqtrees by definition contain 'on'ly a
finite number of distinct subtrees, we can hope to represent them finitely.

In fact, this observation is the basis of our next and final model class, the graph
models. By reifying the distinct subtrees of an eqiree and representing multiple
instances of the same subtree only once, we can represent any rational eqtree finitely
as a finite graph. For instance, the rational eqtree corresponding to {{f) = (},{g) = '
a} (represented in Figure 4.2(a)) has two distinct subtrees; the corresponding graph
(Figure 4.2(b)) thus has two nodes. In Section 4.4 we describe the graph models
directly and then show their relationship to the eqtrees.

4.3.3 Properties of Rational Eqtrees

Proposition 72 For all & € L1,¢, metm(®) is rational.

Proof: Without loss of generality, we can assume that ® is nonempty. Let
metm(®) = (t, R). We must show that there is only a finite number of R-equivalence
classes. In particular, we show that for any path p € dom(t), p must be in an equiv-
alence class with some prefix of a path in @, of which there are only finitely many.
If p € dom(t), then pRp. By definition of the metm construction, & - p = p. We
must demonstrate that ® I p = ¢ for some g a prefix of a path in ®. We prove this
by induction on the depth of the proof tree for @ F p = p.

The base case occurs when @ F p = p is proved either by the ’I‘nwa.lxty rule:
or because p = p € ®. In the former case, p = () which is the prefix of all paths,
therefore of some path in &. In the latter case, p = p € &, so pis itsel{ 2 path in ®..

For the induction step, we assume that the hypothesis holds for proofs of depth
smaller than » and show it for proofs of depth n by cases depending on the final.
proof step. If the final proof step is Reflexivity or Symmetry, the paths in the.

- A Compendium of Model Classes 85

consequent are exactly those in the antecedent. Since the induction hypothesis
holds for the paths in the antecedent, it holds for those in the consequent. For the
Substitutivity rule, we assume that the hypothesis holds for p, ¢, and p - r, and,
moreover, that @ -+ p = g and ® I p-r = v. By Reflexivity and Substitutivity, we
can conclude that ® F p-7 = g-7. The induction hypothesis givesus @ - p-r = s
for some s a prefix of a path in ®. Using Substitutivity again, we can prove that
@ F g7 = 5. (The length of this latter proof is irrelevant to the argument; the
induction hypothesis is never applied to its antecedents.)

Thus, there are at most as many equivalence classes as there are preﬁxes of
paths in ®. Since this is finite, metm(®) is rational. a

4.4 Graph Models

We arrive at our final class of models for £r, ¢, the graph models. Similar models
have been used implicitly since the earliest implementations of constraint-based
formalisms, and have been proposed as a theoretical basis for feature structures by
Kasper and Rounds (1986), and Shieber and Pereira (Forthcoming).

Feature Frames

We use the notion of feature frame (a kind of rooted directed graph with labeled
arcs) as a precursor to feature graphs with which we can model the formula.s in
Lre-

A feature frame is a triple s = (N, nq, §) where

e N is a set of nodes;
e ng is a distinguished node, the root node;
» ¢4 is a partial function from N x L to N, the next node function.

The terminals of a feature frame s, notated as terminals(s), is the set of nodes
n € N such that §(n, f) is undefined for all f € L.

Furthermore, we introduce notation for traversing feature frames (and, later,
feature graphs). For p = (f; --- fx) a path, and s = {N,no,6) a frame, and n € N,
define n/p to be the node in g given as follows: If k = 0, then »/p = n. Otherwise
n/p = 8(n, f1)/{f2--- f&) if this is defined. We will use the notation s/p to mean
ng/p for ny the root node of s. (Although we use the extraction notation here, we
have still to prove that the operatmn corresponds to the deﬁmtlon of extraction.
See Section 44.1.)

Feature Graphs o .
A feature graph ¢ is a quadruple (N ﬂ.o,6 7r) where

86 Parsing and Type Inference for Natural and Computer Languages

o 5= (N,ng,§) is a feature frame, and

e T is a partial fanction from terminals(s) to C, the labeling function.

Thus, feature graphs are feature frames with certain labeled terminal nodes.
Feature graphs can be regarded—as in the work of Kasper and Rounds (1986)—
as deterministic finite-state automata with final states defined intensionally (i.e.,
states with no outgoing transitions) rather than extensionally, and with a labeling
function on final states.
Given a frame s = (IV, ng, 6) and a [possibly partial] function « : terminals(s) —
C, we will write (s, 7} for the graph (N,no,4, 7).

4.4.1 Feature Graphs as Models for the Feature Logic

Graphs can be used as models for formulas in Lic. :
A gra,ph g = {(N,no,8,7) satisfies (is a model for) an equation p = v (written
g E p=wv)if and only if

o If v is a path p' € Path, then g/p and g/p’ are defined and g/p = g/7’, and

e If v is a constant ¢ € C, then g/p is defined and terminal, and 7(g/p) = c. .

As usual, satisfaction for nonatomic formulas is defined conjunctively; a graph
gk=®ifandonlyifgl=eforalec .

In the following discussion, we omit explicit statements of well-definedness of the
terms in an equation under the convention that writing an equa,tion T =1y 1mphes
that = and ¥ are both defined.

Extraction

We can now prove that the / operator conforms to the definition for the extraction
operator. ’

Proposition 78 M/p = & if and only ifM E () —pl.

Proof: Suppose M/ o E 0. Wlthout Ioss of generahty, we consider only the cases.
where ® is atomic. If ® is of the form ¢ = r, then (M/p)/q = (M/p)/r so M/(p-q) =
M/(p-r)and M k= p-g=p-T. The argument when @ is of the form g = ¢ is similar.

Conversely, if M = prg=p-r, then M/(p-q) = M/(p-r) and (M/p)/q =
(M/p)/r, so M/p = ¢ = 7. Again, the argument when & is of the form ¢ = ¢ is
similar. R o

A Compendium of Model Classes 87

Subsumption Ordering on Graphs

We first define a graph homomorphism m : ¢ — ¢’ from g = (N, ng,§,7) to ¢’
(N',n{, 6, 7") as a function m : N — N’ such that

1. m(no) = ng,
and, for every f € Fand n € N,

2. If §(n, f) is deﬁned then 6’(m(n) f) is deﬁned and m(&(n, f)) = 6’(m(n) f)

and
3. If w(n) is defined, then #'(m(n)) is defined and w(n) = 7'(m(n)).

By a simple induction, if n/p is defined, then so is m{n)/p and m(n/p) = m(n)/p.

A graph g = {N,no,§,7) subsumes a graph g = (N',n}, 8, 7') (written g < ¢)
if and only if there is a graph homomorphism m from g to ¢’. The homomorphism
m is called the witness to the subsumption relationship. :

Graph subsumption as defined here is a preorder, since distinct graphs can
subsume one another. Intuitively, this is because the set of nodes might be different,
while the interrelationships among the nodes given by é and 7 are the same. An
equivalence relation on graphs to remove such artifactual distinctions will allow
us to treat graphs (actually equivalence classes of graphs) as a partial order; this
equivalence relation is the one given by collapsing all graphs that subsume each
other. Furthermore, if we assume that all graphs g = (N, ng, 8, 7) are connected,
in the sense that for all » € N there is a path p such that n = ng/p, then the
equivalence classes constitute the isomorphism classes of graphs.

Proposition 74 If g and g’ are connected and g < g’ and ¢’ < g theng = ¢'.

Proof: It suffices to show that the witnesses of the two subsumption relations are
inverses. That is, if the witnesses to the two subsumption relationships are m and
m', respectively, then we must show that m/(m(n)) = » for all nodes » in g. Now,
for the root node of g, ng, m'(m(ng)) = m'(n)} = no (where nj is the root node
" of g'). By connectedness, any other node » in g is ng/p for some p. Therefore,
m/(m(m) = m(m(no/p)) = m(m(no)/p) = m(n/p) = m(no)/p = nofp = .
Similarly, m(m'(n’)) = n' for all nodes =’ in g". a
In the sequel, we will assume that graphs (but, crucially, not frames) are con-
nected, so that the isomorphism classes on graphs form a partial order.
To demonstrate that the ordering defined here is truly a subsumption ordering,
we prove that it matches the definition of subsumption given in Chapter 2, that is,
that it respects entailment and is upward-closed.

Proposition 75 {subsumption on graphs respects entailment) If whenever
gFE®, =D forall®ec Lo, theng<g'.

88 Parsing and Type Inference for Natural and Computer Languages

Proof: Suppose we have two graphs g = (N, no,6,7) and g’ = (N’, nf, &,7’) such
that whenever g |= &, ¢' £ ® for all ® € £ ¢. Construct the witness m such that
m(g/p) = ¢'/p. Smce ¢ is connected, this function is total on NV. Furthermore,

! /p is deﬁned whenever ¢/p is, since if g/p is defined, then g = p = p; therefore,
¢ = p=pand ¢'/pis defined.

To prove m is a well defined function, we observe that if g/p = g¢/p', then
gEp=p sog = p=7p aswell,and ¢'/p = ¢'/p'. We must demonstrate that m is
a graph homomorphism. First, m(no) = m{g/(}) = ¢'/{) = nj. Second, let n = g¢/p.
If 8(n, f) is defined, then 6(n, f) = g/(p - (f)), so m(8(n, f)} = m{g/(p- (N =

g/ (M= §(g'/p, £) = 8'(m(n), f). Finally, if m(n) = ¢, then n(n) = x(g/p)=c
s0 g |= p = ¢. By assumption, then, ¢’ | p = ¢ and 7'(g'/p) = ﬂ’(m(g/p)) =
#'(m(n)) = ¢. Thus, m provides a witness for the subsumption g < ¢'. O

Proposition 76 (upward closure of subsumption on graphs) Ifg < g', then
whenever g =%, ¢' = ® forall® € L c-

Proof: Assume that we have two graphs ¢ = (N, no, 6,7} and g’ = (NV',n, 8, 7')
such that ¢ < ¢’ by some witness homomorphism m. Further, suppose g = &.
We must show that ¢’ = ®, which we do by cases depending on the form of the
equations in ®. Without loss of generality, we can assume that @ is atomic, since
the case for nonatomic formula.s reduces trivially to that for atomic ones.

If & is of the form p = ¢, then g/p = g/q, so m{g/p) = m(g/q)- By deﬁmtlon
of subsumption, m(ng)/p = m(np)/q as well, so g'/p = g'/gand ¢' Fp = ¢ K
& is of the form p = e, then #(g/p) = c. Again by definition of subsumption,
'(g'/p) = w'(m(no)/p) = #'(m(no/p)) = 7(no/p) =cso g’ F=p=c. o

4.4.2 Eqtrees and Feature Graphs

The close relationship between eqtrees and feature graphs is gwen by the followmg
proposition.

Proposition 77 The egtrees are isomorphic to the isomorphism classes of feature
graphs. :

Proof: The proof is structured as follows. We define two mappings: + from graphs
to eqtrees, and 7 from eqtrees to graphs. Each mapping is total, one-to-one, and
satisfaction-preserving. (The mapping 7 is one-to-one in the sense that it takes
each distinct eqtree onto a graph in a distinct equivalence class of graphs.) Since
the mappings are satisfaction-preserving, 7(¥(7)) satisfies the same formulas as 7.
By categoricity of eqtrees, 7(y(n)) = 7, that is, T is the inverse of 7. Since T is
total, v must be onto, as well as total and one-to-one; 7 is therefore an isomorphism
(with inverse T). '

It merely remains to display the claimed mappings T and y.

Given a feature graph g = (N, ne, 6, 1), let 7(g) = (¢, R}, where

A Compendium of Model Classes 89

i(p)=c if and only if r(g/p) =c
tp)=1 ifand onlyif g/pis defined but =(g/p)is undefined

pRp' if and only if g/p=g/p
We must show that T is a total, one-to-one function with respect to iéomorphism
classes of feature graphs and that T preserves satisfaction, that is, that 7(g) & @ if

and only if g = .

7{g) is a well-formed eqtree: Clearly, { is a well-defined function, for if it were
not, g would be an ill-defined graph. For all paths p, if #(p- (f)}) is defined for some
feature f, then g/(p- (f)) is defined as well and so is g/p. Furthermore, by the
conditions of well-formedness of feature graphs, #{g/p) # ¢ for any ¢ € C. Thus,
i(p) = L; tis prefix-closed. In sum, ¢ is a well-formed tree in 77%.

We must also show that R obeys the constraints on eqtree relations.

The relation R is an equlvalence relation because = is.

If pRp', then g/p = g/p’. Therefore, if n(g/p) is undefined, then {(p) = t(p’) L
and if #(g/p) = ¢, then ¢(p) = t(p') = c. In either case, #(p) = t(p).

If pRp’ and p- (f) € dom(t), then g/p = g/p’ and g/(p- (f)) is defined. By

defnition, ¢/(p- ()) = (9/2)(F) = (9/#)(F) = 9/ (@' - (£))- S0 (p - {FNR(& - ().

Since ? is a well-formed tree and R an appropriate relation, 7(g) is a well-formed
eqiree.

T is total and one-to-one: The function 7 is total by construction. We show
that 7 is one-to-one, that is, if 7(g) = 7(¢') for some ¢’ = (N’,nf, §',7"), then g = ¢'.

Suppose that 7(g) = 7(¢’') = (¢, R). It suffices to show that g < ¢'. By symmetry,
g' < g, whence g = ¢/. Consider the graph homomorphism m : g — g', defined by
m(g/p) = g'/p. (By connectedness, all nodes n are of the form g/p for some p, so
m is total. Also, if g/p is defined, then pRp, so g'/p is defined as well.)

e m is a function: We must show that if g/p = g/p/, then ¢'/p = g’/p If
9/p=g/p, then pRp' and ¢'/p = ¢'[¥'.

o m(no) = np: mno) = m(g/(}) = ¢'/{) = ng.

o For all f €L, n€N,ifé(n,f)is defined, then m(ﬁ(n,f)) = 5’(m(n),f)
Suppose n = g/p. Existence of such a p is guaranteed by connectedness.

Then m(8(n, f)) = m(&(g/p, f)) =m(g/p-{f)) = g'/p (f) = 8(d'/p. f) =
§'(m(n), f)-

e ForallneN, if 7(n) is defined, then w’(m(n)) = w(n) Suppose n = a/p.
Then w(m(n)) = ='(m(g/p)) = ='(¢'/p) = Up) = 7(g/p) = =(n).

Thus, g < ¢' by witness m. As mentioned above, thjs suffices to show that
g = ¢’ and concludes the proof that T is one-to-one.

90 Parsing and Type Inference for Natural and Computer Languages

7 is satisfaction-preserving: By its definition, 7(g) k= ® if and only if g = ®.
For instance, for equations of the form p = ¢, g = p = ¢ if and only if g¢/p = g/¢
if and only if pRq if and only if r(g) = p = ¢. Similar arguments hold for other
formulas.

We now turn to 7, the inverse of 7. Given an eqtree 1 = ({, R}, let ¥{(n) =
(N,ng,6,7), where

o N is the set of R-equivalence classes of paths in dom(t) (the notation [p] being
used for the equivalence class containing p),

e ng is the equivalence class [{}],
o § is exhaustively defined by 6([p], f) = [p- ()] for all p-(f) € dom(t), and
o 7([p]) = ¢if and only if ¢(p) = c.

We must show that 7 is a well-defined function, that the range of 7 contains only
well-formed graphs, and that it is total, one-to-one, and satisfaction-preserving.

v(n) is a well-formed graph: We must show that é and = are well-defined
functions, that the domain of 7 includes only terminals in the graph, and that the
graph is connected.

To show that 6 is a well-defined function, it suffices to demonstrate that if [p] =
[q] (i.e., Rq), then p-(f}Rq-(f) wherever defined. Assume pRgand p-(f} € dom(t)
Then, by definition of eqtree, p- {f}Rq - {f).

Similarly, if pRq, then #(p) = t(g), so that if ¢(p) = ¢, then #(¢) = ¢. Thus, =
is a well-defined function as well. Furthermore, if #(p) = ¢, then ¢ is undefined at
p-{f) for any f € L. Consequently, 6([p], f) is undefined as well, so the domain of
7 includes only terminals in the graph.

Finally, for all nodes [p] in the graph, [p] = [(}]/p, so the graph is connected.

v is total and one-to-one: The function 7 is trivially total by construction. We
show that it is one-to-one, that is, if 7(n) = v(7), then 7 = 5’. For ease of reference,
let n={t,R},and o' = (t’ R'}.

Suppose v(n) = ¥(1'). Because of categoricity (Property 8), it sufﬁces to show
that n < 7/, or equivalently by Definition 13, if 7 = @ then 7’ |= @ for all &.
We need only consider atomic formulas, since the definition of satisfaction reduces
satisfaction of nonatomic formulas to satisfaction of atomic formulas.

If = p = ¢, then pRg and [p] = [g]. Since nodes in () are the equivalence
classes of paths in dom(n), it holds that ¥(7)/p = ¥(n)/g; the same must hold for
any 1somorph1c graph, so v(n)/p = v(n")/¢q. Thus, pR'q and 7' = p = g.

If n = p = c, then #(p) = ¢, so 7(p) = ¢ for 7 the labeling function of v(n). The
labeling function =’ for the isomorphic graph must also obey ﬁ"(p) = ¢; therefore,

#(p)=candq' [=p=e

A Compendium of Model Classes 91

7 is satisfaction-preserving: We must show that = @ if and only if 7(7) = @.

Since satisfaction for nonatomic formulas is defined identically for the two model
~ classes, we need consider only the atomic cases. By definition of satisfaction for
eqtrees 7 = p = ¢ if and only if pRg if and only if [p] = [q] by definition of +.
Since in general [r] = [()]/r = no/r = 7(n)/r, it holds that y(n)/p = v(n)/q, so, by
definition of satisfaction for graphs, v(n) k p = ¢.

For equations of the form p = ¢, 7 |= p = ¢ if and only if ¢(p) = ¢ if and only if
7([p]) = ¢ by definition of v. Replacing [p] with the equivalent v(75)/p as before, we
conclude that #{y(n)/p)=c,soy(n)Ep=c. 0

This theorem allows us to conclude immediately that the equivalence classes of
graphs are at least as good a model class for £ ¢ as the eqtrees. In particular,
we are guaranteed that graph models are logically and denotationally sound and
complete, as well as categorical, and that minimal graph models exist. The minimal
graph model for @ is merely y(metm(®)).

Furthermore, nodes in the graph corresponding to an eqtree correspond to equiv-
alence classes of paths in the eqtree. Thus, if the eqtree is rational, the graph will
be finite. Since 7 and 7 are inverses, we can conclude that the rational egtrees
are isomorphic to equivalence classes of finite graphs. The finite graphs then have
all the semantic advantages of the egtrees, yet all the computational advantages of
being finite.

4.4.3 Computational Properties of Graph Models

To complete the demonstration of the utility of finite graph models, we must demon-
strate that the computational properties stated in Section 3.1 hold. In particular,
we show the following properties:

¢ Finiteness of minimal models of atomic formulas
¢ Finiteness preservation for model operations

¢ Computability of operations

Finiteness of Minimal Graph Models for Formulas -

Since all minimal eqtree models are rational (Propesition 72), all minimal graph
models are finite.

Finiteness is preserved for the model operations because rmmmal modelhood is
preserved (Lemmas 35, 37, and 36).

Computability of Operatxons ._ |

Computing the extraction and em’neddmg operations is quite stra.lghtforward To
extract the subgraph of g at address p, we merely take the subgraph of g rooted
at g/p. More formally stated, given a graph g = (N,ng, §,7), the extraction g/p is

92 Parsing and Type Inference for Natural and Computer Languages

!

h

3

ANA- S of{fie fa)

Figure 4.3 Extraction and Embedding on Feature Graphs

the graph (N, no/p,8,#') where N’ is the subset of N reachable by § from no /v,
& is the subset of §' whose first argument domain is N’ and ' is the corresponding
subset of # with domain N'. :

To embed g under the path p, ‘we add a chain of nodes above the previous root
node of g, and make the topmost one the new root. The embedding g\(f1--- fi}
is the graph (N U {n},...,7,_,},7h,6’,7"), where the n} are k new nodes, &' is an
extension of § that takes &(n!_;, f;) onto n} for 1 < i < k—1and é(n}_,, fk) onto
ng.

Graphical representations of these two procedures appear in Figure 4.3. The
input graph g is so labeled; the output graph of the operation is printed with darker
lines.

Finally, we resolve the question of computing the informational urion of two
models.

4.4.4 Relation of Graph Models to Congruence Closure

Unfortunately, the definition of minimal graphs as y(metm(®)) is not computa-
tionally effective, relying in part on the computation of all consequences of ® (in
the metm construction). In this section we show how a computationally effective
construction can be defined that is consistent with the earlier definition of infor-
mational union (Definition 20). The construction is based on a congruence closure
computation, for which efficient algorithms are known. Thus, this section can be
viewed as a general proof of the correctness of a graph construction algorithm that
computes congruence closure. It is interesting to note that virtually every imple-
mentation of an interpreter for a constraint-based grammar formalism we know of
uses such an algorithm. N :

Given a frame s = {N,ng,6) and a relation R-on N, the congruence closure

A Compendium of Model Classes 93

of R is the least equiva.ience relation = on N containing R such that if u = v,
&(u, f) =1, and é(v, f) = v/, then o' = v'.

Congruence closure can be used to define a notion of informational union of
graphs that, we show, is consistent with Definition 20-—which in turn depends on
the foregoing definition of subsumption.. :

Given graphs g; = (Ny,n1,6;,m) and g2 = {Na, ne,bs,7), we construct the
frame s = (N1 @ Na,n;,6; U &;).1 Here & is disjoint union and the union of the §s
is over that disjoint union domain. This union is a functmn since the two domains
are kept disjoint.

Now form the congruence closure = of R over s, where R is given exhaustively
by ny Rng. Construct the contracted frame

sz = (M1 @ Vo) =, [n1), (51U 62)/ =)

Again, (§;U8,) = is a function, since if §=([m], f) = v, 6=({n], f) = v, and [m] = [n],
then u = v by definition of congruence closure. In addition, the contracted frame is
connected, since the roots of the two unconnected parts of s have been identified.

Under certain conditions stated in the next proposition, it is possible to define
a partial labeling function 7= : terminals(s) — C, defined as follows:

(4.1)

In general, 7= may not be well defined—for instance, if [n] = [m] and my(n) # ma(m).
Furthermore, even if well defined, 7= may not be an appropriate labeling function
for -, as its domain may not be limited to just the terminals.

Finally, define the informational union of g; and g, (written g1 U g2) as follows:

T=([n]) = mi(n) if n € N; and 7;(n) is defined
= T) undefined otherwise

U g = {(s=,m=) if = exists and dom(w;) C terminals(s=)
51192 undefined otherwise _ :

That the operation just defined is in fact informational union is proved in the
next proposition.

Proposition 78 Given graphs ¢1, ¢3, and g, zfg1 < g and g, < g then g1 U gy is
defined and g1 L g2 < g.

We must show first that ¢; u gg is deﬁned
Let g = (N, no, 6, 7) and ¢; = (N;,n;, 6;,m;) fori = 1, 2. Since the gi individually
subsumme g, there must exist witness graph homomorphisms m; : g; — ¢ given by

mi(n;) = no
m,-(&,-(n, f)) = 5(m.—(n),f) foralln e N;, f€ F
Tr;(n) = ﬂ'(m,(n)) forall n € N;

T'he careful reader may have noticed that s is not connected, thus necessitating our weakening
the connectedness requirement on frames.

94 Parsing and Type Inference for Natural and Computer Languages

Consider the frame s = {N; & N2, n1,6; Ubz). Construct the mappingm:s — ¢
such that

m(n) =m;(n) if né€N;
The construction above defines the congruence relation = and the contracted frame

= (N1 @ N2) =, [n1], (61U 62}/ =)

We use the same congruence to define the contracted mapping

~ m=([n]) = m(n) -

To show that mz is a well-defined function, we must prove that if n = 7/, then
m=([n]) = m=([n"]), that is, m(n) = m(n’), or alternatively, that the l\ernel of m
(written ker(m)) contains =. Since = is the least equivalence relation closed under é
such that ny = no, it is sufficient to show that ker(m) is a congruence relation such
that ny ker(m)ng. Clearly, ker(m) is an equivalence relation, since it is the kernel
of a function, and n; ker(m) ny because m(ny) = my(n1) = np = ma(ny) = m(n2).
Assume now that n ker(m)n’ with n € N; and »' € N;. Then, if m((&; U 62)(n, f))
is defined, we can conclude that '

m((61 U §3)(n, f)) mi(6i(m, f))

§(mi(n), f)

§(m(n}, f)

8(m;(n'), f)

mi(6;(n', f))

m{(8 US), £) s

tha,t is, (61U 52)(11 f) ker(m) (61 u 82)(n/, f), and ker(m} is a congruence contaamng
. Thus, m= is a well-defined function.
Continuing the U construction, we must now show that the graph (s=,7=),

where 7= is given by

nu

EI I

re(]) | mi(n) if n € N; and wi(n) is defined
=" = 1 undefined otherwise

is well defined, that is, 7= is a function from the terminals of s=.
We have shown a.bove that if » = n/, then m(n) = m(n'). Assume that n €
dom(w;) and n’ € dom(w;). Then,

e ()

il

mi(n) .
7(mi(n))
w(m(n))
m(m(n'))
m(m;(n'))
m;(n')

=), -

||

i n

A Compendium of Model Classes 95

so 7= is a well-defined function. Now, assume that w=([n]) is defired for some
n € N;, and also that éz([n'], f) is defined for some n € N; such that n = n’.
Then, 7;(n) = 7{mi(n)) = x(m(n)) is defined, as is §;(»’, f), and m;(6;(n’, f)) =
§(m;(n'), f) = é(m(n'), f). Since m(n) = m(n'), both n(m(n)) and é§(m(n), f) are
defined, contradicting the well-formedness of the graph g. By contradiction, 7=
must take its domain in terminals(s). In sum, g; U go is a well-defined graph.

We demonstrate further that g3 U g2 < g, by using m< as a witness to the
subsumption relationship.

The mapping m= : g U g2 — g obeys the following conditions:

m=([n1]) = mi(n1) = no

m=((61U 62)/ = ([n], f)) =([(61 U 83)(n, f)])

m{(81 U 82)(n, f))

m(6,-(n,f)) ifn € N;
= my(6i(n, f)) ifn € N;
= 6(m,-(n),f) _ ifneNN;
= &m(n), f)

m(m=([n])) = w(m(n))
w(mi(n)) ifneN;
mi(n) ifne N

Thus, m= is a witness of the subsumption gLl ¢’ < g". a

We can conclude from this proposition that the presented L construction based
on congruence closure actually computes the information union of two feature
graphs.

mu nu

5

Parsing as Type Inference

Finally, we turn to a more speculaiive topic: the relation betweéen these
techniques and those devised for characterizing computer languages. In
so doing, we attempt to bring out more clearly the similarities and dif-
ferences between the two classes of languages.

As a concrete example of the techniques described in Chapters 2 and 3,
and as an application of those techniques to both natural and computer
languages, we define a more ezpressive logic than L1 ¢, eztending the
equational constraints of L, ¢ to encompass inequations; we provide a
class of models for the logic and algorithms for computing with the mod-
els on the basis of the foundations built up in Chapter 4. The ezistence
of the logic and its model structure with appropriate properties immedi-
ately gives rise to algorithms for interpreting grammars in the formalisin
constructed around the logic. This chapter discusses the connections to
computer languages and the inequality logic. '

Constraint-based grammat formalisms have been proposed separately in linguis-
tics, computational linguistics, and artificial-intelligence research as alternatives to
previous formalisms in use in the respective areas, but independently of work in
the active field of computer language specification. Yet natural languages (NL) and
computer languages (CL) share a reliance on well-formedness conditions that, one
might hope, would facilitate a concomitant sharing of tools and technology.

In this chapter, we discuss a view alluded to previously in Section 2.4 under
which the methods for describing well-formedness conditions for natural languages
and computer languages can be unified, so that the study of natural-language gram-
mar formalisms might benefit from existing results for computer languages, and
vice versa, and so that the similarities and differences between the two classes of
languages can be more accurately pinpointed. In particular, the informational con-
straints of the comstraint-based grammar formalisms can be viewed as filling the
role of typing rules for a programming language. Consequently, we refer to this
unifying analogy under the rubric parsing as type inference, using the term ‘type

97

98 Parsing and Type Inference for Natural and Computer Languages

inference’ in its sense from computer science type theory—the inference of a type or
types for an expression according to explicit rules in a deductive calculus of types.
According to this view, the notions of category from linguistic theory (LT) and type
from computer science (CS) are identified.

Such a rapprochement of the fields of computer and natural language description
would have several benefits:

o It would provide another mathematical foundation to current practice in lin-
guistics and computational linguistics.

¢ It would allow the use of insights from type theory in extending linguistic
formalisms.

o It would make possible the application of current techniques in computational
linguistics to increase the flexibility of computer languages.

o It would permit a fairer and more accurate comparison of well-formedness
issues that arise in the two classes of languages.

Each of these benefits will be seen, to a greater or lesser extent, in the following
sections. We start (in Section 5.1) by examining traditional wisdom as to the differ-
ences between NL and CL structure, and argue that the analogy of parsing as type
inference provides the basis for a fairer analysis, The next section describes some
less often noted distinctions between the two classes of languages that the analogy
highlights and, as a digression, proposes an application to CL design. Section 5.3
describes in more detail the topic introduced in Section 2.4—the use of constraint-
based techniques for describing CL well-formedness conditions, including typing
constraints. This application will reveal insufficiencies in the purely equational sys-
tem based on Lr ¢ for the purposes of describing CLs, and, surprisingly, NLs as
well; two extensions to L, ¢ will be motivated thereby. One of these, the addition
of inequalities, will serve as the topic of Section 5.4, which develops an extended
logic £I<3,c following the techniques of previous chapters. A discussion of models for

[lE'C.occupies Section 5.5.

5.1 Na't'u.fal and Computer L'anguages |

A proposal to unify the techniques for specifying the structures of computer and nat-
ural languages may seem surprising. The inclination at first blush is to believe that.
the structural similarity of the two kinds of language is minimal. In support of this
view, note that the fields of natural-language parsing and programming-language
parsing have been viewed as exhibiting different properties and requirements. For
instance, it is commonly held that

Parsing as Type Inference 99

¢ Programming languages require only coarse-grained distinctions among types
of expressions (e.g., nonterminals in a BNF grammar) whereas linguistic the-
ories postulate vast numbers of such expression categories, and

¢ Natural languages are fraught with ambiguity, whereas programming lan-
guages can be designed to be completely unambiguous.

Such comparisons can be misleading however. Because the fields of
programming-language and natural-language processing have diverged, there is a
danger that putative comparisons between the two may not actually cover compa-
rable areas. In particular, much of the difference at this level of detail (and, as we
will see, at a much finer grain) may be epiphenomena stemming from a difference
in terminology, especially a distinction between what is referred to as “syntax” in
the two fields versus the actual techniques for describing well-formedness.

Traditionally, computer language designers have described the “syntax™ of their
languages by means of simple context-free grammars or their equivalents. Such a
description does not, however, exhaust what might be regarded as well-formedness
conditions on computer language expressions. In recent years programming lan-
guages have increasongly incorporated the idea of {ypes and type constraints into
their well-formedness conditions. That is, certain expressions are well typed, and
thus well formed; other “syntactically allowed” expressions are ill typed, hence ill
formed. Computer-language well-formedness is thus typically described in two tiers
of description: syntax proper and typing constraints.

As seen in previous chapters, natural languages are typically described by gram-
matical formalisms from linguistic theory that are much richer and more expressive
in their descriptive apparatus than context-free grammars; indeed, they perform
the same work as the context-free and typing constraints on computer languages
combined. Thus, a comparison of the two fields of language processing on the ba-
sis of what they respectively consider “syntax” or “parsing” is inherently prone to
confusion. Figure 5.1 highlights the terminological situation.

Looking again at the two distinctions cited above from this new perspectwe, the
mismatch between the fields seems less prominent. First, type theory in computer
science enables quite fine-grained distinctions to be made among the expressions
in a language. It admits means of associating structured information—types—with
expressions, in a way remarkably reminiscent of that used in linguistic grammatical
formalisms. Thus the mismatch in the granularity of expression types all but van-
ishes if we view the task of typing in computer science as paralleling the notion of
grammaticality in linguistics. Indeed, our claim extends further; the actual type-
structuring mechanisms postulated in computer science are of direct relevance to
linguistic theory.

1The fact that typing constraints are often referred to as “static seniintics does not deny th.eir role
in defining well-formedness. It does, however, provide evidence of the dwergence in termmology
in the two fields. : :

100 Parsing and Type Inference for Natural and Computer Languages

LT terminology Concept CS terminology

, Coarse-grained
distributional Syntax
properties)
Syntax
Fine-grained
typing
| constraints o S.em.a,ntics.'

Semantics Denotation

| Figure 5.1 Well-formedness terminology in CS and LT

Second, the difference in ambiguity between the language classes may in some
cases be more superficial than actual. The nonambiguity of programming languages’
is to a great extent a consequence of the two-tier method of defining well-formedness.
Ambiguity at the first level is minimized by fiat. When ambiguity does arise (as’
with dangling elses), ad hoc rules are typically introduced to choose a structuring
before types are inferred, so that the ambiguity does not extend into the second tier.
Finally, local ambiguity at the type level (overloading, multiple typings, polymor-
phic type schemas, and the like) is generally not considered in informal statements
of the “nonambiguity of programming-language synta.x Again the difference is
terminological. .

Thus, these apparent structural differences between computer~ and natural-
languages lessen when perceived from this vantage on what constitutes well-
formedness in the fields. In computer languages, well-typing is not considered as
being a part of “syntax in the small”, whereas in natural languages, current linguis-
tic theories make the fine-grained “well-typing” the critical factor. If we normalize
for this distinction; that is, if we view the two tiers of computer language descrip-
tion as parallel to the single tier of well-formedness constraints postulated in formal
syntactic theories, the superficial differences in the two problems become less promi-
nent. Instead, we are left with a metaphor for parsing in general that allows useful
insights into both linguistic theory and computer language design.

Indeed, not only do certain of the differences between the well-formedness prop-
erties of the two classes of language appear diminished, but under this view, a rich
set of commonalities can be mapped. As alluded to in Section 2.4, the properties
of structure, partiality, and primacy of equational constraints arise in the infor-
mation associated with computer-language expressions, the types, as well as the
grammatical information presupposed in linguistic work. For instance, consider the

Parsing as Type Inference 101

type of the polymorphic identity function @« — «. This type exhibits structure in
that it includes specifications for the component types of the function’s argument
and result. Polymorphism introduces a partiality into the description: the type is
less constrained than the integer identity function INT — INT'; expressions of the
polymorphic type therefore participate in more grammatical constructions than do
expressions of the more specific type. Finally, constraints on types are expressed as
identities of subtypes; in the example, a shared variable notation is used to constrain
the types of the argument and result to be identical. Similarly, type inference rules
use logical variables (implicit equations) in stating typing constriants.

Just as unification of graphs is used to solve sets of equational constraints that
arise in the course of parsing, yielding a minimal model for the equations, unification
can serve as the basic technique for type inference by using it to build the most
general typing for an expression, as first proposed by Hindley (1969).

There are, of course, fundamental differences between computer and natural
languages, stemming from their disparate functions and their quite distinct genetic
processes. These differences include important issues of determinacy and preci-
sion of meaning, degree of context dependence, and other semantic and pragmatic
factors. The previous discussion notwithstanding, the differences even impinge on
the well-formedness conditions for the two language classes; much of linguistics is
predicated on a somewhat artificial distinction between grammatical and ungram-
matical strings, a distinction that is perfectly felicitous for programming languages,
as anyone knows who has waded through long lists of compiler- -generated syntax
errors, the ephemeral progeny of the maddening ngldness of programming-language
syntax. It should be clear that we are not claiming that natural and computer lan-
guages are uniformly similar in all areas. Rather, we argue that the differences that
do exist—specifically with respect to well-formedness conditions—may not reside
in the places traditionally thought of, and that a view of natural-language syntax
as analogous to typing constraints for computer languages elucidates both the sim-
iliarities and the differences. One important difference identified in this way is the
topic of the next section.

5.2 A Difference in the Semantics of Type-Inference
Systems

Traditionally, the semantics for type theories have assigned types a denotation that
is the set of all values of that type. Under this conception, value expressions denote
values and type expressions denote sets of values. In a correct type-inference system
for the language, a typing (composed of a value expressior and. a type expression)
can be inferred just in case the denotation of the value expressmn isa member of
the denotation of the type expression.

Type information in a type system wzth this sort of correctness property
necessarily conflates information about two independent properties of an expres-

102 Parsing and Type Inference for Natural and Computer Languages

sion: its denotation—the value specified by the expression of that type—and its
distribution—the grammatical context in which it can occur. Because computer
languages can be carefully constructed so as to exhibit maximal orthogonality of
constructs, it is typically unnecessary to limit the contexts in which an expression
can occur as long as it is semantically meaningful to allow it. Therefore, in computer
languages, the type information governing distribution is completely characterized
by that governing denotation, and a semantics for types in terms of semantic do-
mains (i.e., in terms of denotational properties) is felicitous.?

Such an approach seems inappropriate for natural languages, however, because,
in contrast to programming languages, the permissible combinatorial arrangements
of expressions are only partially, if at all, governed by properties of what is most
naturally considered the appropriate semantic domain of the expressions, that is,
something corresponding to semantic content. This statement is merely a weak a.nd
nondogmatic version of the thesis of autonomy of syntax; it states that syntax is not
completely supervenient upon semantics.® Thus in NL there is far more informa,tioﬁ_
in a type expression than could reasonably be expected to impinge on a semantic
value.

Instead, a more natural view of semantics for NL type expressions is a [partial]
description of the distributional properties of a particular value. Such a set of
properties, of course, has an extension. Thus, one can say of certain values that
they belong to a given type or not. But, in the case of NLs, the values will be
associated to value expressions only indirectly through the typing mechanism, so
that this phase can be seen to contribute nothing of real interest at this conceptual
level. (We have seen how it can contribute at the implementation stage, however.)
Thus although the parsing as type inference analogy is quite robust in both NLs
and CLs, important differences between the two remain. One ramification of this
observation is that the notion of correctness of a typing, which is implicit in the
conflation of distributional and denotational information in a type system, lacks the
independent justification in NLs that it enjoys in CLs.

20f course, this is a gross simplification. Until recently, explicit examination of programming-
language semantics was a post hoc phenomenon, and so such considerations were not taken into
account in langnage design. Furthermore, implementation issues can cause designers to override
the elegance of orthogonality of constructs. Since these gratuitous distributional distinctions are
small in number, they can typically be hidden in the first tier of well-formedness description..

3Even linguistic methodologies that do try to draw a strong relationship between denotation
and distribution—categorial grammars being the foremost example—are forced to use diacritics
(multiple slashes, subscripts, side conditions on application, and so forth) to limit the overgener-
ation of the system. The prevalence of such diacritics provides a good yardstick of the “distance”
between denotational and distributional properties of natural-language expressions, at least at
our current level of linguistic knowledge.

Parsing as Type Inference 103

A Digression . .

We have argued above that natural-language descriptions can be seen as conflat-
ing the CL notions of parsing and type inference in a single specification. Such a
conflation might in certain cases have benefits for CL specification as well. For in-
stance, expressions that are ambiguous according to a simple context-free grammar
but disambiguated by typing are, under current methods, disambiguated without
recourse to their typing information, thereby leading to anomolous behavior. For
instance, in a language with an infix syntax for conditionals (like C), one of the two
expressions '

| ESy-ﬁZ;.y
and

z < positive(y) — y;—y

would be deemed ungrammatical, although typing completely disambiguates both.
Under the intuitive [well-typed] disambiguation, the first expression computes the
minimum of 2 and ¥, while the second determines whether 2 is less than or equal
to |yl

Thus, the use of the two-tiered model of well-formedness, a reflection of the
separation of parsing and type inference in computer languages, results in anomolous
behavior that can be easily prevented by adopting the view of parsing as type
inference for computer languages as well. Such a move, which seems in keeping
with the philosophy behind the use of strong typing, has at least anecdotal evidence
supporting its utility.

An objection to the conflation of parsing and type inference in computer lan-
guages, however, is that the efficiency of context-free—especially unambiguous
context-free—parsing would be lost. This problem has been addressed to a ceriain
extent in the computational linguistic work in this area, and methods have been
devised for the efficient parsing of constraint-based formalisms. Of special interest
is the use of LR-like techniques in linguistics to model psycholinguistic phenomena
(Shieber, 1983). It was shown that in cases in which other linguistic constraints fail
to disambiguate, a simple LR disambiguation strategy mimics exactly the types of
parsing preferences humans have been shown to exhibit. It is presumably no coin-
cidence that these disambiguation techniques are similar to those found in parsing
solutions to the dangling-else and other computer language parsing problems. The
ability to view parsing as type inference opens up the possiblity of efficient algo-
rithms for parsing computer languages that resort to such ad hoc disambiguation
techniques only if typing constraints fail to disambiguate, as seems to be appropriate
for natural languages.?

*Recall that Section 3.6.3 describes how shift-reduce parsin.g—inclnding the LR disambiguation
method (Shieber, 1983)—can be modeled with the abstract algorithm of Chapter 3.

104 Parsing and Type Inference for Natural and Computer Languages

5.3 Using Constraint Formalisms for Computer Lan-
guages

Presently, type inference algorithms for computer languages are described on a
language-by-language basis by explicit procedural description or specialized infer-
ence rules. The availability of simple mechanisms for grammar formalisms that
can describe types directly—a byproduct of research in computational linguistics—
. opens the possibility that these mechanisms could serve as tools for declaratively
describing type inference algorithms for a variety of computer languages in a uni-
form manner, and with immediate implementations available. In this section, we
pursue the possibility of using constraint-based techniques for computer languages,
but first turn to the modeling of categorial grammars as an initial step toward
applicative languages.

Constraint-based Categorial Grammars

Currently, a style of analysis based on categorial grammar has become influential in
the constraint-based grammar formalism community. By adding the structuring and
partiality of constraint formalisms to simple categorial rules, many of the difficul-
ties of using categorial grammars for natural languages can be overcome (Uszkoreit,
1986; Karttunen, 1986; Zeevat, 1988). We will demonstrate how a classical catego-
rial grammar can be embedded in a constraint formalism as an intermediate step
toward using the formalism for computer-language type inference. The formalism
will be based on Lrc.

The categorial grammar will have two rules corresponding to forwa,rd and ba,ck
ward application.’

R - FA4
(F type constr) = mghtfunctor
(F type result) = (R)
(F type arg) = (A)

R~ AF
{F type constr) = leftfunctor . .
(F type result) = (R)
(F type arg) = (4)

The first rule allows combination of a functor and its 'a,fg'umé'nt to the right just in
case the functor is one that takes its argument to the right. The rule is a direct

5In the grammar rules in the remainder of this text, we will use a rule notation in which the
small integers in constraints are replaced by the “names” of the corresponding constituents; thus
(F type arg) = (A) will be written, rather than (1 type arg) = {2). The modification can be
viewed purely as syntactic sugar for readability. _

Parsing as Type Inference 105

encoding of the standard categorial rule of forward application:®
R—-R/AA ,

where the forward slash (/) corresponds to a nghtward functor. Simiiarly, the
second rule encodes

R— AR\A

Here the backward slash (\) corresponds to a leftward functor.

Lexical entries for proper nouns or plural common nouns (type NP) and transi-
tive verbs (type (S\INP)/NP) can also be encoded.

A — ‘Nature’
{A type constr) = np .
(A type agr num) = singular
(A type agr per) = third -

A — ‘vacuums’
(A type constr) = np
(A type agr num) = plural
(4 type agr per) = third

F — ‘abhors’
(F type consir) = rightfunctor
(F type result constr) = leftfunctor
(F type result consir result constr) = s
(F type result constr arg constr) = np
(F type result constr arg agr num) = singular
(F type result constr arg agr per) = third
{F type arg constr) = np

F — ‘abhorred’
(F type constr} = rightfunctor
(F type result constr) = lefifunctor
(F type result constr result constr) = s
(F type result constr arg constr) = np
(F type arg constr) = np

The reader can verify that parsing according to this grammar involves confirming
that the types of the functors match (in the appropriate sense of model existence)
their arguments to the left or right as specified lexically. For instance, the string
‘Nature abhors vacuums’ is admitted, but ‘vacuums abhors Nature’ is not, as the
phrase ‘abhors Nature’ is a functor taking a singular NP to the left. The inferred
type for the phrase ‘Nature abhors vacuums’ is 5, as expected.

SWe will use the Steedman rather than the Lambek conventions for slash notation.

106 Parsing and Type Inference for Natural and Compuler Languages

A Simple Applicative Language

Modifying the grammar above to perform type inference for a simple applicative
programming language is straightforward. Let us assume that all operators in the
language are unary and prefix. In this case, only a forward application rule is needed.
We will assume that arguments are always parenthesized, so as to eliminate a source
of local ambiguity.

R = F (A)
(F type constr) = function
(F type arg) = (A type)
(F type result) = (R type)
(F env) = (A env)
(A env) = (R env)

This rule is just the forward application rule above, but with no need to distin-
guish leftward versus rightward functors, and with an extra feature env for keeping
track of the environment—the mapping from symbols to their types. The final two
equations in this rule state that the environments within which the functor and the
argument are interpreted are the same, and are identical to the environment for the
whole expression. Another way to view this rule is as the direct encoding of the
more traditional type inference rule

Erf:A—-R Ela:A
EtF fla): R

Environments will be encoded as follows: if a symbol s is mapped to a given
type encoded as ¢, the environment e will obey e/{s) = t. For instance, the following
environment encodes the typings id : @ — « and + : INT — INT — INT.

int int

This environment could well serve as the start structure of the grammar. :: _
For any identifier, its type is just that given by the environment. We can have’
a single schematic lexical entry for all identifiers w.

Parsing as Type Inference 107

A = w
(A envw) = (A type)

Similarly, for all integers ¢ a schematic entry will suffice. .

LA - _
(A type constr) = int

What we have done is merely to state the constraints on types and environments
for a simple applicative language. (The whole grammar can be seen in Figure 2.3.)
The general definition of a grammar’s language, as defined in Section 3.2, determines
a relation between strings and their associated types and binding environments.
For instance, the string ‘7d(+(3)(¢d(2)))’ is typed as an INT. As a side effect, this
grammar/type system can be utilized directly for type inference by the algorithm
of Chapter 3, since £y, ¢, the constraint logic on which it is based, has been shown
(in Chapter 4) to satisfy the requisite properties.

5.3.1 Problematic Cases

There are two computer-language phenomena that serve as problematic cases for
describing computer-language type inference with the constraint-based techniques
introduced so far: binding of variables and generic usage of functions. We will de-
scribe both problems here, as well as their relation to problems in natural-language
specification, but will develop a full solution only to the second of the problems.

Variable Binding

The first problematic case involves the source of the environment. The environment
itself should be specified through object langnage expressions. In extending the
object language with such a construct, say, a ‘let...in..." construct, an extension
of the equational constraints of £f, ¢ will be needed. We might consider adding the
following rule:

EF - et’w ‘=D B
(E env) = (D env) .
(E type) = (B type)
(E env) = (B env)
(B env w) = (D type)

This: would admit the string ‘let z = 3 in id(z)’ to be typed as an INT, as
expected. As a side effect, however, the environment of the entire expression, not
only that of the body, has the identifier £ bound as type INT. Thus, the expression
‘let z = id in let z = 3 in id(z)’ would be deemed ill-typed, as the environment
would require z to be typed both as an INT and as a ~+ «. What is needed is
a way of expressing the fact that the environment of the body is identical to the

108 Parsing and Type Inference for Natural and Computer Languages

environment of the entire expression ezcept that the identifier is bound to the type
of the definiens. We introduce a new type of constraint to the constraint logic for
that purpose. The predicate symbol bind taking four arguments will be used as
follows: bind(p, f,q,r) holds if r is the environment that maps every symbol the
same as the environment p does, except that f is mapped to g. The following rules
of inference capture this informal characterization:

Binding 1: bind(p, J;’ qz;‘; ;ps' lg) =s where f # g

. s bind(p, f,q,7)
Binding 2: ———=1Al2
& T {f)=4q

The corrected rule for variable biﬁding is thus

E — let’w ‘="D ‘i’ B
(E env) = (D env)
(E type) = (B type) _
bind({E env),w, (D type),{B env))

With this rule, the string ‘let z = id in let = = 3 in id(z)’ would be typed as
an integer, as expected. A version of the let construct for functions is also easily
defined.

E - fet’wy (wy) ‘'="D i’ B
bind({E env),ws, (wy type), (D env))
(E type) = (B type)
(w1 type constr) = function
(wy type result) = (D type)
(w1 type argument) = (wg type)
bind({E env),wy, (w1 type), (B env))

This rule allows the typings, for example,

let f(z) = id(z) in f(3): INT .
let f= 3 inlet f(z) = +(3)(f) in f(2): INT
let z(y) = id(y) in let f(z) = +(3)(z) in z(f(3)) : INT

The potential applications for a constraint logic with the bind relation for
natural-language description are numerous. The construct is a declarative coun-
terpart to the grossly procedural overwriting operation that has been added to the
paTR formalism (Shieber, 1985b), and could well replace that construct in its several.
uses. S _ - . :

We will not devote further attention to the details of proving the requisite prop-
erties of such a logic, preferring instead to move on to exploring a more interesting
extension in fuller detail.

Parsing as Type Inference 109

Generic Usage of Functions and Subsumption

The second of the stumbling blocks in the way of using extant constraint-based
formalisms for this purpose is a particular construct in polymorphic computer lan-
guages such as ML, which permit declaration of a polymorphic function and sub-
sequent use in mutually incompatible but separately consistent applications. In the
case of ML, any function defined through the ‘let...in...° construct can be em-
ployed in this way. Consider, for example, the program fragment ‘let f(z) = =
in f(f)(3). Here f of polymorphic type &« — o has been used separately as &
function (INT — INT) — (INT —— INT) and INT — INT, each of which is
consistent with the defined type, but which are mutually incompatible. The entire
expression, of course, is well typed as an INT and evaluates to 3.

Using simple equations to describe type information from the three occurrences
of the function is clearly too restrictive. Intuitively, we want to require only that
the types associated with the uses of the function are individually subsumed by
(rather than being identical to) the type associated with the function definition.
The addition of inequations to L1 ¢ would allow statement of the required rule.
Uses of identifiers would be admitted by the schematic lexical rule

A - w
{A envw) < (A4 type) ,

requiring that the type of the use be more instantiated than the type given by the
identifier’s definition.

Adding subsumption to, say, L1 ¢ as a new type constraint (in addition to
identity) turns out to be a relatively straightforward task, which we will take up in
Section 5.4. However, this simple addition would allow for a precise statement of
this aspect of ML type inference and parsing in a simple constraint grammar, and,
by virtue of the results of Chapter 3, immediate implementation in a type inference
system.

The addition of subsumpt;on to constraint-based formalisms has application
in natural language as well. The syntactic behavior of coordinate structures in
English shows a phenomenon remarkably similar to that described for ML above.
In considering coordinate structures we need to determine the syntactic properties of
the whole in terms of the syntax of the parts. A naive view might be that identity of
all the subconstituents with the constituent as a whole is required. Thus, given the
requirement that the verb ‘hire’ requires an NP argument, but not an AP (adjective
phrase) or S (sentential complement), we would predict immediately the following
grammaticality distributions:

(1) Pat hired {yp a Republica.n]. and [yp a banker].
(2) * Pat hired [yp 2 Republican] and [4p proud of it].
(3) * Pat hired [yp a Republican] and [pp at the office].

110 Parsing and Type Inference for Natural and Computer Languages

and so forth. . : _ L
However, certain verbs in English are less selective of their arguments than ‘hire’.
The verb ‘become’ for instance allows either NP or AP arguments. Similarly, the
verb ‘be’ allows NP, AP, PP, and VP complements. The identity view of conjunction
would then allow an argument to ‘become’ to be either coordinated NPs or APs but
not intermixed coordinate structures. Yet such intermixed structures are in fact
grammatical:” . '

(4) Pat has become [yp a banker] and [4p very conservative).
(5) Patis|npa Republican] and [4p proﬁd of it].

(6) Patis ei.ther [4p stupid] or [vp aliar].

(7) Patis [4p healthy] and [pp of sound mind].

(8.) That was [yp a rude remark] and [pp in very bad taste]. |

The phenomenon seems guite widespread; similar cases have been described for
German (Zaenen and Karttunen, 1984), French (Pullum and Zwicky, 1986), Hun-
garian (Macken, 1986), Malayalam (Henniss, 1988), Polish (Dyta, 1984), and other
languages.

Previous attempts to relax the identity constraint used the dual of unification,
generalization (Pereira and Shieber, 1984) possibly together with various other de-
vices (Sag et al., 1985; Kaplan and Maxwell, 1988). Generalization alone tended to
be too permissive; augmented systems have not always been rigorously formulated
(although the system of Sag et al. (1985) is an exception) and have tended to be
cumbersome. Karttunen (1984) alludes to the difficulty of finding 2 nice formal
solution to the problem when he states that “the only obvious alternative is to say
that the merge of ‘Dozenten’ with ‘des’ and ‘der’ is done using two identical copies
of the noun features. It works techmically but it raises many unsettling general
questions about unification.”

In fact, what seems to be required is the direct analogue of the ML solu-
tion, namely, that the subconstituents’ types are subsumed by the coordinate con-
stituent’s type (at least for a certain subset of the syntactic information, including
part of speech). The following coordination rule is intended to give a flavor for the
proposal. -

E ~ CConjD .
(E) £(C)
(E) £(D}

Under the standard X decomposition of categories, in which the categories NP, AP,
VP, and PP and the subcategorization requirements for ‘to be’ and “to become’

"The source of the following examples is Sag et al. (1985).

Parsing as Type Inference 111

+ - 2 4+ 4+ 2 - 1+ 2

213
NP AP VP PP
o N\
2 + 2
‘to be’ ‘to become’

Pigure 5.2 X Decomposition of Categories

are as depicted in Figure 5.2, the appropriate subsumption relations would hold,
allowing the phrases given above. Thus, an extension of this view of language
characterization has application to both natural and computer languages.

5.4 Extending £; ¢ with Subsumption Constraints

We now turn to a full consideration of adding constraints of inequality, correspond-
ing to subsumption relations in the model. Augmenting £y ¢ to allow inequations
as well as equations is surprisingly simple. We introduce a new relation < into the
logic obeying the following additional inference rules.

Triviality:
(=<0
fl v<p-g p-g<r
Reflexivity:
V' Tp<p p2p
s < n »<a.
Substitutivity: 2=2 p r<s gZfp v<g-r
g-r<s vEp-T

Finally, we define equality as mutual inequality.®

pLq g<p c<p
P=q c=p

Equality:

8The double line is conventionally used to abbreviate several inference rules, one concluding the
bottom formula from the top and one each concluding the top formulas from the bottom.

112 Parsing and Type Inference for Natural and Computer Languages

The two new reflexivity rules exhaustively instantiate the Reflexivity schema of
Section 2.7.1. Furthermore, the appropriate instances of Substitutivity follow from

the rules above as well. For example, the instance

can be derived as

and the instance

can be derived as

Similarly, the Triviality, Symmetry, Reflexivity, and Subsfitutivity rules for = also

g=p pr=s
g-r<s

g=2

g<p p:rEs
g-r<s

v<p-r
g=p
g<p vEq-T.
vE<pr

follow from the rules for < plus Equality.

Triviality:

Symmetry:

Reflexivity:

Substitutivity:

P=q p=4q
pfqg ¢<p
¢=p
pg=v
v<p-q
p<p.
p=p
g=p p-r=s pr=s g=
¢<p pr<s s<p-r p<
g-r<s s<Lq-r

Parsing as Type Inference 113

pr=c g=p
celp-r p<yq
c<g-r

g-r==c

~ In summary, the rules for < (including Equality) provide a complete basis for
a logic with both <€ and =. In fact, if we regard equations as being merely ab-
breviatory forms for inequations, we can remove =, and the Equality rule, from
the logic completely. In this case, the clash rules defining inconsistency of formulas
would need to be revised so that equations were translated into the corresponding
inequations they abbreviate. :

Constant clash: ¢ <pand b<p (where a # b)

Constant/compound clash: a < p and either v < p- (f) orp-{f)<gq

We will call this logic JCE,C. To summarize, the inference rules for EIJ;C are-.

Triviality:
(<0
it v<p-g p-g&r
Reflexivity:
Y pEp p<p
Substitutivity: =p p r<s ¢g<p v<q-r .
g-T7<s vEp-r

The close relationship of LE'C to Lr,c should be apparent. The former merely
drops the Symmetry rule and, as a consequence, reverts to the multiple instances of
the Reflexivity and Substituvity schemas that Symmetry made redundant for £ ¢.
This accords with the intuition that the distinction between an equivalence relation
(=) and a pa,rtial ordering (<) is symmetry.

5.5 Models for LLC

FoIlowmg the evolutxona,ry path pursued in developmg models for Lrcin Chapter 4,
we can immediately expect that tree models for EE,C will suffer from the same lack
of a distinction between intensional and extensional constraint satisfaction as was
problematic for £y ¢. Nonetheless, certain properties of the tree models will be
useful later, as trees will form one component of a more comprehensive model class,’
the potrees, wiiich play the role that the eqtrees played with respect to Ly, c.

114 Parsing and Type Inference for Natural and Computer Languages

5.5.1 Infinite Tree Models

The natural method for using trees as models of L3 i.c would define satisfaction as
follows: A tree ¢ satisfies the equation ¢ < p if and only if #/p is defined and t/p = c.
A tree satisfies the equation p < ¢ if and only if ¢/p and t/q are both defined and
t/p < t/q. (Here < is the natural tree subsumption ordering defined in Section 4.1.)

As-was the case for L1 ¢, this definition fails to distinguish intensional from
extensional satisfaction of inequalities. However, the properties of logical and deno-
tational soundness, as well as denotational completeness do hold of the infinite-tree
models as models for the logic with inequations.

Proposition 79 (logical soundness of infinite trees for Eic) For all & €
L3, if@F ¢, then @ = .

Proof: The proof is similar to that for Proposition 60. We must verify that if
t € Tf% is a model for @, then it is a model for ¢ as well. The proof is by induction
on the size of the proof tree for ® - ¢. The base case occurs where ® |- ¢, either by
Triviality or because ¢ F ®. Clearly, if ¢ € ® and t = &, then ¢ = ¢ by definition
of satisfaction. For Triviality, if ¢ = () < (), then ¢ |E ¢ since ¢/() = ¢ = t/() for all
1.

The induction step requires that we demonstrate that the other rules of inference -
preserve modeling. For the Reflexivity rules, assume that @ - v < p-g. By the
induction hypothesis, t |z v < p-gq, that is, t/v < t/(p-q) (or, t/(p-q) = v, depending
on whether v € Path or v € C, respectively). In either case, t/p is defined. Since.
t/p = t/p if defined, t = p < p. The second Reflexivity rule follows similarly. For
Substitutivity, we assume that ® - p < gand & v < p-r, giving us ¢ Ep<g
and 1 k= v < p-r by the induction hypothesis. So t/p < t/g and t/v < t/(p-7)
(respectively v = t/(p-r)). Now t/(p-7) = (t/p)/r = (t/q)/r = t/(q - 7). Thus, we
have t/v < t/(g-7) (respectively v = ¢/(g-7)). In either case, we can conclude that
tEv<g-r. o

Proposition 80 (denotational soundness of infinite trees for ﬁ% o) For all
®c LE ¢ if there is a t € TP such that t = ®, then @ is consisient.

Proof: Suppose t = ® and @ is inconsistent. Then there are atomic formula.s]
and ¢’ that clash and are entailed by . By Proposition 79, t is a model for both
¢ and ¢'. Now, the clash can be either a constant clash or a constant/compound-
clash. In the former case, ¢ is of the form a < p and ¢’ is b < p and e # b. Thus,
#(p) = a and #(p) = b, contradicting the functionality of ¢. In the latter case, ¢ is
a <pand ¢ is either v € p- () or p- (f) €g¢. Then t(p) = a and (p) = L (by the
restriction on labeling interior nodes), again contradicting the functionality of ¢. O

Proposition 81 (deﬁotationa} completeness of infinite trees for EE’C) For
all® € EE',C, if © is consistent, then there is a t € Ty such that t k= ®.

Parsing as Type Inference 115

Proof: The proof is nearly identical to that for Proposition 62. Define t = itm(®),
an infinite tree model of @ as follows: {(p) = v if and only if either

LLveCand @Fv <p,or

2.v=Land @Fp<p,but P c<pforany ce C.

We must show that ¢ is one of the models for ®, that is, that it is well defined (a
true function), prefix-closed, and satisfies ®.

t is a function: Suppose ¢ were not-a function, that is, the definition of mm(®)
assigned two distinct values v and v’ to a single path p. fv,2' € C,then @ v < p
and & F v € p, so @ is inconsistent by a constant clash, contra assumption of
consistency. If v € C and v' = L, then ®F v <pand & If v < p for any v € C, here
too a contradiction. Thus, ¢ must be a function.

t is prefix-closed: Suppose t(p- (f)}) is defined. We must show that #(p) = L to
conclude that ¢ is prefix-closed. Now, by definition of itm, either ® v <p- (f) or
®Fp-{f) <p-{f). By Reflexivity, @ I p <p. Since & is consistent, ® I/ ¢ <p for
any ¢ € C. Thus #(p) = L by definition, and ¢ is prefix-closed. Since & {) < (),
the function ¢ must be defined at (), as required. '

t satisfies ¥: Finally, we show that ¢ is 2 model for & by proving the stronger
result that ¢ is a model for all entailments ¢ of . Any ¢ such that & + ¢ is of one
of the two forms of atomic formulas. If ¢ = ¢ < p, then #(p) = ¢ by definition, and
tE ¢

If ¢ = p € q, we must show that t/p and t/q are defined and that t/p < < t/q,ie.,
t(p-r) < t{g-r) for all » such that ¢(p- r) is defined. First, t/p is defined because
if®F p<q,then @ F p <p, so t(p) is defined (by definition of i¢m); similarly for
t/q. Now, suppose #(p-r) is defined. Then either ®Fc<p-rordFp-r<p-r
and @ I/ c £ p-r for any ¢ € C. In the former case, we have & F ¢ < g-r by
Substitutivity, so ¢(g-r) = ¢ = ¢(p- 7). In the latter case, we can conclude that
® I ¢g-r < ¢q-r by Substitutivity and Reflexivity. Now it either holds or not that
® - c €¢-rfor some ¢ € C or not. If so, then #(g-7) = ¢; if not, then #{(g-r) = L.
Either way, t(p-r) < t(g-r). As a consequence, t/p < t/q and ¢ = p €¢. The tree
t is therefore a model for ¢.

Since ¢ is a model for any equation that follows from &, it must be a model for
O itself. We have shown that if ® is consistent, there exists a model for @, namely,
that given by itm(®). a

116 Parsing and Type Inference for Natural and Computer Languages

Figure 5.3 A Sample Potree

5.5.2 Potree Models

Just as eqtrees augment trees with an equivalence relation to model intensional
equality, potrees add a preorder to model intensional inequality.® A potreeis a pair
{t,R), where t € Tf% is a [possibly infinite] tree and R is a relation over dom(t)
(the paths of the tree) such that ' '

¢ Ris a preorder (a reflexive, transitive relation),
o if pRp', then t(p) < #(p'),!° and
o if pRp' and p- (f) € dom(2), then p-(f)Rp' - (f). "

We will use the notation ’J}EC for the class of potrees.

Note the close relation of the potrees to the eqtrees (Section 4.3); the only
difference is the relaxing of the equivalence relation to a preorder, that is, removal of
the requirement that R be symmetric. Again this accords with intuition concerning
the difference between equality and inequality.

- We can notate potrees graphically by drawing the underlying tree, with the
overlaid ordering on nodes given by dotted arrows pointing from the subsuming to
the subsumed nodes. (Arrows from a node to itself can be omitted for clarity.) For
instance, the minimal potree model for the formula {a < {f),b < (g 9),(f) € {9)}
is shown in Figure 5.3.

Properties of Potrees’

The remainder of this section develops results for potrees that are exﬁctly- analo-
gous to those for eqtrees in Section 4.3, namely, Propositions 63 through 70. We will
assume logical and denotational soundness of the infinite-tree models (7£%) as mod-

els for LEC. Proofs for these claims are only minor variations of the corresponding
proofs with respect to £1,¢ (see Propositions 60 and 61). '

®Fven though subsumption is a partial order on trees, the intensional-inequality component of
potrees is only a preorder, since it relates paths, not trees, and several paths might address
identical trees. :
Y Recall that forallc € C, L <e.

Parsing as Type Inference 117

First; we demonstrate that the relation component in potrees is a stronger or-
dering than extensional subsumption.

Proposition 82 For all potrees (¢, R), if pRp', then t/p < t/p'.

Proof: We must show that (t/p)(¢) < (¢/5')(¢) for all ¢ such that (¢/p)(g) is defined.
Suppose that (¢/p)(q) is defined. Then t(p-¢) is defined. Now, pRp/, so by a simple
induction, p- ¢Rp' - q and ¥(p-q) < t(p’' - ¢) = (t/p')(g). By the definition of
subsumption on trees, t/p < t/p’. O

Satisfaction for potrees will follow the definition for eqtrees doseiy A potree
{t, R} satisfies a formula ¢ < p just in case {(p) = ¢. The potree satisfies p < ¢ if
and only if pRg, i.e., the subtrees of t at p and ¢ are in an intensional-ineguality
relationship.

Subsumption on potrees is defined pointwise, as it is for eqtrees.

Proposition 83 (subsumptxon on potrees respects entailment) If
whenever n = ®, 7' = @ for all & € ‘CLC’ thenn < 7'

Proposition 84 (upward closure of subsumptmn on potrees) If n <7,
then whenever n =@, 7 E ® for all ® € E

Proof: The proofs are only trivially different from those for Proposition 64 and 65,
respectively. . a

Proposition 85 (logical soundness for potrees) For all 7 = (t,R) e 7},5’0 and
i ef,f‘c, ifnE® and @+ ¢ then n = ¢.

Proof: The proof is by induction on the size of the proof tree for & F ¢. The base
case occurs when ® b ¢ is proved either by Triviality or because ¢ € ®. Clearly,
if € & and 5 = @, then 5 = ¢ by definition of satisfaction for potrees. For
Triviality, if ¢ = () < (), then 7 |= @, since for all eqtrees, #({}) is defined; hence
(}R{} by reflexivity of R.

The induction step requires that we demonstrate that the other rules of inference
preserve modeling. For the Reflexivity rules, assume that ® - v < p - ¢, so either
vRp g or t(p-q) = v (depending on whether v € Path or v € C, respectively). In
either case, t/(p-q) = (¢/p)/q is defined, guaranteeing the definition of t/p. Since
R is a preorder—hence reflexive—pRp holds; thus, n = p €<p. A similar argument
holds for the second Reflexivity rule under the assumption that @+ p-g <.

For Substitutivity, assume that @Fp<gand dLv <p-r,yieldngnlp<q
and 7 = v < p-r. From the former, we can conclude that pRg, and from the latter,
that either vRp - r or t/p - r = v (again depending on whether v € Path or v € C,
respectively). If v € Path, then by a simple induction, p- rRg - r, whence, by the
transitivity of B, vRg-r,son v <g-r. If v € C, then t/p-7 = (t/p)/r <
(t/q)/r =t/g-Tsov<tfg-r;againn = v <g-7. A similar argument holds for the
second Substitutivity rule. O

118 Parsing and Type Inference for Natural and Computer Languages

Proposﬂ:mn 86 (denotational soundness of potrees) For all formulas & €
EE o if there ezists a potree n = (i, R) € TL_C such that i k= ®, then ® is consistent.

Proof: As argued in Proposition 67, this follows from the denotational soundness
of infinite trees as models for EE'C (Proposition 80). o

Proposition 87 (minimal-model existence for potrees) If & € EE'G is con-
sistent, then there is a least = {1, R) € T<C such that n | ®.

Proof: Define 5 = mptm(®), the minimal potree model of @ as follows 1] (t, R),
where t = itm(®) and pRgif andonly ff &+ p <4q.

We show that 7 is a well-formed potree, that n = ®, and that 7 is the least such
potree,

7 is a well-formed potree: As proved in Proposition 81, t is a well-formed infi-
nite tree. Now, if pRq, then & - p < ¢ and & I p <p by Reflexivity. Furthermore,
it either holds or not that ® b ¢ = p for some ¢ € C. If so, t(p) = ¢; if not, #(p) = L
according to the itm construction. In either case, p € dom(t) so R is a relation over
dom(1).

We turn to the three conditions on the well-formedness of R. First, R is a
preorder since it is reflexive (trivially), and transitive (if pRg and gRs then @ - p < ¢
and @ I g < s, so by Substitutivity @ F p < s and pRs).

Second, if pRyp', then ® I p < p’. Again we consider two cases as to whether
® F ¢ < p for some ¢ € C or not. If so, 1(p) = ¢, and by Substitutivity, @ - ¢ <p,
so t(p') = c. If not, t(p) = L. In either case, i(p) < #(p’), as required.

Third, assume that pRp’ and p-{f) € dom(t). Then & I p = p’ and, by definition
of dom for tree models, & F p-(f) = v for some v. By Reflexivity, ® b - (f) = p-{f),
whence, by Substitutivity, ® F p- (f) = p'- {f), so p- (f}Rp' - (f). This concludes
the proof of the well-formedness of R and therefore of 77 as well.

7 is a model for $: I d+ p<gqg, then by construction, pRg and = » < ¢.
If & F ¢ < p, then #(p) = c by the itm construction (see Proposition 80), hence
7 k= ¢ € p. Since 7 is 2 model for any equation entailed by &, it is a model for @
itself. :

n is the least model for &: Consider any model # = (#/, R’} such that o’ = @.
By logical soundness (Proposition 85), 7' = ®' for all - @'. In particular, if pRg;
then ® - p < ¢q,s0 7' k= p € ¢ and pR’q. Thus, RC R'. li t(p) = ¢, then @ ¢ <py
so 7 |= ¢ € p and ¥'(p) = c. Similarly, if ¢(p) = L, then Fp <p,son' Ep<p
and, by definition of satisfaction, either #(p) = L or #(p) = ¢ for some ¢ € C.

In either case, #(p) < t(p'), so t < t' in general. By definition of subsumptmn on
potrees, 7 < 77’ . O

Parsing as Type Inference 119

Proposition 88 (categoricity for potree models) If 5 = ({,R) and 7' =
(t', R} are distinct potrees in T; I:—fc, then there ezists a formula @ € EE’C such
that n |= ® and 7' f= © or vice versa.

Proof: If 7 and 7’ are distinct, they must differ either in ¢ or R. The possibilities
can be divided exhaustively into six cases. The first three cases are as follows:

Case 1: 1(p) defined and t'(p) undefined.
Then nfEp<pbut n - p<p.

Case 2: #(p)=cand t/(p) = L
Then n=c<pbut 7' [c<p.

Case 3: pRg but not pR'q. _
Then nl=p<gbut o fp<yq. -

The remaining three cases, the symmetric versions of the first three, where ¢’ or R’
is more defined, are proved similarly. O

Proposition 89 (logical completeness of potree models) If for all n € T, LS,G
such that y = ®, 7= &/, then &+ 9.

Proof: Without loss of generality, we can restrict ourselves to the case where &’
is atomic. (For nonatomic formulas, satisfaction holds just in case it holds for the
atomic elements, so the problem reduces to the atomic case.) Suppose that for
all 7 € TLS‘G such that 7 = @, it is the case that 7 = ®'. Then, in particular,
mptm(®) = ({,R) = ®'. We prove that & I ' by cases, depending on the form
of . If @ is of the form p < g, then ({,R) = p < g and pRq. By the mptm
construction, ® - p < g. If ¢’ is of the form ¢ < p, then (¢, R) = ¢ = p and t(p) = c.
Now, by the itm construction used in the mptm construction, @ + ¢ € p. Thus, in
general, & - &', o o

The proofs for the model locality properties are similar to those for £, ¢, which
are contained in the appendix.

Rational Potrees

Of course, potrees, like the eqtrees on which they are based, are not finite objects in
general, and, therefore, cannot be used as a basis for computation. We will develop
a graph encoding of certain potrees—like the feature graph models for £f, c——-to
remedy this problem.

As in Section 4.3.2, we restrict our attention to the rational subset of the potrees.

Definition 90 4 potree (t, R is rational if and only if the mazimal clzques of R
form a finite set.

120 Parsing and Type Inference for Natural and Computer Languages

-
) |
i
J
i
2
3
..

Figure 5.4 An Irrational Potree

In the case where R is actually an equivalence relation, this definition of ratio-
nality reduces to that given for eqtrees in Definition 71. Unfortunately, the rational
potrees do not possess a closure property analogous to that proved as Proposition 72.
Certain formulas in L'.— have no rational potree model. For instance, the minimal
potree model for the formula {() €(f)} has an infinite set of singleton cliques {({}},
{{N}, {{f f)}, and so on,as can be seen graphically in Figure 5.4. In general, any
formula @ such that ® - p €< p-g but & ¥ p- ¢ < p for some p and nonempty
¢ has no rational potree model. For the nonce, we will disallow such formulas by
fiat, returning in Section 5.5.5 to discuss generalizations of the rational potrees that
allow such cyclic formulas to be modeled.!?

5.5.3 Pograph Models
A pograph is a quintuple (N, ng, 8,7, o) where
¢ (N,ng,6,7) is a feature graph, and

¢ o is a partial order over N, the intensional sﬁbsumpiion ordering, sa,tisfyi'ng'
the following congruence conditions:

1. ¥ o(n,n') and &(n,f) is defined, then 5(n’,f). is defined and

o(8(n, f),8(n',)), and
2. H o(n,n") and w(n) = ¢, then w(n') = ¢, and
3. 1t o(n, ') and o(n/p,/2), then o(n'/p,1/g).

HNote tha.t. cyclic formulas as defined in the comment after Deﬁmtlon 25 are still a.llowed they

merely engender a single infinite cligue, rather than an infinite set of singletons. Thus, none
of the expressive power of £, ¢ is lost by eliminating the irrational potrees. As mentioned in
the text, however, although rational eqirees are complete for L1 o, rational potrees are not for
LE Zce Sinee the incompleteness is harmless for the applications we have in mind, the problem is

not worrisome. The situation is different as regards cyclic equations; these have been pmposed'

for application in several places and would have been unfortunate to give up.

s

Parsing as Type Inference 121

- The normal conventions for feature graphs will be used for pographs as well.
In particular, the notations n/p and g/p will be employed for traversing pographs
(as in the preceding definition of the congruence conditions). We will also require
connectedness of pographs, defined in the normal way (see Section 4.4.1).

Satisfaction for Pographs

A pograph g = (N, no, 6, 7, 0) satisfies an equation p < ¢ ifand only if a(no/p, 70/q),
and g satisfies ¢ < p if and only if 7(no/p) = ¢. As usual, satisfaction for nonatomic
formulas is conjunctive. '

The important property of pographs that extend feature graphs is the following:

Proposition 91 For all pographs ¢ = (N,ng,é,7,0) and n,n' € N, if o(n,n’),
then the subgraph of g rooted at n subsumes the subgraph rooted at n’.

Proof: Suppose o(n,n’') and g/n and g/n’ are the subgraphs of g rooted at n and
n’, respectively. We show that any formula satisfied by g/ is also satisfied by g/n’.
By Definition 13, g/n < g/n'.

If g/n = p <€ g, then o(n/p,n/q), which yields o(n'/p,n'/q) by the third con-
gruence property of o. Thus, g/’ k= p <¢. If g/n | ¢ <p, then 7{n/p) = ¢. The
second congruence property of ¢ guarantees that n(n’/p) =cand g/n' =c<p. O

Subsumption for Pographs

A syntactic condition on pographs that corresponds to the general semantic notion
of subsumption presented as Definition 9 extends the one for graphs presented in
Section 4.4.1.

A pograph g = (N, ng, §,7,0) subsumes a pograph ¢’ = (N',nj, 8, 7',0') by a
witness homomorphism m : N — N’ if and only if

1-3. (N, ng, 8,) subsumes {(N’,nj, &, ') with witness m (as defined by the three
conditions in Section 4.4.1), and

4. T o(ny,np) for ny,ng € N, then a’(m(nl),rﬁ(ng)).

In general, g < ¢' if and only if there exists a witness such that ¢ < ¢' under
that witness in accordance with the preceding definition. Proofs of the correctness
of this ordering as the subsumption ordering obeying Definition 9 (analogous to
Propositions 74, 75, and 76) are straightforward and will be omitted.

5.5.4 Potrees and Pographs

We can extend the results of Section 4.4.2 relating eqtrees to feature graphs, demon-
strating that the potrees are isomorphic to the isomorphism classes of the pographs.

122 Parsing and Type Inference for Natural and Computer Languages

Proposition 92 The potrees are isomorphic to the isomorphism classes of the
pographs.

The structure of the proof is identical to that for Proposition 77, although we use
different mappings 7 and 7. We describe the two mappings and prove the requisite
properties here. The argument that the existence of these mappings is sufficient is
not reiterated.

Given a pograph.g = (N, no, 8,7, 0),let 7(g) = (t, R), where

p)=c il w(g/p)=c
t{p)=L iff g/pis defined but v(g/p) is undefined

PRy’ iff o(g/p,9/7)

7(g) is a well-formed potree: Prefix closure follows as before. We must also
show that R obeys the constraints on potree relations.

R is reflexive and transitive because ¢ is. (R is not necessarily antisymmetric,
since the function mapping p to g/p is not in general one-to-one.) Thus, R is a
preorder. .

If pRy, then o(g/p, /), 50 if 7(g/p) = c, then 7(g/p) = ¢ and Hp') = c. I
w(g/p) is undefined, then #(p) = L. In either case, i(p):< #(p").

If pRp' and p - {f) € dom(2), then o(g/p,g/p) and g/p and g/p’ are both
defined. Furthermore, g/(p- {f)) is defined. By the first congruence property of o,
o(a/p- (£, 9/ - (F))s 50 B+ (FYRY - (f). |

Since t is a well-formed tree and R an appropriate relation, 7(g) is a well-formed
potree.

r is total and one-to-one: This was proved for Proposition 77 by exhibit-
ing a witness 7 to a subsumption relation between g and g’ for any other
¢’ = (N',nh, 8, %',¢") such that (g) = 7(g'). To augment the proof, we need
only show that the witness for the feature graph portions of g and g’ extends to the
o portions, that is, if ¢(ny,n2) for n1,nz € N, then a'(m(ny1), m(n2)).

Suppose o(ny, 7). Since g is connected, n; = g/p; and ny = g/p; for some
paths p; and pp. By definition of 7, p1Rpz. Since 7(g) = 7(g") by assumption,
o'(¢'/p1,9'/p2) holds, that is, a'(m(n1), m(nz2)).

r is satisfaction-preserving: This follows as directly from the definition of 7 as
it does in the proof of Proposition 77. '

These addenda to the discussion of 7 in Proposition 77 suffice to demonstrate
the requisite properties of 7 as applied to pographs.

We now turn to v, the inverse mapping from potrees to graphs. We define 7y as
follows: Given a potree 7 = {t, R), let y(n) = (N, n,, 8,7, 0), where

Parsing as Type Inference 123

‘e NV is the set of maximal R-cliques in dom(t) (the notation [p] being used for
the clique containing p),

no is the clique [(}], |

§ is exhaustively defined by 8([p], f) = [p+ ()] for all p- (£} € dom(2),
#([p]) = c if and only if #(p) = ¢, and

s o([p], [q]) if and only if pRg.

7(n) is a well-formed pograph: The previous proof in Proposition 77 need only
be extended with a demonstration that o is a partial order. Since R is a preorder,
hence reflexive and tramsitive, so is . Suppose o([p),lq]) for [p] # [¢]. Then pRq,
but not gRp (or else [p] = [g]}, so o([g],[p]) fails to hold and o is antisymmetric.
Thus, ¢ is a partial order.

7 is total and one-to-one: As argued in Proposition 77, we need only show that
if 7(n) = 7(%"), then for all atomic formulas ¢ € Eio, if 7 = ¢, then ¢’ | ¢. For
ease of reference, let 7 = (1, R) and #' = (¢/, R}, and let v(n) = (N, no, 8, 7,0) and
¥{7") = (V',n}, 8", =", o’).

Ifnk p< < ¢, then pRq, so o([p],{q]). Since v(n) =~ v(v"), &'([p], [q]) as well, so

pR'gand ' p <q.

Similarly, if n |= ¢ £ p, then i(p) = ¢, so 7([p]) = ¢ and ¢'(p) = ¢. Thus,

n"Ec<p

v is satisfaction-preserving: We must show that 5 |= & if and only if v(n) E ®.
Since satisfaction for nonatomic formulas is defined identically for the two model
classes, we can consider only the atomic cases. By definition of satisfaction for
potrees, 7 |= p < g if and only if pRq if and only if o([p], [¢]) by definition of . Since
in general [r] = [(}]/r = no/r = 7(n)/r, we can conclude that o{v(n)/p,¥(n)/ Q), s0,
by definition of satisfaction for pographs, v(n) = p <g.

For formulas of the form ¢ € p, 5 = ¢ € p if and only if #(p) = ¢ if and only if
7([p])} = ¢ by definition of «y. Replacing [p] with the equivalent y{n)/p as before, we
have that #(y(n)/p) = ¢, so that y(n) = ¢ <p,

This concludes the extensions of the proof of Proposition 77 to demonstrate the
relationship between potrees and pographs. _ 0

5.5.5 Computing with Pographs . . .

To accrue the benefits of Chapter 3, we must finally provide algorithms for the
various operations (/, \, }, L) on pographs, as we did for their counterparts for
feature graphs. All but the last of these operations are straightforward, and require
little discussion. For instance, to embed a pograph underneath a path, we merely

124 Parsing and Type Inference for Natural and Computer Languages

add a chain of features for the path, each pointing to the next, the last pointing to
the embedded pograph; the process is identical to that for feature graphs. Similar
methods work for extraction and restriction. Informational union is slightly more
complex, and makes use of the corresponding operation on graphs.

A simple, but not particularly efficient, method for computing the informational
union of two pographs is the following. Given two pographs ¢ = (N,ng,6,7,0)
and g’ = (N’ n},&,7’,0'), we form the feature graph g% = (NY,nf,é, 74} =
(N,ng, 8, YU (N',ng, 6, 7'), as described in Section 4.4.4. Note that the congruence
= is defined and used in that procedure. Now construct the ordering o = (o U
o'}/ =. The structure (g”,a“) may not be a pograph, either because ¢ may not
be irreflexive or because g“ may not satisfy the subsumption relations given by o".
Consequently, we repeatedly correct such deﬁcxenmes in the structure until these
conditions are satisfied.

In particular, if n;oYn; and njoUn; for distinct ni,n; € NY, we form a new
structure {g",o") as before but with the congruence strengthened to include n; =
n;. (This can be performed efficiently by merely smashing n; and n; to the same
node and propagating the change down Y. In effect, we build g~ Umm({p; = p;}),
where p; and p; are paths to n; and nj, respectively, and modify ¢" according to
the congruence used in this operation.) :

Also, if n;o%n; but g"/p; £ ¢“/p; (with p; and p_1 defined as before), we form
the new g! given by ¢ Lig"”/p;\p; and again modify ¢“ according to the congruence
used in this operation.

These two operations are repeated until their preconditions are no longer met.

We will not provide a formal proof of correctness corresponding to Proposi-
tion 78 for feature graphs. Informally, though, it should be clear that if this process
terminates, the structure {g", o"') will be a well-formed pograph which satisfies all
of the constraints of g and g’. That it is a least such pograph can be seen, intu-
itively at least, by noting that all of the operations were forced, in the sense that
without them, the resultant structure was not a pograph, and each operation was
the minimum one for correcting the structure thus far built. Finally, that it is the
least such pograph could be shown by proving a kind of confluence property of the
two operations just described.

The question of termination of the algorithm is not an idle one, however. As
mentioned in Section 5.5.2, the pographs do not close correctly under U because they |
are defined only in correspondence with rational potrees, and the rational potrees
are not closed under U; irrational potrees may result. In exactly those cases in
which two rational potrees generate an irrational one, the algorithm operating on
the corresponding graphs will fail to terminate. (It is the second type of corrective
operation that recurs. The first type possesses a simple well-foundedness criterion
as it decreases the number of nodes at each step.) _

More sophisticated graphlike models may be explored that can correspond to :
irrational potrees as well. Observe that in the case of an irrational potree (say, one .

Parsing as Type Inference 125

satisfying p € p- ¢), we have an infinite descending chain of subsumption relations
p<p-g<p-qg-gq<p-q-¢-q < ---each subgraph potentially larger than the
next. However, starting with a finite formula, we can have only a finite amount
of information about each of these subgraphs, so that at a certain depth in this
iteration, all of the subgraphs will be described by the same set of constraints. Thus
a kind of “lazy evaluation” approach to modeling such equations may be possible
in which the graph descends only as far as is necessary to capture the currently
manifest inequalities. The bottom of the chain would be marked in such a way that
another unfolding could occur if information that differentiated it from the next
subgraph were encountered.

6

Conclusion

Building on otr own recent work and that of others on the semantics of particular
constraint logics, models for the logics, and grammar formalisms, we have attempted

in this thesis to develop a uniform mathematical and computational approach to

grammmar formalisms based on systems of declarative constraints. A series of novel
results in the field of computational linguistics area has been presented:

o We have developed an abstract characterization of the notion of constraint-

based grammar formalism in general, rather than a particular formalism. To
our knowledge, this is the first such general characterization.

¢ We have developed and proved correct an abstract parsing a.lgorithni, abstract

both in that it applies to all formalisms in the constraint-based class and in
that the specifics of control are eliminated. The control abstraction allows
applications in general natural-language parsing (by mimicking Earley’s al-
gorithm) and psycholinguistic modeling (by mimicking shift-reduce parsing).
The proof of correctness constitutes the first such proof for a single constraint-
based grammar formalism, let alone for a class thereof. It provides a demon- -
stration of the correctness of several general techniques that have been used in
implementations of practical grammar interpretation systems—the subsump-
tion check for chart parsing and the use of a restrictor p to limit top-down
prediction, for instance. '

We have pinpointed the need for the use of graphé as models for Lrc, as
opposed to tree models of various sorts.

We have developed a constraint-based formalism that allows inequational as
well as equational constraints, and have shown its applications both to natural

" and computer languages.

We have initiated a ra,pprochément.b.e't\#een the teéhhiéﬁéé in use for stat-
ing well-formedness conditions of natural and computer languages, bringing

127

128 Parsing and Type Inference for Natural and Computer Languages

back together these two areas that diverged shortly after the application of
context-free grammars to both. The enabling conception for this enterprise
is the analogy of natural-language grammar with computer-language typing,
and hence, that of natural-language parsing with computer-language type in-
ference.

Evidence for the practical application of the results in this thesis is provided by
the CL-PATR grammar development system. This system was developed by the au-
thor as an implementation of the algorithm of Chapter 3 as applied to the PATR for-
malism based on L, ¢. The system incorporates parameters for specifying the con-
trol regime used in parsing, thereby taking advantage of the control-independence
of the abstract algorithm and enabling the system to be used in modes mimicking
a variety of more traditional parsing algorithms including Earley’s and shift-reduce
parsers. Furthermore, the abstract algorithm as instantiated in CL-PATR has been
applied to the task of natural-language generation as well, a topic beyondf the
scope of the present work but discussed elsewhere (Shieber, 1988). Besides its use
as a development system for constraint-based grammars, the CL-PATR system has
been incorporated as a natural-language front- and back-end in various projects at
SRI International, including an utterance-planning system (GENESYS) and a mobile
robot (Flakey).

More generally, however, the present work serves as an initial effort towards a
new approach to designing grammar formalisms. The vast bulk of research endeav-
ors developing and applying constraint-based grammar formalisms to the problem
of describing and analyzing natural languages have proceeded by first designing the
data structures to be used for capturing information about linguistic expressions,
then constructing a language for talking about and manipulating these structures.
Every previous initiative in the semantics of constraint-based formalisms—{rom the
author’s and Pereira’s (1984), to that of Rounds and his colleagues (Kasper and
Rounds, 1986; Rounds and Kasper, 1986; Moshier and Rounds, 1987), and Johnson
(1987)—shares this modus operandi.

This thesis has taken a different approach. We have chosen to look first at
the kinds of information that we would like to capture, embodying the properties
that this information possesses—partiality, modularity, equationality—in a class of
logical languages, only then developing appropriate data structures {models) on the
basis of these prior desiderata. Such an approach is a first step towards a more
abstract characterization of a class of grammar formahsms for descnbmg natural
languages.!

The generality of the approach allows the development of constraint systems
and formalisms that are applicable to computer languages as well. The problems of
describing aspects of binding and polymorphism in typed programming languages

}The methodology described in this thesis is just a beginning, however; there is muck room for
improvement in the abstractness of the approach. In particular, we believe that a more algebraic
rather than syntactic flavor to characterizing the models would significantly simplify the system.

Conclusion 129

motivate extensions of the kind of informational constraints prevalent in natural
languages. Closing the loop, we discover that these extensions are applicable to
certain outstanding problems in natural-language description, the cases at hand
concerning the areas of nonmonotonic constraints and coordination phenomena.

By proceeding from model to logic, as previous work has, the question of ap-
propriateness of model is ruled out a priori; in the abstract approach begun here,
the question of appropriateness of model is paramount. Thus, we have shown in
this work why graph models are correct and useful models for the equational logic,
instead of mandating these models and finding a logic that uses such structures as
models. As the utility of formalisms is contingent on whether it can express what
needs to be expressed, the language of expression, rather than its models, seems
more apt for serving as the independent variable.

Finally, we have seen that by aiming for such an abstract approach to formalisms,
we do not necessarily forego computational results. On the contrary, the results
that are obtained, such as the abstract parsing algorithm for constraint-based for-
malisms, increase in utility, as they can be applied generally to any constraint-based
formalism, whether extant or yet to be designed.

Proofs of Properties of L ¢

This appendix comprises the proofs for the properties that must be demonstrated of
an individual logic independent of the class of models chosen for it (i.e., Properties 1,
2, 11, 28, 29, and 30). The proofs are carried out for the simple equational logic
Ly c. Corresponding proofs for the extended logic including explicit subsumption
constraints, EE,C, are virtually identical.

Logical Locality and Transparency

Proposition 83 (logical locality for Ly o) If & is a formula of Ly, C. all of
whose paths have some member of {p:} as a prefiz and ® + ¢, then all paths in
¢ are prefizes or eztensions of some member of {p;}.

Proof: Proved as Proposition 3 in Section 2.7.3. m]

Proposition 94 (logical transparency for L1 c) If & F ¢ for nonempty & €
Ly, then for any prefized homomorphism m,, m;(®) F my(@) where m4(®) is the
result of replacing all paths g in @ by m.(q).

Proof: Suppose we are given a prefixed homomorphism m, : Path — Path. We
must show that m, applied to each inference rule maintains soundness. We consider
the inference rules individually.

Triviality: For any homomorphism m, m{q) = m({)-¢) = m({})-m(q), 50 m({}) =
(). Thus, m, applied to an instance of Triviality yields the consequent s = s.
Now since @ is nonempty, there must be some path ¢ in ®, so we can construct

. the proof
ms (%)
ms(g) = ma(q)
$=3

using Reflexivity twice. Thus, rﬁ,(@) Fms({) = (}).

131

132 Parsing and Type Inference for Natural and Computer Languages

Symmetry: The prefixed homomorphism m, applied to Symmetry yields

ms(p) = ms(q)
ms(g) = ms(p)

which is sound because it is itself an instance of Symmetry.
Reflexivity: The prefixed homomorphism m, applied to Reflexivity yields

ms(p- q) = ms(v) (respectively, v)
m(p) = ms(p)

(depending on whether v € Path or v € C, respectively), that is,

s-m(p) - m{g) = s - m(v) (respectively, v)
s m(p) = s m(p)

which is sound becausé it is itself an instance of Reflexivity.
Substitutivity: The prefixed homomorphism m, applied to Substitutivity yields

ms(g) = ma(p) ms(p- 1) = m,y(v) (respectively, v)
ms(g -) = ms(v) (respectively, v}

(depending on whether v € Path or v € C, respectively), that is,

s-m(q) = s-m(p) s-m(p) mr)=s-m(v) (respectively, 'v)
s-m(q)-m(r) = s-m(v) (respectively, v) :

which is sound because it is itself an instance of Substitutivity.

Thus, all inference rules maintain soundness under prefixed homomorphic images.
Consequently, proofs do as well. 0

Compactness and Model Locality

Before proving the model locality properties for Lre, we develop a useful lemma
concerning the equivalence classes of paths defined by a formula. In the lemma, the
notation [p]e denotes an equivalence class of paths defined as those paths g such
that ® F p = q. The set of equivalence classes for & will be written {]¢. Similarly,
we will use the notation [Jps for the equivalence classes over paths for which M is
defined given by [p]ar = [g]ar if and only if M |= p = ¢. The set of paths for which
a model is defined will be called its path domain and notated pdomn(M).

Lemma 95 Given a formula ® such that paths p and g are in the domain of &,
the equivalence classes defined by ® U {p = q} are a collapsing of those defined by ®
such that [r]e and [s]o are collapsed in { g, 1,2y Just in case there is a t for which
r=p-tands=gq-t.

Proofs of Properties of £y, c 133

Proof: The proof for Proposition 72 shows that there is at most one equivalence’
class in | |¢ for each prefix of a path in ®. Since p and g are paths in @, the
set of classes [Jg 1,2,y is bound by that limit as well. Since @ b r = s entails
U {p= g}t r=s, the equivalence classes for ® U {p = ¢} are stronger.

All that remains to be shown, therefore, is that if U {p = ¢} F » = s and
(i) bJ T = 8, then [T]‘@U{péq} = [p't](bu{pﬁq} and [s]éu{piq} = [q ¢ t]fbu{péq} for some.
t, which we argue as follows. Consider the proof for ® U {p = ¢} r = 5. It must
use the equation p = ¢ or else the conclusion would follow from & alone. We can
normalize the proof to remove all uses of Triviality and Reflexivity, since they are
not the final steps in the proof (as the conclusion would follow from @ alone) and
they do not help to feed any other rule (as should be obvious). Thus, the proof
contains only uses of Symmetry and Substitutivity.

Now, we will say that a path ris p+2 if [r]gypng) = [P-Hlau(pag)- We show that
if one of the antecedents of Symmetry or Substitutivity has paths that are p+ z
and ¢ + z for some z, then the consequent’s paths are p 4+ y and ¢ + y for some y.
First consider Symmetry; if we start with r = s where one of the paths is p+ = and
the other is ¢ + z, then the conclusion, having the same paths as the antecedent,
also equates a p+ z and a ¢+ z. For Substitutivity, examine an instance of the rule
given by

r—=s s-t=u
r-iZ=u

There are two cases to consider, depending on whether the first or the second
antecedent has paths that are p + 2 and ¢ + z. In case it is the first antecedent,
then r is p+ 2 and s is ¢ 4+ = (or vice versa, but we will assume this without loss
of generality). Then s-tis ¢+ (z - t), and u is as well (since s-¢ = u, that is,
[8 - tou(pgy = [Bloufpayy)- Similarly, < tis p+ (2 -), so that the conclusion has
paths that are p+ y and g + ¥ (y being = - t in particular). In case the second
antecedent is the crucial one, then s-1is p+ z and u is g+ z. Now, from 7 = 5 and
8-t =y we can prove that »-{ = s-1, sosince -t is p+ z, 7 - is as well. Thus,

the consequent of Substitutivity has paths that are, respectively, p+ z and g+ z.
Since the proof for & U {p = ¢} F r = s contains only uses of Symmetry and
Substitutivity, and since at least one of its leaves has paths that are p+ 2 and ¢+«
for some z (namely p = g), then, by an obvious induction, its conclusion must have
paths that are p+ v and ¢ + y as well. That is, [r]q,u{p__q} = [p- tlgpypzqy 2nd
O

[slou a = 19" tlou {p=q} 0T some t.

Compactness

We now demonstrate that the logic £, ¢ is cofn'pac.t in the sense of 'P:rope'rty 11.
Proposition 96 (compactness of L1 o) Given a consistent [possibly infinite] set

of atomic formulas S from Lp ¢, if all models M such that M = ¢; for all qS, E S
are such that M = @, then ® - U for @ a finile subset of 5.

134 Parsing and Type Inference for Natural and Computer Languages

Proof: We can restrict our attention to the case where ¥ is an atomic formula for
the usual reasons. Further, we can ignore the case where S is finite, since in that
case taking § = @ (together with logical completeness) is sufficient to show the
proposition.

Suppose that all models M such that M | § (that is, M [¢; for all ¢; €
5) have the property that M = 1 for % an atomic formula. We can choose an
enumeration of the atomic formulas in 5, s1, 82, ... and build an increasing infinite
series of formulas ®; defined by

& = {31,82,...,3,‘}

We will demonstrate that there is an i such that ®; |= 9. By logical completeness,
then, @; - ¢ from which the theorem follows.)

To show that &; |= 9 it suffices to demonstrate that |], is at least as strong an
equivalence relation as [] and that the equivalence classes in |]g, are labeled at
least as strongly as those in []y. We show that there is such a ®; for which these
two criteria hold, considering each criterion in turn.

The equivalence relation for S, []s is just the infinite union of the relations []s,.
That is, for all paths p in the path domain of 5,

s = Ulels

i=1
Since all models of S are models of 9, it follows that

o
[ply € Ulrle
=1
for all paths p in the path domain of 3. We want to show tha,t this subset relat:on
still holds even if co is replaced by a suitably large integer.

It follows from the argument in the proof of Proposition 72 that |], contains only
a finite number of equivalence classes. Suppose each of these equivalence classes is
itself finite. The equivalence relations [p]s; are increasingly strong (by Lemma 95)
so that for any given equivalence class {p]y, there must be an index ¢ such that [pls,
contains it. Taking the maximum of the indices needed for each of the ﬁmte number
of equivalence classes yields an ¢ such that []y C []e;-

However, it might be the case that some eqmvalence class is not finite. This
occurs just in case % is cyclic, that is, of the form p = p - g for nonempty ¢ {or
p-q = p; without loss of generality, we will assume the former). In this case, the
infinite equivalence classes are of the form [p"-¢']y, for ¢’ a prefix of p or g. For such
an equivalence class, we might imagine the possibility that only in the limit is this
infinite class constructed, each of the equivalence relations []¢, containing only an
approximation of it. However, this is not the case. Consider the pair of paths p and
p-¢'. This pair, as it is in the equivalence relation [p]y, must be in one of the [plg;.

Proofs of Properties of Ly, ¢ 135

But, by virtue of the constraints on the equivalence relations (they are congruence
closed, recall), [plg, must also include all paths of the form p" - ¢'. Again, for each-
of the finite number of [now possibly infinite] equivalence classes, there is such an
index. Taking the maximum of the indices yields an ¢ such that [}4 C []e,.

That the labeling on the equivalence classes []y is generated by some []o,
follows from similar reasoning, namely that since the equivalence class is labeled in
the infinite union, it must be so labeled in one of the components.[Jg, and there
are only a finite number of equivalence classes, hence labels, that are pertinent, so
that we can again take the maximum of the finite number of indices to choose a

[Jo,; that labels equivalence classes at least as strongly as | }y. _ o

Model Locality

Proposition 97 (model lobality 1 for £ LC) For £j,'c , given a model M in the
range of mm such that p € pdom(M) and q € pdom(M), then M Umm({p = ¢})
is defined if and only if M/pU M/q is defined.

Proof: f M Umm({p = ¢}) is undefined, then by Lemma 49, there exist & and &'
such that M |= ® and mm({p = ¢}) = &’ and $UP’ is inconsistent. By Lemma 16,
{p=q}t &, 50 ®U{p= g} is inconsistent as well. N

Now consider the equivalence classes over paths defined by |]QU {(p=a}* By
Lemma 95, just proved above, these classes are merely a collapsing of the classes
defined by ® alone, where the classes [p-t]g and [g - t]o are collapsed for all {. The

“formula @ is itself consistent; thus, its equivalence classes can be felicitously labeled
with elements of C, assigning a unique constant to some of the classes corresponding
to terminals. Since the formula & U {p = ¢} is inconsistent, it must not be able
to be so labeled. This must be because a collapsing of two classes, say [p - t]g and
[g - t)o, has made it impossible to appropriately label an equivalence class with a
member of C. This could be either because & F'p-t = a and ® I ¢-¢ = b or because
dFpt= aa.ndfﬁ Fg-t-{f) = v for some label f. In the former case, M/p = s; a
and M/q = s = b, 50 M/pl M/q is undefined. In the latter case, M/p }: s=a
and M/q k= s-(f) =v,and M/pU M/q is again undefined.

Proving the other direction is much simpler. If M/pUM/qis undefined but each
is separately defined, then the individual submodels must satisfy clashing formulas.
Assume that M/p |= s =a and M/q | s = b. (The other possibilities for clashes
are proved similarly.) Then M k= p-s = gcand M | g-s = b The union
M Umm({p = q}), if defined, would then have to satisfy bothp-s=c¢and p-s= b,
which clash. Thus, the union is not well defined.]

Proposﬂ'.xon 98 (model locality 2 for L1 ¢) G’wen moa’els M and N with dis-
joint domains such that p € pdom(M) and ¢ € pdom{N}, then

(MU N Umm({p = g}))\dom(M) = MUN/q\p

136 Parsing and Type Inference for Natural and Computer Languages

Proof: We prove the proposition by demonstrating that the models on either side -
of the equals sign generate the same equivalence classes identically labeled. By
categoricity, the two sides must then be equal.

Consider the equivalence classes over the path domain of N/g\p given by
[Flvya\p = [sIn/q\p if and only if N/g\p = r = s. These equivalence classes are
generable from those for N itself, by replacing any paths g -s with p-s, drop-
ping all paths that do not have g as a prefix, and adding classes for each improper
prefix o’ of p. Consequently, there is a mapping my : [Jnypp — [N U[] {p2}?
where [p - sly/ap = 4+ slv and [Pl/atp = [Plpag) for P/ @ prefix of p. Now,
the equivalence classes of of paths IV in the image of this mapping can themselves
be mapped onto those for N U mm({p = ¢}). We will define this mapping m2 to
take [g - sjy onto [p- S]NUmm({p-'.:q})' (The path p - s is guaranteed to be in the
path domain for N Umm({{p = ¢}) if ¢- s is, because if N |z ¢-s = ¢- s, then
some formula satisfied by N entails it and that formula, together with p = ¢, will
prove p-s = p-s by Substitutivity. Thus p- s will be in the path domain of
N umm({p = ¢}).) Finally, define m3 mapping from the portion of the image of
my concerning the path prefixes of p into the corresponding equivalence classes in
[Ivumm({p=q}) thet is, ma takes [p'].({péq})'?nto ' Ivumm({p2a))- ';[‘aken toge:sher,
we can compose the separate portions of m; with my and mg respectively, yielding a
mapping m from N/g\p to N Umm({{p = ¢}), where [p-sln/q\p = [P* SInUmm ({p=e})
and [p'] N/g\p ™ [Pl Numm ({p=qy) for P’ & prefix of p. '

It will be useful to examine the paths that occur in [In/q\p 304 [Iyymm({p=eh)-
Recall that the path domain of N is disjoint from that of M. Now adding mm{{p =
g}) closes the path set under substitutions of ps for ¢s and adds path prefixes of
p. All of these new paths (that is, the set of paths {p-s|q-s € pdom(N)}U
{p' | ¢’ a prefix of p}) are in the path domain of M, but these are also exactly the
paths in the path domain for N/q\p. Thus, the difference of the path domains of
N umm({p = ¢}) and N/¢\p is comprised only of paths in the path domain of N
and therefore outside the path domain of M. _ '

We will now demonstrate that the classes for the left-hand-side and right-hand-
side models have the same structure. We start by showing the structural similarity of
[In/q\p and [] Numm({p=q})- FOT two distinct classes ¢y and ¢z in []n/q\p, their images
under m in [Jyumm (pq}) 2T€ also distinct, because both are generated from the
equivalence classes o% N under transformations that collapse no equivalence classes.
(Forming N U mm({p = q}) collapses no equivalence classes of NV, because p is not
even in the path domain of N; hence, there are no classes [p- s}y to collapse with.)

So far we have shown that there is a one-to-one mapping m from [Jn/q\p to
[INumm({p=q})> Where the classes not in the image of the mapping consist only of
paths outside the path domain of M and where m(c) — ¢ for any class ¢ in [Jnyq\p-
also contains only paths outside the path domain of M. Taking the respective.
informational unions with M, namely, M U (N U mm({p = ¢})) and M U N/q\p,
the engendered equivalence class structures are still parallel in this way. We argue

- Proofs of Properties of Ly ¢ 137

this by showing that two equivalence classes in the latter are collapsed if and only
if there images in the former are. Suppose we have a class ¢; € [|/,\p and another
class ¢z € [Jyumm({pq)) that collapse in the classes of the informational union
M U N/q\p, that is, they share some element. Since ¢; C m{c;) then m{c;) also
shares a path with cq; hence, they collapse in the union M LI (N U mm({p = ¢})).
Suppose ¢; and ¢; do not collapse. Then, since m{e;) — ¢; contains only paths
cutside the path domain of M, and ¢; contains paths in the path domain of M, the
classes m(c;) and c2 do not collapse either.

In summary,the equivalence class structure for M U ¥ U mm({p = ¢}) and
M U N/qg\p are the same except that the former contains extra classes and extra
paths all of which are outside the path domain of M. Thus, the restricted class
(MuNUumm({p = q}))Mdom(M) and M UN/g\p have identical equivalence classes.

Similar arguments show that the labeling of the classes is shared as well. Thus,
the two models must be equal. o

Propositioh 99 (model locality 3 for L ¢) I dom(M) is disjoint from
dom(N) and M and N are not top-cyclic, then (M U N)dom{M) =M.

Proof: By Lemma 38, M < M U N. Monotonicity yields Mdom(M) < (M U
N)Mom(M), so M < (M U N)Pdom(M) by Lemma 47.

We must show, then, that (M U N)pdom(M) < M. By definition of restriction
along with compactness, (MUN)pdom(M) |= ¢ifand only if ¥ F ¢ and MUN = ¥
for some V¥ such that all paths in ¥ are either trivial or start with an element of
dom(M). We will show that for all such cases, there is a proof of ¥ I ¢ using only
atomic formulas in ¥ satisfied by M. Therefore, there is a subset of ¥, say ¥’, such
that M |= ¥’ and ¥’ F ¢. Thus, M = ¢, and (M U N)}Mdom(M) < M.

Consider the proof for ¥ ¢, and divide ¥ into ¥ps, those atomic formulas
that M satisfies, and ¥y, those that M does not satisfy (but ¥ does). There are
three cases: only Wy is used in the proof, only ¥p is used in the proof, or both
are. First, we will reduce the third case to the first two.

Suppose the proof uses some formulas in ¥ that are satisfied only by N, i.e.,
elements of ¥y, and some satisfied by M, i.e., elements of ¥ps. Then there must be
a step in the proof that uses antecedents ¢ps and ¢y, where M |= ¢as and N | ¢p,
but M W ¢n; schematically, the proof looks like this:

Yy Uy

138 Parsing and Type Inference for Natural and Computer Languages

The crucial step in the proof (from ¢ar and ¢x to $prv) must be Substitutivity, so
either ppy =g =pand ¢y =p-r=vorgy =¢g=pand ¢ps = p-7 = v. We will
assume the former for the moment, returning to the latter case below. Now if p is
nontrivial, we have the two proofs

i=p prZw
p=p .

p=p
=& =&

from which it follows that M = (f) = (f) and N | (f) = {f). Thus, the doma.iﬁs
of M and N are not disjoint; p must be trivial.
But if p is trivial, and M and N are not top-cyclic, then [must be tr1v13.l as

well. Thus, the proof must be of the form

It

in which case the p'roof"can be simplified to

thereby eliminating this dependence on ¥jy.

Returning to the earlier assumption that ¢psr = ¢ = pand ¢y =p-7 = v, if
we assume the alternative, namely, that ¢ = ¢ = p and ¢a = p - 7 = v, the proof
goes through as before but eliminates dependence on ¥y. Since all such separating
steps can be eliminated, the entire proof can be normalized to use only one of ¥p

or Uy.

Proofs of Properties of L ¢ 139

If the proof uses only ¥y (i.e., N |= ¢) then all paths in ¢ must be prefixes or
extensions of paths in dom(N) (by logical locality). Since the domains of M and
N are disjoint, ¢ = () = (). But this can be proved from ¥ps alone. Thus, in
every case, a proof can be found using only ¥ps. As argued above, this entails that
(MUN)pdom(M) < M. By categoricity, we can conclude that (M UN)pdom{M) =
M. o

Bibliography

Al V. Aho and Jeﬁ'réy D. Ullman. 1972. Theory of Parsing, Translation and
Compiling, volume 1. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Hassan Ait-Kaci. 1985. A New Model of Computation Based on a Calculus of Type
Subsumption. Ph.D. thesis, University of Pennsylvania.

Jon Barwise. 1988. Paper presented at the Mathematical Theories of Language
Workshop at the 1988 Linguistic Institute.

Robert S. Boyer and J Strother Moore. 1972. The sharing of structure in theorem-
proving programs. In Machine Intelligence 7, pages 101-116. John Wiley and
Sons, New York, New York.

Joan Bresnan, editor. 1982. The Mental Representation of Grammatical Relations.
MIT Press, Cambridge, Massachusetts.

Luca Cardelli. 1984. A semantics of multiple inheritance. Technical report, Bell
Laboratories, Murray Hill, New Jersey.

Noam Chomsky and M. P. Schutzenberger. 1963. The algebraic theory of context-
free languages. In P. Braffort and D. Hirschberg, editors, Computer Program-
ming and Fo_rmal Systems. North Holland, Amsterdam, Holland.

Alain Colmeraver. 1970. Les systémes-q ou un formalisme pour analyser et
synthétiser des phrases sur ordinateur. Internal Publication 43, Département
d’Informatique, Université de Montreal, Canada.

1978. Metamorphosis grammars.. In L. Bole, editor, Natural Language
Communication with Computers. Springer-Verlag, Berlin.

Bruno Courcelle. 1983. Fundamental properties of infinite trees. Theoretical Com-
puter Science, 25:95-169. 5 :

141

142 - Parsing and Type Inference for Netural and Computer Languages

Stephen Crain and Mark Steedman. 1985. On not being led up the garden path:
the use of context by the psychological syntax processor. In David R. Dowty,
Lauri Karttunen, and Arnold M. Zwicky, editors, Natural Language Parsing—
Psychological, Computational, and Theoretical Perspectives, chapter 10, pages
320--358. Cambridge University Press, Cambridge, England.

Veronica Dahl and Harvey Abramson. 1984. On gapping grammars. In Sten- Ake
T4rnlund, editor, Proceedings of the Second International Logic Programmmg
Conference, pages 77-88, Uppsala, Sweden, 2-6 July. Ord and Form.

Veronica Dahl and Michael C. McCord. 1983. Treating coordination in logic gram-
mars. American Journal of Computational Linguistics, 9(2):69-91, April-June.

Stefan Dyla. 1984. Across-the-board dependencies and case in Polish. Linguistic
Inguiry, 15(4):701-705.

Jay FEarley. 1970. An efficient context-free parsing algorithm. Communications of
the ACM, 13(2):94-102, February.

Marilyn Ford, Joan Bresnan, and Ron Kaplan. 1982. A competence-based theory
of syntactic closure. In Joan Bresnan, editor, The Mental Representatzon of
Grammatical Relations. MIT Press, Cambridge, Massachusetts.

Lyn Frazier and Janet D. Fodor. 1978. The sausage machine: A new two-stage
parsing model. Cognition, 6:291-325.

Gerald Gazdar. 1981. Unbounded dependencies and coordinate structure ngms—
tic Inquiry, 12(2):155~184. : :

. 1982. Phrase Siructure Grammar, pages 131—18'6.. D. .Reidel,.Dordrecht,
Holland.

Gerald Gazdar, Ewan Klein, Geoffrey K. Pullum, and Ivan A. Sag. 1985. Gener-
alized Phrase Structure Grammar. Blackwell Publishing, Oxford, England, and
Harvard University Press, Cambridge, Massachusetts.

Gerald Gazdar, Geoffrey XK. Pullum, and Ivan A. Sag. 1982 Auxiliaries and re-
lated phenomena in a restrictive theory of grammar. Language, 58(3):591-638,
September.

Joseph Goguen. 1988. Personal communication.

Kathryn Henniss. 1988. Control, coordination, and subJects in Malayalam. Un-
published manuscript.

Roger Hindley. 1969. The principal type-scheme of an object in combinatory logic.
Transactions of the American Mathematical Society, 146, December.

Bibliography 143

Susan B. Hirsh. 1986. P-PATR: A compiler for unification-based grammars. Mas-
ter’s thesis, Stanford University, Stanford, California, December.

Joxan Jaffar and Jean-Louis Lassez. 1987. Constraint logic programming. In Pro-
ceedings of the 14th ACM Conference on Principles of Programming Languages
Munich, West Germany, January.

Mark Johnson. 1987. Attribute-Value Structures and the Théory'of Grammar.
Ph.D. thesis, Stanford University, Stanford, California.

Ron M. Kaplan. 1973. A general syntactic processor. In R. Rustin, editor, Natural
Language Processing. Algorithmics Press, New York, New York.

Ron M. Kaplan and Joan Bresnan. 1982. Lexical-functional grammar: A formal sys-
tem for grammatical representation. In Joan Bresnan, editor, The Mental Rep-
resentation of Grammatical Relations. MIT Press, Cambridge, Massachusetts.

Ron M. Kaplan and John Maxwell. 1988. Coordination in LFG. Talk presented
to the Foundations of Grammar project, Center for the Study of Language and
Information, Stanford, California.

Lauri Karttunen. 1984. Features and values. In Proceedings of the Tenth Interna-

tional Conference on Computational Linguistics, pages 28-33, Stanford Univer-
sity, Stanford, California, 2-6 July.

1986. Radical lexicalism. Technical Report CSLI-86-68, Center for the
Study of Language and Information, Stanford, California, December.

Lauri Karttunen and Martin Kay. 1985. Structure sharing with binafy trees. In
Proceedings of the 23rd Annual Meeting of the Association for Computational
Linguistics, University of Chicago, Chicago, Illinois, 8-12 July. :

Robert Kasper. 1987. Feature Structures: A Logical Theory with Application to
Language Analysis. Ph.D. thesis, University of Michigan, Ann Arbor, Michigan.

Robert Kasper and William Rounds. 1986. A logical semantics for feature struc-
tures. In Proceedings of the 24th Annual Meeting of the Association for Com-
putational Linguistics, pages 257-266, Columbia Umversxty, Noew York, New
York, 10-13 June.

Martin Kay. 1980. Algorithm schemata and data structures in syntactic processing.
Technical report, Xerox Palo Alto Research Center, Palo Alto, California. A ver-
sion will appear in the proceedings of the Nobel Symposium on Text Processing,
Gothenburg, 1980.

. 1983. Unification grammar. Technical report, Xerox Palo Alto Research
Center, Palo Alto, California.

144 Parsing and Type Inference for Natural and Computer Languages

.1985. Parsing in functional unification grammar. In Natural Language
Parsing: Psychological, Computational and Theoretical Perspectives, Studies in
Natural Language Processing, chapter 7, pages 251-278. Ca.mbrldge University
Press, Cambridge, England. '

John P. Kimball. 1973. Seven principles of surface structure parsing in natural
language. Cognition, 2(1):15-47.

Donald E. Knuth. 1965. On the translation of languages from left to right. Infor—
mation and Control, 8(6):607-639.

Robert A. Kowalski. 1979. Algorithm = logic + control. Communications of the
ACM, 22(7):424-436, July.

Marlys A. Macken. 1986. Agreemeﬁt, rule interaction and the phonology-syntax
interface. In The Fergusonian Impact, Volume 1: From Phonology to Society.
Mouton de Gruyter, Berlin.

Mitchell Marcus. 1980. A Theory of Syntactic Recognition for Natural Language.
MIT Press, Cambridge, Massachussets.

Michael C. McCord. 1980. Slot grammars. American Journal of Computational
Linguistics, 6(1):255-286, January-March.

Robin Milner. 1978. A theory of type polymorphism in programming. Jeurnal of
Computer and System Sciences, 17:348-375.

M. Drew Moshier. 1988a. Paper presented at the Mathematical Theories of Lan-
guage Workshop at the 1988 Linguistic Institute.

—, 1088b. Eztensions to Unification Grammar for the Description of Program-
ming Languages. Ph.D. thesis, University of Michigan, March.

M. Drew Moshier and William C. Rounds. 1987. A logic for partially specified data
structures. In Proceedings of the ACM Symposium on Principles of Program-
ming Languages, May.

Greg Nelson and Derek C. Oppen. 1978. Fast decision algorithms based oa congru-
ence closure. Technical Report AIM-309, Stanford Artificial Intelligence Labora-
tory, Stanford University, Stanford, California, February. Also in Proceedings of
the 18th Annual Symposium on Foundataons of Computer Science, Providence,
Rhode Island, October, 1977.

Fernando C. N. Pereira. 1981. Extraposition grammars. American Journal of
Computational Linguistics, 7(4):243-256, October-December.

. 1983. Logic for natural language analysis. Technical Note 275, Artificial
Intelligence Center, SRI International, Menlo Park, California.

w

Bibliography 145

1985a. A new characterization of attachment preferences. In David R.
Dowty, Lauri Karttunen, and Arnold M. Zwicky, editors, Natural Language
Parsing—Psychological, Computational, and Theoretical Perspectives, chapter 9,
pages 307-319. Cambridge University Press, Cambridge, England.

. 1985b. A structure-sharing representation for unification-based grammar
formalisms. In Proceedings of the 23rd Annual Meeting of the Association for
Computational Linguistics, University of Chicago, Chicago, Illinois, 8-12 July.

Fernando C. N. Percira and Stuart M. Shieber. 1984. The semantics of grammar
formalisms seen as computer languages. In Proceedings of the Tenth Interna-
tional Conference on Computational Linguistics, Stanford University, Stanford,

~ California, 2-7 July.

Fernando C. N. Pereira and David H. D. Warren. 1983. Parsing as deduction. In
Proceedings of the 21st Annual Meeting of the Association for Computational
Linguistics, pages 137-144, Massachusetts Institute of Technology, Cambridge,
Massachusetts, 15-17 June.

P. Stanley Peters and Robert W. Ritchie. 1973. Context-sensitive immediate con-

stituent analysis—context-free languages. Mathematical Systems Theory, 6:324~
333.

Carl Pollard. 1985a. Lecture notes on head-driven phrase-structure grammar. Cen-
ter for the Study of Language and Information, unpublished, February.

. 1985b. Phrase structure grammar without metarules. In Proceedings of the
Fourth West Coast Conference on Formal Linguistics, University of Southern
- California, Los Angeles, California.

Carl Pollard and Ivan A. Sag. 1987, Infonﬁdt':'on-Bdse'd Syntdm and Seniaﬁtics,
volume 13 of CSLI Lecture Notes. Center for the Study of Language and Infor-
mation, Stanford, California.

Geoffrey K. Pullum and Arnold M. Zwicky. 1986. Phonological resolution of syn—
tactic feature conﬁlct Language, 62(4):751-773, December

J. A, Robmson 1965. A machine- onented logic based on the resolut;on pnnc1ple
Journal of the ACM, 12(1):23-44, January.

Jane J. Robinson. 1982. DIAGRAM: A gra,mma.r for dialogues. Communzcatwns
of the ACM, 25(1):27-47, January. :

Stanley J. Rosenschein and Stuart M. Shiéb'er.' 1982. Tra.ﬁsiati'ng En'glish;'into
logical form. In Proceedings of the 20th Annual Meeting of the Association for

Computational Linguistics, pages 1-8, University of Toronto, Toronto, Ontarlo,
Canada, 16-18 June. :

146 Parsing and Type Inference for Natural and Computer Languages

William C. Rounds and Robert Kasper. 1986. A complete logical calculus for record
structures representing linguistic information. In Proceedings of the Symposzum
on Logic in Computer Science, 16-18 June. : -

Ivan A. Sag, Gerald Gazdar, Thomas Wasow, and Steven Weisler. 1985.” Coor-
dination and how to distinguish categories. Natural Language and Linguistic
Theory, 3(2):117-171, May.

‘Stuart M. Shieber. 1983. Sentence disambiguation by a shift-reduce parsing tech-
nique. In Proceedings of the 21st Annual Meeting of the Association for Com-
putational Linguistics, pages 113-118, Massachusetts Institute of Technology,
Cambridge, Massachusetts, 15-17 June. :

. 1984. The design of a computer language for linguistic information. In Pro-
ceedings of the Tenth International Conference on Computational Linguistics,
Stanford University, Stanford, California, 2-7 July.

1985a. Criteria for designing computer facilities for linguistic analysis.
Linguistics, 23:189-211.

. 1988b. An Introduction to Unification-Based Approaches to Grammar, vol-
ume 4 of CSLI Lecture Notes. Center for the Study of Language and Information,
Stanford, California.

——. 1985c. Using restriction to extend parsing algorithms for complex-feature-
based formalisms. In Proceedings of the 22nd Annual Meeting of the Association
for Computational Linguistics, University of Chicago, Chicago, llinois, July.

. 1986. A simple reconstruction of GPSG. In Proceedings of the 11th Inter-
national Conference on Computational Linguistics, pages 211-215, University of
Bonn, Bonn, West Germany, 25-29 August

. 1987. Separating lmgmstxc a,nalyses from hngmst:c theories. In Uwe Reyle,
edltor, Natural Language Parsing and Linguistic Theories. D. Reidel, Dordrecht,
Holland.

. 1988. A uniform architecture for parsing and generation. In Proceedingé of
the 12th International Conference on Computational Linguistics, pages 614-619,
Karl Marx University of Economics, Budapest, Hungary, 22-27 August. :

Stuart M. Shieber, Lauri Karttunen, and Fernando C. N, Pereira. 1984. Notes
from the unification underground: A compilation of papers on unification-based
grammar formalisms. Technical Report 327, Artificial Intelligence Center, SRI
International, Menlo Park, California, June.

Stuart M. Shieber and Fernando C. N. Pereira. Forthcoming. Tﬁe denotational
semantics of information-based grammar formalisms. In Ewan Klein, editor,
Studies in Unification Grammar. D. Reidel, Dordrecht, Holland.

Bibliography 147

Stuart M. Shieber, Hans Uszkoreit, Fernando C. N. Pereira, Jane J. Robinson,
and Mabry Tyson. 1983. The formalism and implementation of PATR-II. In
Research on Interactive Acquisition and Use of Knowledge, volume SRI Final
Report 1894. Artificial Intelligence Center, SRI International, Menlo Park, Cal-
ifornia.

Henry Thompson. 1981. Chart parsing and rule schemata in GPSG. In Proceedings
of the 19th Annual Meeting of the Association for Computational Linguistics,
pages 167-172, Stanford University, Stanford, California, 29 June-1 July.

Hans Uszkoreit. 1986. Categorial unification grammars. Technical Report CSLI-
86-66, Center for the Study of Language and Information, Stanford, California,
December.

David H. D. Warren and Fernando C. N. Pereira. 1982. An efficient easily adaptable
system for interpreting natural language queries. American Journal of Compu-
tational Linguistics, 8(3-4):110-122, July.

Terry Winograd. 1983. Language as a Cognitive Process— Volume 1: Syntazr.
Addison-Wesley, Reading, Massachusetts.

Kent Barrows Wittenburg. 1986. Natural Language Parsing with Combinatory
categorial Grammar in a Graph-Unification-Based Formalism. Ph.D. thesis,
University of Texas, Austin, Texas, August.

William Woods. 1970. Transition network grammars for natural language analysis.
Communications of the ACM, 13(10), October.

David A. Wroblewski. 1987. Nondestructive graph unification. In Proceedings of
the Sixth National Conference on Artificial Intelligence, pages 582-587, Seattle,
Washington, 13-17 July.

Annie Zaenen and Lauri Karttunen. 1984. Morphological non-distinctiveness and
coordination. In Eastern States Conference on Linguistics 1, Ohio State Uni-
versity.

Henk Zeevat. 1988. Combining categorial grammar and unification. In Uwe Reyle
and Christian Rohrer, editors, Natural Language Parsing and Linguistic Theo-
ries, pages 202-229. D. Reidel, Dordrecht, Holland.

B pa

P

