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The Representation Space Paradigm of
Concurrent Evolving Object Descriptions

Aaron F. Bobick, Member, IEEE, and Robert C. Bolles, Member, IEEE

Abstract— A representation paradigm for instantiating and
refining multiple, concurrent descriptions of an object from a
sequence of imagery is presented. This paradigm is designed to
be used by the perception system of an autonomous robot that
1) needs to describe many types of objects, 2) initially detects
objects at a distance and gradnally acquires higher resolution
data, and 3) continuously collects sensory input. We argue that
multiple, concurrent descriptions of an object are necessary
because different perceptual tasks are best performed using dif-
ferent representations and because different types of descriptions
require different quality data to support their computation. Since
the data change significantly over time, the paradigm supports
the evolution of descriptions, progressing from crude 2.D “blob™
descriptions to complete semantic models, such as bush, rock,
and tree. To control this accumulation of new descriptions, we
introduce the idea of representation space. Representation space
is a lattice of representations that specifies the order in which
they should be considered for describing an object. Each of
the representations in the lattice is associated with an object
only after the object has been described multiple times in the
representation and the parameters of the representation have
been judged to be “stable.” We define stability in a statistical
sense, enhanced by a set of explanations describing valid reasons
for deviations from expected measurements. These explanations
may draw on many types of knowledge, including the pbysics
of the sensor, the performance of the segmentation procedure,
and the reliability of the matching technigue. To illustrate the
power of these ideas, we have implemented a system, which we
call TraX, that constructs and refines models of outdoor objects
detected in sequences of range data.

Index Terms— Autonomous navigation; object representation;
scale space.

I. INTRODUCTION

UCH OF COMPUTER vision research is directed at
Mthe problem of constructing computational descriptions
of the world. To that end, many representations—description
languages—have been devised to describe different types
of objects and support different types of tasks (e.g., see
[1], [10], [13]). In addition, there is an extensive body of
research on filtering techniques for incrementally refining
object description parameters as new sensory data are acquired.
However, little research has been devoted to the coordination
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of multiple, concurrent descriptions of objects, particularly
when the descripiions are to be refined over time. In this
paper, we present a representation paradigm that supports
the instantiation, accumulation, and refinement of significantly
different descriptions of an object.

The goal of constructing a multiplicity of descriptions of an
object is motivated by the following two observations: First,
different objects and different tasks require different represen-
tations. A description language well suited for describing the
shape of vegetation may be poorly suited to describing the
shape of a hippopotamus. Second, as the quality of sensory
data changes, the types of representations that can be supported
change. The initial description of a distant object may be as
simple as a bounding sphere, whereas a fully developed model,
built from high resolution data, may be a complex structure of
parts. It is premature 1o try to compute a multipart description
of an object that spans only a few pixels in an image.

The motivation for our research is the development of
a perception system for an autonomous robot. One of our
primary goals for such a system is for it to construct a
reliable model of the environment that is complete enough
to support such tasks as route planning, obstacle detection,
and landmark recognition. This need to support a wide range
of tasks requires the perception system to compute a rich set
of descriptions. In addition, within the domain of autonomous
navigation, the availability of new and improved data arises
naturally; approaching an object yields better resolution data,
and repeated observations from different directions provides
increasing amounts of shape information. To provide an intu-
ition as to the desired performancc of such a perception system
and to motivate the use of multiple, concurrent descriptions,
consider the following example of an autcnomous system,
constructing a map of its environment as it moves along.

Assume that a robot vehicle using range imagery initially
detects a small object at a distance of 20 m (the obstacle is
actually a thin thistle bush). At that range, the system cannot
be certain whether the object is a real obstacle or an artifact
of the detection process; confirmation from the analysis of
subscquent images is required. By analyzing three or four new
images of the scene, the program determines that the object is
real and then formally enters the object into the robot's model
of the environment. Poor sensor resolution, however, permits
only a crude estimate of the object’s size and position. As
the vehicle continues to approach the object, the increased
resolution allows the robot to specify the size and position
more precisely; again, agreement between estimates from one
image to the next provides a high degree of confidence in these
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Fig. 1. Evolution of the description of an object. As more information
becomes available, the paramelers of previously instantiated descriplions are
refined, and as more descriptions can be computed reliably, the model of the
object is expanded to include these new descriptions.

3D Blob

3D Blob,
size, texture

Sticks

estimates. As the vehicle gets closer yet, the program detects
and builds descriptions of individual parts of the object. It
detects and describes four stick-like parts that correspond to
the stem and branches of the thistle. When these parts have
been confirmed over several images, they are added to the
object’s model, and refinement procedures are instantiated to
update their shape and location estimates over time. Finally,
since the descriptions of the object’s parts match those of
thistle bushes, which are expected in the area, the robot
classifies the object as a thistle bush, and adds this semantic
description to the object’s model. This cumulative description
process is shown in Fig. 1.

If, during the analysis that produces these descriptions, the
bush is not detected in an image, the program tries to explain
why the bush was not detected instead of assuming that it
disappeared. Perhaps the bush is out of the sensor’s field of
view, is occluded by another object, or was missed by the low-
level segmentation process. Incorporating such an explanation
subsystem into the description evaluation process improves
performance by successfully accounting for infrequent, yet
expected, situations. To identify the possible causes of loss of
continuity, the explanation subsystem invokes a wide variety
of heuristics designed to match the characteristics of particular
sensory and processing stages.

As a perception system of the type we are describing
computes and validates more descriptions of the objects in
a scene, it is able to provide better responses to requests
from other vehicle modules, such as the route planner or the
landmark recognizer. For example, if the perception system
has only computed and validated the crude 3-D description of
an object, its response to a question about possible obstacles
in front of the vehicle would only consist of a description of
the object’s approximate size and location. Not knowing the
identity of the object, the planner would have to select a route
that avoids the object. If, on the other hand, the perception
module has identificd the object as a thistle, the planner has

more options, including running over the object, if there is no
convenient clear path around it.

In this representation paradigm, the system only eompares
two object descriptions in the context of a specific task.
The key question is the following: “Which description is
better for answering the particular question?” and not “Which
description is intrinsicly better?” Thus, an occupancy grid
may be the best description for answering questions about the
empty space around an object; a viewer-centered description
may be best for tracking an object from image to image;
a generalized-cylinder model may be the best for predicting
the appearance of an object from another point of view. The
system employs several representations as equal partners in
its description of the object.

In the remainder of this paper, we describe a representa-
tional framework for a vision system that maintains mulliple,
concurrent descriptions of objects. The representations used to
form the descriptions are designed to model different types of
abjects, to support different types of inferences, and to require
different specificity and accuracy of data to warrant their
computation. We embed this framework within a system that
incrementally constructs object descriptions over time such
that the complete description of an object evolves. We make
use of temporal stability to assess the validity of computed
descriptions. In the final section of the paper, we discuss some
the difficult questions that are raised by employing such a
representational scheme.

Throughout this paper, we illustrate our ideas with results
from the TraX system, which is an implemented system that
constructs and refines models of outdoor objects, such as
bushes, trees, and rocks, detected in sequences of range data.
With regards to the implementation of TraX, we make two
observations: First, we do not mean to imply that the particular
set of representations presented is adequate to describe the
entire outdoor world. In fact, our research is designed to allow
the seamless introduction of additional representations as is
necessary; additional representations are needed as new object
types or new tasks are considered. Second, the particular com-
ponents assembled for addressing the autonomous navigation
task are not of primary importance; they were constrained by
the sensory data available and the objects of interest. Rather,
these components are used to illustrate the importance of
incorporating a detailed understanding of the sensors and the
processing algorithms into the multirepresentational frame-
waork; this understanding is critical to successfully choosing
available representations and exploiting computed descriptions
to perform necessary tasks.

II. A SPACE OF REPRESENTATIONS

In a multiple representation system, should all the represen-
tations be used to describe all the known objects all of the
time? We argue that the answer to this question is “no” for
two reasons: First, the resolution of the data may only support
simple models. Not only would computing a meore complex
structural description be a waste of computational resources,
but the model produced would be erroneous, possibly leading
to false conclusions on the part of the perception system.



148 1EEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 14, NO. 2, FEBRUARY 1992

AN
© 909, ED-CD~

Fig. 2. Representation space for the TraX system. The shaded nodes repre-
sent components of the representation in use. A new node can be shaded only
if one of its connecling nodes is shaded and the stabilily conditions necessary
for its acceptance have been met.

Second, the diversity of objects in the world is such that some
objects are best described using one set of representations,
whereas others are best characterized by another. It is un-
reasonable to expect a single representation to be appropriate
for all objects in the outdoor world; this is especially true
for high-level representations such as generalized cylinders
[1], superquadrics [16], or geometric solids [17], [13]. In
the domain of autonomous navigation, a building might be
well represented by geometric solids, whereas more irregularly
shaped objects, such as trees and bushes, would require quite
different representations.

To capture the natural progression of representations sup-
ported by better data and to cover the diversity of objects in
the world, we have introduced a partially ordered set—a lat-
tice—of representations, which we call representation space.
The importance of having a lattice is that it focuses the
perception system on the most appropriate representations for
an object, given both the resolution of the data and the inherent
properties of the object.

Fig. 2 shows the representation space used in the TraX
system, which we implemented to explore the issues associated
with a multiple representation system. We consider represen-
tation space to be composed of fundamental representations
and enhancenents. Each fundamental representation reflects
a qualitatively distinct representation, whereas an enhance-
ment corresponds to the addition of a few parameters to a
fundamental representation.! In the diagram, each large node
corresponds to a fundamental representation, and each small
node corresponds to an enhancement. As indicated, funda-
mental representations available in our TraX system include
2-D blobs, 3-D blobs, superquadrics (SQ), sticks (a 3-D parts
representation described later), and several semantically based
representations including bush and tree.

Representation space is similar to scale space [19] in that the
representation of an object is not restricted to any one level of
description; different levels of specificity are possible. Unlike
scale space, however, and unlike hierarchical representations,
e.g., [10], [12], {4], representation space is not homogeneous.
For example, Marr and Nishihara [10] propose using general-
ized cylinders of many scales to achieve a representation that
spans data of different resolutions. Although the description of

'We recognize that there is no formal distinction between levels and
parameters. However, the intuition that there are several qualitatively different
representations, each of which can be enhanced by the addition of a few
parameters, is strong, and we have found the distinction useful,
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Fig. 3. Different representation schemes: (a) Hierarchical representation; (b)
representation space. In representation space, descriptions vary in the types
of representations used. Additional information not only causes accuracy lo
improve but also allows an object description to contain different types of
information. ((a) reprinted frem [10]).

an object improves as more detailed information is acquired,
there is no change in the type of inferences the representation
can support. Only the size and number of primitives and the
corresponding level of accuracy improves. In representation
space, however, a change in representation often implies the
ability to assert new properties about an object. These two
approaches are schematically contrasted in Fig. 3.

One of the implications of representation space is that as
new data are processed, the description of an object can be
modified in one of three ways. First, the parameters of the
active components of the representation can be updated. We
refer to this process as refinement; refinement procedures use
standard filtering techniques and are similar to algorithms
used Dy others to reduce parameter uncertainty [2], [11],
(18], [5]. The second type of change is the activation of a
parameter or property attached to an active representation. For
example, the active representation indicated in Fig. 2 could be
expanded by activating the TEXTURE node under 3D-BLOB.
This type of modification is referred to as enhancement; the
representation is enhanced by the addition of a new parameter.
The final type of update is augmentation; in Fig. 2, this would
correspend to activating either the SQ (superquadric) or the
STICK fundamental representation. The augmentation of a
representation for an object means that the object can be
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described in a completely new vocabulary. As a coilection,
the methods of modifying the description of an object are
designed to combine well-known quantitative techniques for
integrating information with a more qualitative approach that
permits the nature of a representaiion to change over time.

Arcs in the representation space diagram indicate ways
that the description of an object can be extended, that is,
they provide the control structure for the accumulation of
descriptions. A new node in representation space can become
active, indicating that the corresponding representation is
active for a given object, only if one of its predecessor nodes
is active. By shading nodes in this diagram, we indicate the
active components for a particular object. For example, in Fig.
2, the large shaded node labeled 3D-BLOB indicates that a
reliable 3-D blob description has been computed for the object.
The small shaded nodes labeled SIZE and POS reflect the fact
that the size and position of the biob are known.? Thus, for
this particular object, the TEXTURE, SQ, and STICKS nodes
can be activated the next time data for this object is analyzed.

Note that the arcs in representation space do not imply
computational dependency. For example, the algorithms in the
TraX system for computing a superquadric model of an object
are independent of those for computing a 3D-BLOB descrip-
tion. This differs from typical level-of-abstraction hierarchies,
where each new description is computed from the previous
level representation; in a typical sequence, lines are computed
from edges, planar facets from lines, volumetric primitives
from lines, etc. [8]. Such chaining of representations leads to
the compounding of processing errors. In contrast, the different
levels of representation space can be used to check the validity
of a computed description. If the 3D-BLOB predicted by
operations performed on the superquadric model is not similar
to the blob computed directly from the data, then the system
would have evidence that at least one of its descriptions is not
valid. Although we have not yet explored this issue in detail,
we would hope to make use of the independent computation of
representations to increase the overall robustness of the system.

In addition, it is important to realize that when a new
representation is invoked to compute a description for an
object, the previous descriptions are not discarded. They are
retained because they may be the best representation to answer
a task-related question, even if they are at a reduced level of
specificity or accuracy. Examples of employing multiple levels
of description for accomplishing different perceptual tasks are
included in the next section.

To underscore the point that the construction of a description
of an object is a cumulative process, consider the conceptual
graph in Fig, 4. This graph is intended to reflect the utility
of representation space. The abscissa indicates the amount of
processed sensory input, which in the case of an autonomous
robot is monotonically related to time. The ordinate indicates
the “power” of the description of an object as constructed by
the system. As more data are processed, the description of an

2For this discussion, we arc ignoring the issuc of uncertainty in the
cstimate of a parameler. In actuality, once the measurcment of a parameter
is determined to be relatively stable, we use Kalman Rllering techniques to
update the value of the parameter and maintain an explicit cstimate of the
uncertainty of the value.
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Fig. 4. Conceptual graph demonstrating the utility of representation space.
The abscissa indicates increased scnsory input. The ordimale indicates the
“power” of the description of an object as constructed by the system. The
large steps indicate augmenration, where a new fundamental representation
has been activated and that new representalion supports many new inferences
about the object. The small steps reflect enfiancement, where new parameters
have been added to a current description. Finally, the increasing slope of
the tops of the steps indicates refinement, which is the improvement in the
accuracy of the current representation.

object becomes more precise and, thus, more “powerful.” The
large steps indicate augmentation, where a new level of repre-
sentation has been activated that supports many new inferences
about the object. The small steps reflect enhancement, where
new parameters have been added to a current description.
Finally, the increasing slope of the tops of the steps indicates
refinement, which is the improvement in the accuracy of the
current representation. ‘

III. STABILITY AND VALIDITY

Representation space controls the order in which represen-
tations are explored for describing a particular object. How
does the system decide that a computed description is valid
and, therefore, should be added to the object’s model? In this
context, we use the term valid to mean that the description
correctly characterizes some aspect of the object, as opposed
to being a transient artifact of the processing.” To address the
question of validity, we must consider the causes of artifacts.

Artifacts can arise for several reasons. Computing a de-
scription of an object using an inappropriate representation
can easily lead to a model that does not reflect any intrinsic
property of the object; for example, a stick description of a
boulder is mostly determined by idiosyncracies of the stick
fitting algorithm. In addition, artifacts can arise because of rare,
yet expected, events that violate the assumptions embodied
in the processing; for example, accidental alignment can
make iwo objects appear to be one larger object. Finally,
artifacts can occur because of unmodeled errors; for example,
a segmentation algorithm can hallucinate an object from an
unlikely variation in the data. The ability to determine when
a description is valid is important for any perception system;
it is critical in a multirepresentational framework in which
many descriptions are tried, but only a few characterize an
object well,

Qur current approach to assessing the validity of a computed
description relies on an analysis of temporal stability. We do

30ur use of stability and validity is closely rclated to the “principle of
stability” in [7].
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this by tracking an object over time, computing a new descrip-
tion of it in each image, and then analyzing the sequence of
these independently computed descriptions. If the descriptions
are similar over a period of time, we compute a composite
description, validate it as a real entity, and add its description
to the model of the scene. For example, if a particular stick
description is computed repeatedly for a part of an object, we
assume that the consistency across independently computed
descriptions is due to a real structural property of the part,
and therefore, the stick description of the part is added to the
model of the object.

Given this basic strategy, there are two key phrases that
need to be functionally defined in order to convert it into an
algorithm: “similar descriptions” and “over a period of time.”
To define these terms, we ideally would like to rely strictly on
strong models of components of the perception system, such
as the physics of the sensor, its noise characteristics, and the
characterizations of the image analysis techniques. However,
in practice, these models are not adequate to completely
predict the behavior of the system. As a result, we use these
explicit models when they are available and, when necessary,
augment them with statistical, empirically determined models.
For example, we predict where we expect to see a previously
detected object and how large it will be from a combination
of three strong models: a model of the physics of the range
sensor, a model of its scanning geometry, and a model of
the vehicle’s motion based on inertial navigation data or land
navigation data. However, to predict how frequently an object
might be missed by our low-level segmentation procedures,
we built a simple statistical model by applying the procedures
to hundreds of images and accumulating failure statistics.

Deep and Shallow Models and Explanations: Jain and Bin-
ford [9] use the term “shallow” to refer to statistically derived
models; we will thus use the term “deep” to refer to models
derived from known physical systems. These deep models,
such as the model of the range sensor’s scanning technique,
can support quite precise predictions and can be embedded in
algorithms that cover a wide range of tasks. For example, we
use the scanning model of the sensor in conjunction with high-
frequency inertial navigation data (i.e., a set of measurements
for each image scan line) to compensate for the bouncing
of the vehicle during the (.4 s required to gather a range
image using the Environmental Research Institute of Michigan
range sensor. This process not only corrects for bouncing
but also corrects for the relativistic effect that causes vertical
telephone poles to bend in the imagery because the vehicle is
significantly closer to the pole when it measures the bottom
of the pole than when it measures the top. Deep models are
robust in the sense that they always contribute an accurate
characterization of the processing system.

Shallow models, however, such as our simple statistical
mode! of the failure frequency of our segmentation proce-
dures, are always suspect. A commonly cited reason for their
restricted utility is the difficulty of ensuring that the training
set adequately covers the range of expected scenes [6]. A more
serious difficulty with shallow models. is that situations arise
in which the application of those models is inappropriate. As
mentioned, we use the empirically determined probability of

failure of a segmentation algorithm to determine the number of
times an object should be detected in a sequence of imagery
before being declared valid. With our current segmentation
procedures, this threshold is set at three. However, there
are many reasons other than the failure of the segmentation
procedure for an object to be undetected in a given image and,
furthermore, these situations are predictable from additional
system component models. Thus, for robust performance, the
use of shallow models must be tempered by explanations,
which are here defined to be understood situations that cause
shallow models to be inappropriate. For example, the decision
about whether an object has left the field of view is based on
the model of the sensor’s scanning technique and the vehicle’s
location estimates; this is an example of an explanation based
on a deep model. On the other hand, one of the common
mistakes of our system occurs in our column-oriented analysis
of the raw range image. For that problem, we only have
an ad hoc description of the pathology of an eror; in this
case, a columnar plume suddenly appears in the shape of the
object. If some object is not matched in a new image, and
an apparently new object has appeared with a large columnar
piece, the system explains the situation as being a possible
error in processing.

The idea of a possible error introduces our last point about
employing shallow models; decisions based on shallow models
are always suspect and should be confirmed by further data.
As such, it often becomes necessary for the system to maintain
multiple, competing hypotheses about the state of an object.
Continuing the example of the last paragraph, the system
does not absolutely conclude that the newly shaped object is
indeed a hallucination caused by a processing error. Rather,
a wait-and-see attitude is adopted, and both possibilities are
maintained; the processing of subsequent images resolves the
ambiguity.

A. Stability in Blob Detection

The first representation used to describe an object is 2-D-
BLOB. In the TraX system, the 2-D-BLOB description of
an object consists of the range pixels corresponding to the
object, as viewed in the most recently processed image. This
representation is important not only because it is the first
instantiation of a model for an object, and therefore endows
existence to some object, but also because the actual pixels
viewed in one image are the best description for matching
that object in the next image of a sequence. The question of
whether a 2-D-BLOB description is valid is really a question
of whether the segmentation process cormectly detected a real
obstacle or whether it mistakenly isolated some pixels that are
part of the ground. Robustly detecting obstacles and tracking
these objects from image to image are critical in a system that
integrates information over time to construct reliable models.

The segmentation procedure in the TraX system consists
of classifying each pixel in each range image as ground or
obstacle. This classification is made by applying a multistep
procedure that first identifies regions in the image that are
well fitted by planes. We next determine the consistency of
these planes with an a priori digital terrain map (DTM), using
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orientation as the principal factor. The consistent planes are
then extended to completely cover the gaps between them,
essentially forming a new, local DTM. Any range pixels that
are more than a certain distance above or below this new DTM
are then marked as obstacles. Because the ground clearance
of the Martin Marietta Autonomous Land Vehicle is about 6
in, we use that value as a threshold. Notice that because we
make use of the temporal stability of the detected obstacles to
validate the segmentation, we can set the threshold according
to the specifications of the task instead of concentrating on the
expected single image false alarm rate.

As mentioned earlier, we use a shallow model of obstacle
detection to determine the best control strategy for assessing
validity. Empirically, we have determined that if an object
detected in three consecutive images, then there is a very
high probability that it is a real object. In addition, once an
object has been validated, it is unlikely to be missed twice
consecutively. We implement this simple control strategy using
a quasi-finite-state machine (QFSM). We use the term “guasi”
because as an object moves through these states, the history of
its traversal is recorded and can sometimes affect operations
that occur outside the FSM control structure?

Fig. 5 shows a simplified portion of the QFSM used for the
analysis and tracking of 2-D blobs. Notice that there are several
ways to enter the Initially-Detected state, including being de-
tected in the first image of the sequence, coming out from be-
hind another object, and splitting off a previously detected ob-
ject. The importance of making these paths explicit is that we
can later use this information to help explain unexpected phe-
nomena and to affect decisions made outside the control struc-
ture of this QFSM, such as deciding how to combine the mod-
els of two objects that are later decided to be only one object.

Once an object is Initially-Detected, we try to match that
object in subsequent images. As an object is successfully
matched, it moves into the Stable state; at this point, the
object is considered to be “real,” and attempts to extend the
description are begun. If, however, after initial detection the
object is no longer matched, the object quickly moves to
the Artifact state, indicating that the detected obstacle is an
artifact of some processing step and should be discarded.

Notice that at each state, there is a missed-but-can-explain
transition. This type of arc represents a situation in which the
object is not successfully located in an image in which it is
expected, but there is an external explanation as to why not.
Increasing the competence of the system requires recognizing
these situations and incorporating explanations of them into
the evaluation process. We cumently have implemented the
analysis required to support the following explanations:

 The object is no longer in the field of view of the sensor.

* The object is occluded by another known object.

* The object is a smail, short blob far away; therefore, it
can be easily missed.

* The object merged with another object to form a larger
object.

4We could implement the control structure using a truc FSM by simply
increasing the number of states. We choose not to do so because we would
end up with many states that wcre qualitatively similar, obscuring the general
structure.
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Fig. 5. Part of the finite-state machine for determining stability of
2-D-BLOBS.

* The object is unmatched because an error in the ambiguity
interval assignment greatly changed the apparent charac-
teristics of the object. (Ambiguity inferval assignment is
a preprocessing step that is necessary for determining the
true range from a phase shift range image.)

Fig. 6 is a sequence of segmentation images produced by
the single-image analysis. Object 1 (the short object on the
right) is detected in all four images. Initially, this object is
not maiched in the fourth image because the object’s shape
has changed dramatically. However, the change is mostly
characterized by the addition of a column of pixels in the last
image. In the TraX system, a column-scanning algorithm is
used to disambiguate the phase-encoded raw range signals; we
refer to this processing as an ambiguity interval assignment.
Therefore, a column-shaped change in the appearance of an
object is symptomatic of a particular mistake, namely, an
ambiguity interval assignment error. Thus, in this example,
the program concludes that an ambiguity error has possibly
occurred. The TraX system retains information about this error
as indicated by the following portion of program output:
Starting view 157 ...

(OBJECT-TRACKER-MBCE < QT ID:22
tGENERIC-0OBJECT-4 >
AMBIGUITY-INTERVAL-PROBLEM-WITH-BLOB
< TRAX-RANGE-BLOB R:25/157 >
BLOB-HAS-THE-EXTRA-PIECE 1-T0-1 CASE-6)
Creating OT < OT ID:41 :GENERIC-OBJECT-23 >
for region < TRAX-RANGE-BLOB R:25/157 >.

“- v
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Fig. 6. Tracking detected obstacles from image to image.

This fragment indicates two things: First :GENERIC-
OBJECT-4 (referred to as object 1 in Fig. 6) was missed
(not seen as expected) but could be explained (MBCE) by
an ambiguity interval problem in the processing of blob 25 in
image 157. Second, the system also starts a new object tracker
(OT for : GENERIC-OBJECT-23) as a competing hypothesis
that needs to be resolved in later processing. Because the
original object :GENERIC-OBJECT-4 was seen again in
images 158 and 159 and because :GENERIC-OBJECT-23 is
not matched, the newly created object is quickly eliminated,
with the explanation being that its creation was indeed an
artifact,

Object 2 {the thistle bush to the left of object 1 in Fig.
6 ) is an example of a single object splitting (third image)
and then merging again. In order to build a robust model
of the environment, the program must be able to handle
situations such as these. Again, the TraX system handles these
ambiguities by generating competing hypotheses and resolving
them with the processing of additional data. The density of
these events in this short sequence is higher than usual, but
they are typical of the events that occur in our analysis of
hundreds of images.

In the future, we plan to expand the list of possible expla-
nations. As we understand more of the fundamental properties
of objects and more about the behavior of the analysis pro-
cedures, we can implement more explanations, increasing the
competence of the system.

B. Stability in Integration

Once we have determined an object is real, we have a set of
techniques for generating 3-D descriptions. The simplest uses

a “3-D-BLOB” analysis that describes an object according to
its position, size, and, potentially, surface texture. Initial 3-D
analysis of a blob establishes an object-centered coordinate
system and then computes a 3-D scene location for the
object. The object-centered frame allows for the integration
of information about the shape of the object to be decoupled
from the compilation of information about the location of the
object. The actual representation of this new 3-D-BLOB is an
ellipsoid whose parameters of position and size are updated

. using standard Kalman filtering techniques. Critical to this

intepration is knowledge of the noise characteristics of the
Sensar.

. When more precise range data are available, we can com-
pute 3-D part models using one of two representations: su-
perquadrics and “sticks.” These representations support a class
of inferences about objects that are not supported by the
blob descriptions, namely, those requiring a structured shape
description.

‘Superquadrics are well suited to describing shapes com-
posed of compact parts [14], [16]. The technique we use
to compute superquadric models of objects is a modified
version of the algorithm described in [15]. We first compute
a “minimal cost covering” of the range pixels by executing
a coarse global search over the superquadric parameter space
and then optimizing the model by gradient descent. We have
found this technique' to be-adequate for modeling simple
objects such as rocks but have not exercised the algorithm
enough to evaluate it fully.

When objects are composed of thin pieces, as are fence
posts and thistle bushes, the response of the range sensor
tends to “fatten” the parts by generating mixed pixels along
the sides. This blurring prevents the superquadric algorithm
from finding the true stick-like description. To model these
thin objects, we have designed special representations we call
“sticks.” By definition, sticks appear as one-pixel wide lines
in range images. Thus, to compute a stick model of an object,
we first thin the range image of the object and then compute
a minimal covering in a manner analogous to superquadrics.
The stick model representation is used in the bush example
presented later in this paper.

Fig. 7 displays the results of applying the stick-fitting
procedure to a detected object. Each model is computed
independently making no use of the previous solution. Note
that most of the resulting models capture some structure of
the bush. However, except for the last one, none captures all
of the structure. The principal problem associated with these
fitting techniques is the lack of data to constrain the models.
As a result, there are often many descriptions that characterize
an object equally well. As with obstacle detection, we rely on
processes monitoring the stability of computed descriptions to
filter out those that are not valid.

To integrate stick descriptions over time, we employ a
method similar to that previously discussed for tracking of 2-
D-BLOB’s. In this case, however, new sticks computed from
the data are matched to model sticks that are being refined
with each image. Model refinement requires three stages: First,
model sticks that are matched by new sticks are reinforced
in terms of their stability, and their parameters are updated
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Fig. 7. Computing stick descriptions of a thistle bush. The column on the left displays the silhouetie of the object as determined by the obstacle detection
procedure; the middle column is the thinned version of these objects. The right column displays the best “stick” model of the thinned bush as computed
independently for that one image. Notc that some of the sticks are quite robust, such as the vertical stick on the right. Others are less stable, whereas some
are arifacts. Although the fitling technique can be improved, our goal is to use temporal stability to compute a more robust model.

using standard Kalman filtering techniques; the state variables
estimated are the endpoints of each stick [2], and we use our
model of the sensor and its noise characteristics to estimate the
variance of the new measurements. Second, unmatched new
sticks cause the formation of model sticks that are initialized
from the data; these sticks are searched for in subsequent
images. Finally, a stick that was initially detected but not
matched again is eventually discarded as an artifact of the
stick-fitting procedure, unless there is an explanation as to
why the stick should not be matched. Currently, we include
only one explanation that allows an unmatched stick to remain
as a viable part of the representation. The vehicle has backed
away from the object, and the individual stick may no longer
be detectable by the sensor.

Fig. 8 shows an example of the stability analysis applied
to sticks. The stick description computed independently using
the single range image as input is on the left. The set of stable
sticks tracked over time is on the right. A new stick is added
to the model on the right only after it has been deemed stable.
Note that the stable description converges to (what is known
to be} an accurate model of the bush.

IV. HARD PROBLEMS

A. Quasi-stability

In our approach to temporal integration, temporal stability of
a description is the primary indicator of reliability. The basic
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Fig. 8. Sticks computed independently (left column) and tracked over time
(right column). As a stick becomes stable, it is added to the mode] on the right.

assumption of this strategy is that for each appropriate repre-
sentation, there is a unique, correct description of an object and
that commonality across independently computed descriptions
reflects valid aspects of those descriptions. However, the

Fig. 9. Thin object equally well described as a two-stick ‘X' or as a
three-stick ‘H.’ Stability analysis cannot be used lo resolve this ambiguity.

appropriateness of this assumption depends on the match
between the objects in the domain and the representations.
Consider, for example, the image of an object shown in Fig. 9.
In this case, describing the object as a two-stick ‘X’ or as a
three-stick “H’ is equally correct. In addition, stability cannot
disambiguate between these models because they may each
occur periodically; such an occurrence leads to two competing
stick models, each of which is “quasi-stable.”

Although we do not have a complete solution to this
problem, we can avoid most of these difficulties in the TraX
system by keeping track of competing hypotheses. Thus, the
system could maintain two or more descriptions of an object
in one representation and clearly mark them as alternatives. If
asked to assert or predict a property of this object (such as an
appearance from some viewing direction), the system would
have to decide which description or which combination of
descriptions it should use, just as it does now when answering a
task-level request about an object that has multiple descriptions
derived from different representations. Although this remedy
may be adequate for many problems, it is clearly unsatisfactory
for situations in which there are many quasi-stable descriptions
of an object.

A related problem arises when the assumption that temporal
stability reflects validity is violated. If the data on which
an inappropriate model is constructed do not change over
time, then that inappropriate model will be deemed wvalid.
Our current explanation strategy provides a mechanism for
explaining the lack of confirmation of a correct interpretation
but does not handle this inverse situation.

B. Dynamic Worlds

In the TraX system, the scene is assumed to be static;
other than the vehicle, objects do not change their location,
orientation, or shape. What are the issues in extending our
approach to a dynamic environment?

One response is to simply model the dynamics of the
environment. In this case, variables such as velocity and
acceleration become additional parameters of the representa-
tion; aside from incorporating these new variables into the
prediction mechanisms, the approach to temporal integration
remains the same. In this case, however, stability becomes
much harder to assess. If an object is moving (e.g., a rotating
windmill), how does one determine that the shape description
computed is stable, implying that the description is valid?
Presumably, an understanding of the dynamics would need
to be included in the model itself.
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Another issue raised by a dynamic environment concerns
the matching of known objects to objects detected in the data.
If an object can change in location, orientation, and shape, how
does one determine correspondence? Without digressing into
a philosophical discussion of ontology or Lincoln’s axe,” we
must consider how to ensure that one is integrating information
about the same object. One insight into this problem is derived
from the work on motion analysis developed by one of the
authors [3], where the temporal sampling rate is high enough
that all transitions over time are smooth with respect to the
data. Thus, for example, tracking the movement of an object,
such as a person’s arm, is simplified because the object can be
easily tracked from frame to frame. That approach requires that
the data sampling rate be high enough to smoothly sample the
dynamics of the domain.

C. Explanations and Hallucinations

In this paper, we have made the claim that increasing the
number of expianations that the system can invoke to explain
why the actual sensory data deviated from predicted data
increases the overall competence of the system. The intuitive
argument supporting this claim is clear; if the number of
important events that the program can diagnose is greater,
the less likely the data are to confuse the mode! construction
process. However, one must be aware that if the system has
enough explanations, then the system can find an explanation
for anything. As an extreme example, suppose the explanation
“The sensor is completely broken and the incoming signal is
independent of the world.” is part of the knowledge base of the
system. Then, any data may be explained by such a statement,
and no useful modeling occurs.

To avoid such confusion, we have to resort to the idea of best
explanation, where best is defined as most likely according to
some a priori model of the world. This approach is the same
as that adopted by researchers employing minimal encoding
strategies to select the best description of a scene; examples
include segmentation and parts descriptions [16]. One diffi-
culty with this stratgey is that it requires the assignment of
prior probabilities to low-probability events (e.g., the sensor
has completely failed); these types of prior probabilities are
usually suspect.

To date, we have avoided addressing this problem by
placing stringent preconditions on the invocation of most
explanations. These conditions are strong enough that if they
are satisfied, we are willing to state categorically that the
explanation is appropriate. In the few instances of shallow
model explanations where strong preconditions do not exist,
the requirement that the weak conditions remain true over
an extended period of time prevents the explanations from
becoming too widely applied.

V. SUMMARY

We have described a new representation paradigm that

50Id joke: A farmer displays an axc over his mantle with a sign that reads
“Abe Lincoln’s Axe.” When a skeptical visilor enquires about its authenticity
the farmer replies: “Yup, it sure is Lincoln's axe. I've had to replace the
handle twice and blade once, but it’s old Abe’s.”

supports concurrent evolving descriptions of an object. Qur
rationale for developing this paradigm is as follows:

« Multiple, concurrent descriptions are required for two
reasons: 1) to describe the wide variety of objects that
occur in complex domains, such as the outdoor world
and 2) to efficiently support the inferences required by a
collection of task modules, including object tracking, path
planning, obstacle detection, and landmark recognition.

+ Not all representations are appropriate for every detected
object. Sometimes, the data are not sufficient to support
the representations, and sometimes the representations
are simply not appropriate for the object, such as a
fractal model of a hippopotamus. Therefore, to restrict
the application of representations to appropriate objects,
we introduce the idea of a representation space, which
imposes a partial ordering on the set of available repre-
sentations.

+ For applications in which a continuous stream of data
is available, the descriptions of an object can evolve
in two ways. First, the parameters of a representation
can be refined by filtering techniques as new data are
acquired, and second, if the data improve over time, new
descriptions can be added when they are supported by
the data.

+ Temporal consistency across independently computed de-
scriptions of an object is a strong indication of the validity
of the descriptions. If the same description is computed
from several images, there is a high probability that the
description captures a real structural aspect of the object.

*+ Since there are many reasons for a description to change
from one image to the next, the idea of temporal stability
can be significantly enhanced by the addition of explana-
tions that account for the problems and special cases that
invariably arise in the processing of real imagery. The
sources of explanations range from deep models, such as
the physics of the sensor, to shallow models, such as the
probability that a low-level procedure makes a mistake.

The ability to change an object’s description incrementally
and to build a temporally persistent yet consistent model of
the environment is crucial in autonomous navigation tasks;
objects are viewed many times from different viewpoints and
with different resolutions. By continually updating the objects’
descriptions, a robot is in a position to base its decisions on
the most current information at all levels.
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