|

O

atlon

Qe

® S5 Intermat

CL-PATR Reference Manual

Technical Note 456

February 13, 1989

By: Stuart M. Shieber, Computer Scientist
Artificial Intelligence Center
Computer and Information Sciences Division
and
Center for the Study of Language and Information

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED

The preparation of this paper and the research reported herein were supported in
part by a contract with the Nippon Telegraph and Telephone Corporation, and
in part by a gift from The System Development Foundation.

333 Ravenswood Ave. ® Menlo Park, CA 94025
(415) 326-6200 = TWX: 910-373-2046 = Telex: 334-486

CL-PATR Reference Manual

Version 1.0

Stuart M. Shieber

Artificial Intelligence Center
and
Center for the Study of Language and Information

SRI International

February 13, 1989

Copyright (© Stuart M, Shieber
Software Unpublished Copyright (€ SRI International
All Rights Reserved
CI-PATR and PATR, are Trademarks of SRI International
July, 1988

Contents

1 Introduction

1.1
1.2

1.3

2 The
2.1
2.2

2.3

2.4

2.5

Prerequisites
Functionality of cL-raATR
1.2.1 Grammar Manipulation . .
1.2.2 Grammar Testing
1.2.3 Grammar Debugging
1.2.4 Grammar Modification . . .
1.2.5 User Interfaces
Summary of Contents

S-PATR Grammar Formalism

Background
Token Structure and Lexical Issues
2.2.1 Character classes
2.2.2 Identifiers and handles . . .
223 Comments..........
Specifying DGs and DG Constraints
2.3.1 Specifying DGs
2.3.2 Specifying DG Constraints
2.3.3 Summary of Precedences .
Structure of S-PATR Statements .
2.4.1 Generalnotes
2.4.2 GrammarRules.
2.4.3 Lexical Structure Statements . . .
2.44 Macro Definitions
2.4.5 Control Statements.
2.4.6 Profile statements
Extensions e e e e .

3 Sample Grammar Files

3.1
3.2

The MainFile.
The Grammar File

...............................

...............................

...............................

...............................

...............................

...............................

3.3 The Lexicon File o i e e e e e e e e e

The CL-PATR Version of S-PATR

Installing and Running CL-PATR ‘

5.1 Installing the Systemn on a Macintosh Computer.
5.1.1 Running from the Distribution Disk
5.1.2 Running fromthe Hard Disk 0. ...

5.2 Installing the System on a Sun Workstation

5.3 Installing the Systemonan IBM-RT
5.3.1 Running from the Distribution Disk,
5.3.2 Running fromthe Hard Disk i it it e e e e

5.4 Installing the System on a Symbolies 3600

Overview of CL-PATR Concepts

6.1 Interface Interaction it e e

6.2 Grammar File Manipulation e

6.3 Grammar Testing ot e e e e e e e e e e

6.4 Grammar Debugging e

6.5 Grammar Modification e e e e e e e e e e e e e e e e e

6.6 Systern Configuration L e e e

6.7 Accessing the Functions e

The Command Interface

7.1 Basic Structure of the Interface
7.1.1 Labelingofobjects i it it e e e e e e e e e e
7.1.2 Browsing with the Display Command
7.1.3 Special Commands it i e e e e e e e e e e

7.2 Interface Interaction Commandst

7.3 Grammar File Manipulation Commands

7.4 Grammar Testing Commands i e

7.5 Grammar Debugging Commands e e

7.6 Grammar Modification Commands e

7.7 Systern Configuration Commands L i i e e
7.7.1 Configuration Parameters i e

Sample Session with the Command Interface

The Symbolics 3600 Graphical Interface

9.1 Basic Structure of the Interface
911 DisplayPanes..............

9.1.2 Browsing withthe Mouse e
9.2 Interface Interaction Functions i i
9.3 Grammar Manipulation Functions e

Contents

.........................

.........................

3

35

38
39
39
40
40
41
41
41
42

43
43
43
44
45
45
45
46

47
47
48
48
49
49
51
53
54-
56
56
57

60

4 CL-PATR Reference Manual

9.4 Grammar Testing Functions L e e 72
9.5 Grammar Debugging Functions e 72
9.6 Grammar Modification Functions L oL oL L., e 73
9.7 System Configuration Functions o 73
9.7.1 Configuration Parameters e 73

9.8 Normal Interaction L L e 73

10 Sample Session with the Symbolics 3600 Graphical Interface 75
11 Other Enhanced Interfaces 108
11.1 Extensions for the Macintosh ot e e e e e e e e e e e e e e e e 108
11.1.7 Macintosh Keystroke Equivalents 108

11.1.2 Alternative Grammar Updating 109

11.1.3 Intended Usage of the' Macintosh Interface, 109

11.2 Extensions for Running Under GNU Emacs oo i i h it i oo 109
11.2.1 GNU EMACS Keystroke Equivalents. 110

11.2.2 Alternative Grammar Updating v i 110

11.2.3 Intended Usage of the GNU EMACS Interface, 110

12 The CL-PATR. Architecture 112
121 Introduction L L e e e e e e e e e e e e e e e e e 112
12.2 Language Processing as Deduction e e e e e e e e e e e e e e 113
12.2.1 Terminology o o . o e e e e e e e 114

12.2.2 Rulesof Inference it i i i e e 114

12.3 Parameterizing a Theorem-Proving Architecture 114
12.4 Instances of the Architecture L L oo e 115
12.4.1 Parser Instancesttt e e e e e e 115

1242 A Parsing Example L .. . e e e e e e 117

12.4.3 Generator Instances L e e e e e e e e 118

12.4.4 A Generation Example. e e e 120

12.5 The Implementation 0 it i it i e e e e e e e e e e e e e 122
126 PIECUISOIS . & . v v vt v it e e e e e e e et e 122
12.7 Further Research e 123
13 Sample Symbolics 3600 System Files 126
13.1 Contents of sys:8ite;cl-patr.SYStEM o v v v v v v v v b b e e e e e .. 126
13.2 Contents of sys:site;el-patr.translationst veurr.n 126
13.3 Contents of sys:site;paren.system. i i ittt e e 127

13.4 Contents of sys:site;paren.translationso, 127

‘Chapter 1

Introduction

The PATR-11 grammar formalism has been developed over the last few years at SRI International as a,
grammar formalism for codifying fragments of natural language. Historically, PATR-1I developed from
the PATR (Parse, Annotate, and TRanslate) formalism [12]. The formalism has been used over the last
several years in projects building natural-language-processing systems to express syntactic and semantic
constraints on natural-language expressions.’

CL-PATR (Common LISP PATR) is the latest implementation of the PATR-11 formalism developed
at SRI. The cL-PATR implementation was motivated by a desire for a simple, reasonably efficient, and
highly portable implementation of PATR-I1. Because various implementations of PATR-II over the years
had begun to diverge in the formalism actually used, we have developed a standard for the PATR-
11 language, called s5-PATR; this is the version of the formalism actually implemented in the CL-PATR
system. S-PATR contains various extensions to previous PATR formalisms that have been found in the
past to be desirable. Written in pure Common LISP [4], CL-PATR has already been ported to Symbolics,
Sun, Macintosh, and IBM PC-RT computers.

1.1 Prerequisites

This manual is intended to be used for reference by users of the CL-PATR system, and is therefore not
self-contained. Readers are assumed to have some familiarity with the PATR formalism and its use for
expressing grammars, as well as an understanding of chart parsing methods. The introductory text on
unification-based grammars [15] should provide sufficient background on the former; the latter is covered
in natural-language processing textbooks [1; 18].

The implementation itself has been ported to various computers. Hardware environment should be
one of the following;:

e Symbolies 3600 LISP machine running Genera 7.2 or later.
e Sun workstation running Lucid Common LISP and Gonu EMACS.

1The preparation of this paper and the research reported herein were supported in part by a contract with the Nippon
Telegraph and Telephone Corporation, and in part by a gift from the System Development Foundation.

6 CL-PATR Reference Manuel

s Apple Macintosh computer, preferably a Macintosh II, running Allegro’s Coral Common LISP
version 1.2 or later.

+ IBM PC-RT computer running A/IX and Lucid Commeon LISP.

1.2 Funcfionality of CL-PATR

The CL-PATR system allows users to manipulate, test, debug, and modify grammars for fragments of
natural language written in the s-PATR standard for the PATR-II formalism.

1.2.1 Grammar Manipulation

A grammar is written as a group of computer files containing grammatical and lexical information about
an object language. These files are read and digested by the CL-PATR system in preparation for testmg,
debugging, and modifying the grammars.

To this end, CL-PATR provides for listing a directory of the various grammar files it can reference,
reading a particular grammar file or set of files, installing a compiled version of the files, and listing the
various grammar components such as rules and lexical entries.

1.2.2 Grammar Testing

A grammar can be tested by using the system to analyze object language sentences according to the
grammatical information, and checking the results of the analysis. Alternatively, testing by generating
sentences admitted by the grammar can be performed.

To this end, CL-PATR provides for parsing and generating of sentences.

1.2.3 Grammar Debugging

Aiding in the location of grammar errors are facilities for tracing the grammar rules, browsing the analysis
and generation results, and manually performing analysis and generation steps.

To this end, CL-PATR provides for printing parse tree representations of a phrase, listing the contents
of the chart, displaying the various results of an analysis, and manually extending one chart edge with
another.

1.2.4 Grammar Modification

Modifying grammars is aided by a facility for making incremental changes to a grammar in order to
update it without rereading the entire modified grammar.

To this end, CL-PATR provides for updating the grammar with new grammatical information.

Introduction 7

1.2.5 User Interfaces

The basic user interface, designed for maximum portability, is a simple line-oriented command interface.
The interface has been slightly augmented for the Macintosh computer. A separate graphical interface
is supplied for Symbolies 3600 LISP machines.

1.3 Summary of Contents

This manual covers two essentially independent topics: the structure of the s-PATR formalism and the
functionality of the cL-PATR implementation of that formalism.

We start by presenting the details of the s-PATR standard for the PATR-1I grammar formalism
{(Chapter 2), followed by some sample grammar files (Chapter 3). Chapter 4 discusses the changes and
augmentations to the s-PATR standard that CL-PATR allows for in grammar files.

The remainder of the manual is concerned with the implementation itself, rather than the formalism.
Instructions for installing the system on various computers is given in Chapter 5. (Symbolics users may
want to use the system files given in Chapter 13 when installing the system.)

An overview of the functionality of CL-PATR available through its various interfaces takes up
Chapter 6. This chapter presents the basic structure of interaction with the system around which all the
interfaces are constructed. The portable command interface is then described in Chapter 7, followed by
a sample run of the system under this interface (Chapter 8). For users of Symbolics 3600 computers, the
graphical interface for that machine is presented in Chapter 9, again followed by snapshots of a sample
run (Chapter 10). Discussion of interface enhancements for the Macintosh and Sun computers occupies
Chapter 11. Finally, the implementation methods used in the parsers and generators in CL-PATR are
discussed in Chapter 12. '

Readers familiar with the PATR formalism may want to skip immediately to Chapters 6 and 7 to
get an idea of what using the system is like, returning to the earlier chapters for reference.

Advanced Topics Are Marked. Throughout the manual, advanced topics are offset
and marked with an identifying comment in bold face, as this paragraph itself is.

Typographical Conventions, 1talics are used both for introducing new terms and for
emphasis. Material that is input to or output from a computer by keyboard—including
file names, menu items, and similar mouse-sensitive elements—is printed in a typewriter
font. All quote mark applications use double quotes, except that single quotes will be
used when mentioning, as opposed to using, words or phrases. Because the topic of this
document is the manipulation of text by formal grammars, the typographical convention
of moving trailing punctuation within quote marks is not followed, as it blurs important
textual distinctions.

Chapter 2

The S-PATR Grammar Formalism

Currently, there are several versions of programs interpreting languages derived from the PATR formal-
ism. In addition to the CL-PATR system, they include (in roughly chronological order):

System Language Hardware Developer
Z-PATR ZETALISP Symbolics 3600 | Shieber
D-PATR INTERLISP Xerox Dandelion | Karttunen

mini-PATR | Prolog SUN 2 Pereira, Shieber
P-PATR Prolog SUN 2 Hirsh
C-PATR Common LISP | HP Bobcat Jones, Moore, Shaio

Many of these systems use slightly different versions of the language and make incompatible assump-
tions concerning interpretation. A PATR standard would provide a benchmark against which systems
could be checked, and would allow sharing of grammars and possibly implementation code. Furthermore,
it would constitute a starting point from which exfensions and changes can be designed, analyzed and
debated.

This chapter constitutes a draft specification for a standard version of the PATR. computer language.
We have made the following general design choices:

o The syntax is designed so as to be easily convertible to an LL(1) grammar (by left factorization),
so that simple parsing techniques, such as recursive descent, can be used to read a grammar.

e The syntax is based on ease of human, rather than computer, readability. For this reason, we
eschew notations motivated by particulars of individual programming languages, e.g., LISP-like
parenthesized notations.

¢ Certain notational conventions are taken from other programming languages, particularly Prolog,
LISP and ML.

The standard PATR language described here will henceforth be referred to as s-pATR (pronounced
“spatter”). A S-PATR inierpreler or compiler is a program using S-PATR as its input language.

The S—PATR_Grammar Formalism §

2.1 Background

The $-PATR language comprises a grammar formalism for codifying fragments of natural languages. To
avoid confusion we will refer to the s-PATR language as the metelenguage and any language fragment
being encoded in a $-PATR grammar system as an object language. The language in which a particular
S-PATR interpreter or compiler is written will be referred to as the native language.

The reader is assumed to be familiar with previous work on the PATR, formalism. A brief review
of PATR—to remind the reader of certain terminology used in the discussion below—is presented here,

The PATR, formalism describes object-language expressions by associating them with feature siruc-
tures (also directed graphs or DGs). DGs come in two varieties, alomic DGs with no structure except
for their name, and compound DGs which are structured as a set of pairs composed of a feature (drawn
from a finite set of features) and another DG. '

DGs are associated with expressions indirectly. Rather than giving the graph structure itself, we
give a [partial] description of the graph structure in terms of mutual constraints among several DGs. For
primitive expressions of the object language (i.e., words), the set of DGs among which the constraints
are required to hold is comprised of only one DG, that DG associated with the word. For complex
expressions (phrases), the set of DGs among which the constraints are required to hold includes the DGs
associated with the whole phrase and all of its immediate subphrases.

In S-PATR, primitive expressions are assigned DGs with the Word statement and compound ex-
pressions are assigned DGs inductively with the Rule statement. Furthermore, commonly used sets of
constraints can be defined as macros with the Macro and Stem statements. These statements provide
the core of the ability to define object language fragments in S-PATR; other statements allow configuring
certain parsing or grammar parameters and distributing grammatical information among other files.

For example, the following are statements in the $-PATR language taken with modification from the
sample grammar in Chapter 3. We will refer to these examples in the discussion below.

137 A sample rule
Rule ’sentence formation’

S ~-> NP VP:
Head (S, VP) :VP is the head of §
<S5 head> = [form: finite] ;5 must be finite
<VP subcat> = (RP | ()). :VP must be saturated

texcept for the subject

733 A sample lexical entry
Word *Crockett’:
ProperNoun.

i3: Teo macro definitions used by the above examples
Macro ProperNoun:

<cat> = 'NP’

<head trans> = <word>.

Macro Head (Parent, HeadChild):

10 CL-PATR Reference Manual

<Parent head> = <HeadChild head>.

2.2 Token Structure and Lexical Issues

The unit of lexical analysis in s-PATR is the foken. Because the $-PATR language has as its subject
matter natural-language text, in which case distinctions can be significant, the tokens of s-PATR are
case-sensitive. For instance, the tokens US and us are distinct.!

Tokens are used for a variety of purposes in 5-PATR. We list them here, with some examples taken
from the example statements above.

¢ Metalanguage keywords: Rule, —>, Hacro, etc.
e Atomic DGs: finite, 'NP°’

¢ Features: head, form, etc.

Object language words and other strings: ‘Crockett’, *sentence formation’

¢ Macro names: ProperNoun, Head

Names for referring to DGs: S, NP, VP, Parent, etc.

Unlike many programming languages, we do not for the most part distinguish these uses of tokens
syntactically, but rather, by the context in which they appear. The only distinction made syntactically
is between two classes of tokens—identifiers and handles—about which more will be said later. One
important side effect of distinguishing the uses of tokens by context is that there are no reserved words
in the s-PATR language; even keywords can be used in other ways. For instance, although the token
string is a keyword in the metalanguage, we can also use the same token, in a different context, to
represent the object-language word ‘string’. This is important, since reserved words would contradict
the ability of the metalanguage to talk about arbitrary fragments of natural language.

2.2.1 Character classes

Tokens are composed of alphanumeric and special characters. The following characters are considered
alphabetic: a-z, + (plus sign), A-Z, * (asterisk). The first half of these characters are lower case (including
plus sign) and the second half upper case (including asterisk).

The following characters are considered numeric: 0-9.

The following characters are considered alphanumeric: all alphabetic and numeric characters plus
_ (underbar).

At least the following characters are considered special characters: : (colon), ; (semicolon), [1]
(square brackets), < > (angle brackets), () (parentheses), . (period), , (comma), = (equals sign), and -
(dash). The ~ (tilde) and { } (braces) are reserved for extensions to allow negation and disjunction.

At Jeast the following characters are considered whitespace: space, newline, tab, formfeed.

1This will require that implemented in Common LISP use a separate Iexical analyzer from the Common LISP
reader which always {olds case.

The S-PATR Grammar Formalism 11

2.2.2 Identifiers and handles

Tokens are divided syntactically into two classes: identifiers and handles. Identifiers are tokens com-
posed of a sequence of non-whitespace characters whose first alphabetic character, if there is one, is
not uppercase.? All other sequences of nonwhitespace characters, i.e., those in which there is a first
alphabetic character which is uppercase, are handles. Intuitively, handles are used to refer to DGs, that
is as names for, or handles on, DGs. Identifiers are used for all other purposes. Since S-PATR keywords
are matched in a case-insensitive way, both identifiers and handles can be used for this purpose. Thus
atoms are used in S-PATR for the following purposes:

e Metalanguage keywords
e Atomic DGs
s Features
+ Words and strings
Handles are used for these purposes:
o Metalanguage keywords
» Macro names

o Names for complex DGs

Recall that the asterisk is an uppercase alphabetic and the plus sign a lowercase a-.lphabetic. Thus
tokens starting with the former are handles, the latter identifiers.

Pseudo-words and Plus Signs. A pseudo-word is a word whose definition is not lex-
ically associated with its spelling, but rather, with some class of words that cannot be
easily encoded as separate lexical items (for instance, because the class is infinite). It is
often useful to include such psendo-words in the lexicon. The intended notational con-
vention is that pseudo-words should be spelled with surrounding plus signs. For instance,
the pseudo-word +integer+ might be reserved for all integers in the input. Similarly, the
pseudo-word +unknown+ might be reserved for any otherwise unknown word. The set of
pseudo-words recognized by an implementation remains implementation-dependent but
the following are possibilities: +integer+, +unknown+, +date+, +time+.

Conventional Use of Asterisks. The asterisk in handles is intended for conventional
use in infroduced handles and stem handles (discussed later).

Digits are considered full alphanumeric characters; thus, the sequence of characters 123abc is
one identifier, not two as under normal programming language definitions. This convention allows, for
example, the use of 3sg as an atomic DG specifier and 3Sg as a macro name.

Special characters always form single character identifiers with the exception of the following two-
character identifiers: -> used as the arrow in the grammar rule syntax, and () used to mark the ends of
lists.

21f there are no alphabetic characters, the token is therefore an identifier since the condition holds vacuously.

12 CL-PATR Reference Manual

Identifiers that include special characters or whose first alphabetic character is uppercase can be
specified by enclosing an arbitrary string in single quotes. For instance, **a=B#’ is a single identifier.
Quoted identifiers may begin with an uppercase alphabetic as in the previous example. Whenever strings
of arbitrary characters are needed in the language (e.g., as file names in the Input statement), identifiers
are used because these quoted identifiers can include arbitrary text. Single quotes can be inserted in
quoted identifiers by doubling them, e.g., *don’’¢’.

If a given handle includes one or more underbar characters, the handle composed of the sequence
of characters before the first underbar is called the category of the given handle. If the given handle
includes no underbar character, its category is the same as the entire handle. For instance, the category
of the handle VP_1 is the handle VP.

The calegory name of a handle is the identifier with the same spelling as the its category. Typically,
such an identifier would have to be specified using the single quoting notation. For instance, the category
name of the handle VP_1 is the identifier which would be notated *VP'.

2.2.3 Comments

Comments are introduced by a semicolon (;) and continue to the end of the line. No nesting comment
notation is provided. Comments are treated exactly like whitespace, and are allowed anywhere except
in quoted identifiers.

Nesting Comment Notation. An alternative to the standard: comments may be
bracketed by the #] and |# comment delimiters. Nesting of these delimiters is allowed.

2.3 Specifying DGs and DG Constraints

Before discussing the syntax and semantics of 5-PATR statements, we set out the notation for specifying
D@Gs, and for specifying mutual constraints among several DGs.

2.3.1 Specifying DGs

We will use the following preterminal symbols in the Backus-Naur form (BNF) rules constituting the
metagrammar of S-PATR:

e (identifier) for identifiers

¢ {(handle) for handles

The metalanguage keywords appear as terminal symbols in the metagrammar. Note that these symbols

match in a case-insensitive way. That is, although the token Rule is distinct from the token RULE, both

may be used to specify the metalanguage keyword given as the terminal symbol "Rule" in the grammar.
The preterminals are introduced by the following rules:

{dg-atomn) ::= (identifier)

corresponding to the use of identifiers to specify atomic DGs,

The S-PATR Grammar Formalism 13

{feature) ::= {identifier)
" corresponding to the use of identifiers to specify features,

{macrol} ::= (handle)
{macro1} ::= (handle)

corresponding to the use of handles to specify macro names, and
{simple-dg-specifiery ::= (handle)

. corresponding to the use of handles to specify DGs.

The final use of identifiers to specify words or other strings correspond to instances of the preterminal
(identifier) elsewhere in the grammar.

Certain contexts define a set of bound handles and a notion of defaul! handle. For instance, in the
sample grammar rule above, the DG constraints are in an environment in which the bound handles are s,
NP and VP. Bound handles are handles that have been associated with (bound to) some DG that is being
constrained by the description. In certain environments, one of the bound handles may be designated as
the default handle. For instance, in defining a macro, the name of the macro is the default handle.

The rule introducing an identifier as a feature can only be used if the identifier was declared as
a feature in the Features profile statement. All other occurrences of identifiers are considered to be
specifying atomic DGs. Similarly, handles used as macro names are identifiable because they must be
defined in a Macro statement. All other handles are considered to be specifying complex DGs, either as
bound handles or introduced handles (defined later).

The full syntax for DG specifiers is as follows:

{simple-dg-specifier) ::= {dg-atom)

(simple-dg-specifier) ::= (handle)

{simple-dg-specifier) ::= (path-spec)

{simple-dg-specifier) :1:= (feature} ":" {simple-dg-specifier)
(simple-dg-specifier} ::= (macro0)

{simple-dg-specifier} ::= (macrol) (simple-dg-specifier)
{simple.dg-specifier) ::= "[" {simple-dg-list) "]1"
{simple-dg-specifier) 1:= "(" {dg-specifier) ")"
{path-spec) ::= "g# (sumple dg-specifier} (feature-list} ">"
{path-spec) ::= <" (feature-list) ">"

{feature-list) 1:=

{feature-list) ::= (feature) (feature-list)

{simple-dg-list) ::=

{simple-dg-list) ::= {simple-dg-specifier} {simple-dg-list)
{id-dg-specifier) ::= (simple-dg-specifier) "=" (id-dg-specifier)
{id-dg-specifier) ::= (simple-dg-specifier)

{dg-specifier} ::= (id-dg-specifier)

{dg-specifier} ::= {id-dg-specifier} " (dg-specifier)
{(dg-specifier) ::= (id-dg-specifier) "{" {dg-specifier)
(macrod) ::= {handle)

{macroil} ::= (handle)

{dg-atom) ::= (identifier)

{feature} ::= (identifier)

II Hnnnn Il

14 (CL-PATR Reference Manual

Names for DGs
A handle specifies a DG according to the particular environment in which it occurs.
{simple-dg-specifier) ::= (handle)

If the handle is a bound handle in the given environment, it specifies the DG with which it is
assoc1ated by the construct in which it was bound.

If a handle is used which is not a bound handle in the given environment, it is implicitly bound to a
new otherwise unconstrained DG. Such handles will be referred to as introduced hardles, conventionally
written with asterisks as the first and last characters in the handle. The scope for which the binding
of the introduced handle is in force is the statement in which this occurrence of the handle occurs. An
important issue concerns whether the binding of the introduced handle to 2 DG is in force within the DG
being defined, that is, whether circularities are allowed. The contentious solution proposed here would
impose no restriction of acyclicity.

Atomic DGs

An atomic DG can be specified by giving the name of the atomic DG as an identifier.

{simple-dg-specifier) ::= (dg-atom)
{dg-atom) ::= {identifier)

Paths
A DG can be specified by giving a path from a specifier to.a sub-DG:

(simple-dg-specifier) ::= {path-spec)

(path-spec) ::= "<" (simple-dg-specifier) {feature-list) ">"
{feature-list) ::=

{feature-list) ::= {feature) {feature-list)

{feature) ::= (identifier)

This syntax specifies the DG reached by following the given features in the DG specified by the
(simple-dg-specifier). The following convention allows a simpler structure in case the root of the path is
specified by the default handle.

s Default Handle Convention I: If the DG specifier is the default handle, it can be removed.

(path-spec) ::= "<" (feature-list) ">"

Detecting the Default Handle Convention. Detecting when this convention is in
force can be a bit tricky, since a {simple-dg-specifier) can itself begin with a feature. Thus
the use of this convention cannot be keyed to the existence of a feature as the first token
in a path. For instance, consider the path <feat:val feat> which should specify the
same DG as val. Implementers might want to disallow certain of the (simple-dg-specifier)
expansions as the first element of a path by redefining the grammar slightly, so as to make
detection of this convention simpler.

The S-PATR _(}ramn;ar Formalism 15

Feature Values
A DG with a specific value for a feature can be specified by giving the feature and its designated value,
- {simple-dg-specifier) ::= {feature} “:" (simple-dg-specifier)

For instance, the DG specified by form: finite has the atomic DG finite as the value of the
feature form. This notation is intended primarily for use with the bracket notation for conjunction which -
is described next. :

Conjunction

A DG can be listed explicitly using bracket notation to denote conjunction (unification) of several simple
DG specifiers.

{simple-dg-specifier) ::= "[" (simple-dg-listy *]1"
{simple-dg-list) ::
{simple-dg-list} ::

[

(simple-dg-specifier) (simple-dg-list)

This notation for conjunction is quite general, but it is expected that it will be used primarily to .
explicitly specify some simple dgs, e.g, '

[cat: *V?
agr: [person: third]l]

Reentrancies

A D@ can be specified with a side effect of constraining it to be identical to another DG. This is done
with the following notation:

{id-dg-specifier) ::
{id-dg-specifier} ::

{simple-dg-specifier) "=" {id-dg-specifier)
{simple-dg-specifier)

This notation specifies the single DG specified by both DG specifiers. The side effect of identifying
the specified DGs will guarantee that the same token DG is specified.

Identifications of this sort in conjunction with introduced handles can be used to specify a DG with
a side effect of giving it a name for later reference. DGs so named can be referred to within the scope of
their binding thereby giving a way to introduce reentrancy in DG specifiers. For example,

[a: [b: *is=[c: a]]
d: *1]

notates a DG where the b and d features are token-identical. Note that by the scope definitions given for
introduced roots, definition before use is not required. For instance, the same DG type can be specified
with the notaticn

[d: ai=
a: [b: *i#=[c: 8]]]

16 CL-PATR Reference Manual

Indeed, even this unexpected notation can be used to specify the same DG.

[a: *2»)
d;: <*2% b>=[c: s]]

Lists

Lists can be encoded with DGs with the well-known technique of using two features first and rest to
recursively connect list elements. For instance, the list containing elements a, b, and ¢ can be encoded

by:

[first: a
rest: [first: b
rest: [first: ¢

rest: (113

where () is a special token used for marking the end of a list.
This encoding is so common that a special notation is introduced for it. The infix vertical bar
notation (similar to infix dot in LISP)

x|y

is an alternate notation for

[first: x
rest: y)

and the infix comma notation

X,y

is an alternate notation for lists ending with (), e.g.,

[first: x
rest: [first: y
rest: (011

{dg-specifier) ::= {id-dg-specifier)
{dg-specifier) ::= (id-dg-specifier) "," {dg-specifier)
{dg-specifier) ::= {id-dg-specifier) "|" {dg-specifier)
Since elements of lists are (id-dg-specifier)s, comma and bar have lower precedence than other
connectives. Therefore, it will usually be necessary to parenthesize lists to get the proper bracketings.
In the sample rules, lists were used in several places. For instance, in the constraint <¥P syncat>
= (EP | ()), the verb phrase’s syncat list was constrained to be identical to a list of length one whose
first element is the DG specified by the handle P (which will be the DG associated with the subject
noun phrase).

The S-PATR Grammar Formalism 17

Parenthesization

Because the precedences of the various operators used to specify DGs are sometimes inappropriate
for a particular application, parentheses are allowed to override these precedences. Parenthesizing an
expression specifying a DG does not change the DG specified.

(simple-dg-specifier) ::= " (" (dg-specifier))"

Parenthesization was used in the sample statements in the macro application Head(S, VP) to
override the default parenthesization (Head S), VP.

Macro applications

Application of a macro yields a DG. In general, macros are applied to zero or one DG specifiers, an
invocation being notated with prefix notation.

{simple-dg-specifier} ::= {macrof)

{simple-dg-specifier} ::= (macrol) (simple-dg-specifier)
{macro) ::= {handie) '
{racrol} ::= {handle)

For instance, the following macro applications occurred in the sample statements above:

Head(S, VP)
ProperNoun

Note that in the first example, the macro Head is applied to a single argument which is a list, not two
separate arguments.
The semantics for macro application is given in the section on Macro statements.

2.3.2 Specifying DG Constraints

When several given DGs are to be mutually constrained, the constraints are stated as a set of identities.
The allowed identity format is as follows:

{dg-constraints} ::=
{dg-constraints} ::= {dg-constraint) {dg-constraints)
(dg-constraint) ::= (sirple-dg-specifier) “=" {dg-specifier)

For example, the sample statements above use the following constraints.

<S head> = [form: finite]

<V¥P syncat> = (NP | ())

<cat> = 'NP’

<head trans> = <word>

<Parent head> = <HeadChild head>

In addition, the following convention allows a simpler notation for constraining the default handle.

18 CL-PATR Reference Manual

s Default Handle Convention I If the left-hand side of the = is the default handle, the left-hand
side and the = may be dropped.

This convention allows for compatibility with previous'versions where template names could be
inserted by themselves in template definitions to mean that the template was to be unified directly
as a part of the template being defined.

{dg-constraint) ::= (simplc-dg-specifier)

Detecting the Default Handle Convention. Use of this convention can be detected
by roting that the convention is being used whenever the lookahead token after the
{simple-dg-specifier} that begins the (dg-constraint} is not an =. Note that this assumes
that = is not being used as a name of a macro, for instance. H it is being so used, the
macro invocation can be surrounded with parentheses.

For example, in the sample rules, the following constraints used this convention.

Head (s, VP) {rather than S = Head(S, VF))
ProperNoun {rather than # = ProperNoun)

2.3.3 Summary of Precedences

All operators are right associative. The precedence of operators, as defined by the BNF rules above, is
summarized below (from highest to lowest}:

LG.) L] <.
2. {macro application)

3. = (of DG specifiers}

4. , |

5. = (of DG constraints)

2.4 Structure of S-PATR Statements

2.4.1 General notes

The largest unit of expression in S-PATR is a grammar syslem. A grammar system is a set of files that
together describe the grammar and lexicon of a single object language. Each file in the grammar system
{a grammar file) contains zero or more S-PATR siatements.
(stmt-list) ::=
(stme-list) ::= {stmi-list} {atmi)
It is useful to note that all statements are delimited at the end by a period. This fact can be used,
for instance, to aid in error recovery during file parsing.

The S-PATR Grammar Formalism 19

Five basic statement types are allowed.

{stmt) ::= (grammar-rule)
{sémt} ::= {macro-defn)
{stmt) ::= (lerical-stmt)
{stmt) ::= (control-stmt)
{stmt} ::= {profile-stmt)

2.4.2 Grammar Rules
Grammar rules are specified with the following statement:

{grammar-rule) ::= "Rule" (identifier) (lhs) "~>" (rhs) ":" (dg-constraints) "."
{lhs) ::= (hondle)
(rhs) ::= {handle-lisi)

where

. (ideniiﬁer) is a mnemonic to uniquely identify the rule. The implementation may make use of the
uniqueness of identifiers, e.g. by indexing the rules by the identifier, or using the identifier as a
short way of representing the rule to the user.

e (lhs) is a handle representing the parent constituent.

e (rhs) is a list of zero or more handles representing the child constituents in order. Since zero roots
are allowed, epsilon rules can be stated directly.

e {dg-constraints) specifies the constraints that the rule invocation places on the left and right side
handles. That is, the constraints are evaluated in an environment in which the left and right
side roots are bound handles (associated with the DGs of the parent constituent and the child
constituents respectively) and-the left side handle is the default.

The interpretation of a grammar rule is as follows: A grammar rule 2 admits a sequence of pairings
of strings s; and DGs D; for 0 <7 < n if and only if:

o The right side of R has length n.
® 85) =81 +85,.
o The rule constraints (augmented according to the conventions below) hold in an environment in

which the left side handle is bound to Dy and the right side handles are bound to D, through Dy
in order and the left side handle is the default handle.

Various additional implicit constraints are imposed in addition to the explicit constraints listed in the
grammar rule;

20 CL-PATR Reference Manual

s Category Convention: For each left or right side handle H in the rule, if H has category C and
C is a category (as specified in the Categories profile statement g.v.) then the following constraint
is conventionally added to the DG constraints:

<Hp>s=

where ¢ is the category name of H and p is the category path (as defined in the Category path
profile statement, g.v.)

¢ Gap-Threading Convention: To be decided. Possibly implemented as an external macro.

2.4.3 Lexical Structure Statements

The following discussion assumes a system with no morphological analyzer. The lexicon is specified
through two types of statements, one for specifying stems of words, and one for the inflected forms.

‘Word definition

{lezical-stmt) ::= “Word" (identifier) “:" {dg-constraints) “."

The interpretation of Word statements'is as follows: A word w Is associated with a DG D if and only
if there is a Word statement associating w with a set of DG constraints and the constraints (augmented
according to the conventions below) are satisfied in an environment in which the handle * is a ha.ndle
bound to D and * is also the default handle.

This statement actually sets up the lexical pairing between the token and the spec1ﬁed DG@G. No
macro is defined as in Stem statements, so other word definitions cannot use the DG specified here. Also
the DG constraints are augmented according to the following convention.

¢ Word Default Convention: For a Word statement defining a word w, the implicit constraint

< * word > = w

is conventionally added.

Stem definition

Stems of words are specified with the Stem statement.
{lezical-stmt) ::= "Sten" (handle) ":" {dg-constraints) "."

Actually, this statement does not associate a string with a DG (as the Word statement does) but
merely provides a convenient way of defining a set of constraints that play a role in several werds, and
naming these constraints with a handle. As such it is merely syntactic sugar for a zero-argument macro
definition.

A Stem statement with handle H and constraints D defines a macro of no arguments equivalent to
the definition

The S-PATR Grarnn;ar Formalism 21

Macro H: D'.

where I is D augmented according to the following convention:

s Stem Default Convention: The implicit constraint

< H stemn > =¢

is conventionally added to D where ¢ is the category name of /.

2.4.4 Macro Definitions

Macro statements are a generalization of both template and lexical rule definitions in earlier versions of
PATR. Macros are defined with the following syntax:

{macro-defn} ::
{macro-defn} ::

"Macro" (handle) nen (dy-Constra:'nt.s) uon
"Macro" (handle) (simple-dg-specifier} ":" {dg-consiraints) "."

Interpretation of a macro invocation is as follows.

When a macro named M with no arguments and constraints E is invoked, it specifies a DG D
such that the constraints £ hold in an environment in which the handle M is bound to D and M is the
default handle. .

When a macro named M with one argument specified by FArg and constraints E is invoked by

- applying to a DG AArg, the invocation specifies a DG D such that the constraints E’ hold in an
environment in which the handle M is bound to D and M is the default handle and E’ is E augmented
with the constraint FArg = AAdrg.

This semantics allows a destructuring macro invocation style, because introduced roots in FArg
have scope in E. This circumvents the need for multiple argument macros. For instance, a “two-
argument” macro Head can be defined and invoked as in the sample rules at the beginning of this
document.

Invoking a Macro Yields a New Token. Note that the DG specified by two differ-
ent invocations of a macro applied to the same argument will be type-identical to each
other but token-distinct in general. For instance, consider the following constraints in an
envirenment with a handle H and macro Foo.

<H a> = Foo
<H b> = Foo

Although the two occurrences of H specify the same (token-identical} DG, the two
references to the macro Foo specify token-distinct DGs. Thus, the following equality is
not a consequence:

<H a> = <H b>

Although notationally this may seem confusing, it makes sense when considering
the role of macros as abbreviatory devices, rather than as function specifiers. Consider

22 (CL-PATR Reference Manual

the problems of implementing macros such that when called with type- or token-identical
arguments, the token-identical result would be engendered.

Multiple definition of a macro name is disallowed, includirig defining zero- and one-argument macros
with the same name.

Extending the Standard with Nondeterministic Macros. An extension to the
standard is the following: If the same macro name is defined with more than one macre
definition, an invocation using that macro name chooses one of the definitions nonde-
terminisitically. This extension has far-reaching implications for the power, use, and
implementation of and should be considered carefully before implementation. It
basically makes macro definitions by themselves a Prolog-like language with a breadth-first
solutien strategy.)

As an example of the generality of macro definitions under this extension, the fol-
lowing definition could be used to nondeterministically propagate a slash feature to zero
or one child constituents in a rule as in early GPSG.

Macro Slash_propagate (Parent, ()): .

Macro Slash_propagate (Parent, (Kid|Others)):
Slash_propagate (Parent, Others).

KMacro Slash_propagate (Parent, (Kid|Others)):
<Parent slash> = <Kid slash>.
It would be invoked as follows:

Rule ’'ditransitive verb phrase’
VP -> V NP PP:
Slash_propagate (VP, (NP, PP)).

External Macros. Macros provide a convenient hook to programs written in native
code. A native code macro might be declared with an appropriate statement in a
extension, such as

{profile-stmi) ::= "Externmal” "macro" {handle} "."
{profile-stmt) ::= "External" “"macro" (handle) {simple-dg-specifier) "."

A file loaded with an Evaluate statement would provide the implementation of the
macro as a function of the same number of arguments and returning a DG.

2.4.5 Control Statements

The 5-PATR language includes two statements for controlling the process of interpreting grammar files.

The S-PATR Grammar Formalism 23

Input of files

The Input control statement allows a grammar system to be split among several files. It specifies a file
by giving its pathname as an identifier (probably a quoted identifier):

{control-stmi) ::= "Input" {identifier} “."

The interpretation of this statement is the same as the ihterpretation of the file specified by the
pathname, that is, it works like #include in C. However, the file loaded must be parsable as a {stm1-list},
that is, the grammar system may be split among several files only at statement boundaries.

Evaluation

The Evaluate statement allows the grammar to specify particular native language statements to run at
grammar system installation time.

{control-stmt} ::= "Evaluate"” {identifier) "."

The identifier is evaluated as a native language statement. This facility might be used, for instance, to
load a program that calls the parser and run the program automatically. It might also be used (sparingly)
to redefine certain functions of the implementation or to load code defining external macros.

2.4.6 Profile statements

Profile statements are used to tell the s-PATR interpreter the settings for various grammar-dependent
parameters. All profile statements must precede any non-profile statements. The syntax of profile
statements is typically the following: a keyword (or keywords) giving the parameter be set, followed by
a colon, followed by the setting of the parameter followed by the delimiting period.

At least the following four profile statements must be accepted by the interpreter, but an imple-
mentation may choose to support others. Note that these statements are required in the sense that
implementations must allow them, not that grammars must include them.

Features

The Features profile statement declares the set of identifiers that are to be interpreted as permissible
features.

{profile-stmt) ::= "Features" ":" (identifier-list) "."

This information is useful for error-checking and for the interpretation of the Default Handle Con-
vention I. :

In addition, it is recommended that when printing DGs, the printing routines attempt to respect
the order in which the features are listed here, i.e., by sorting in the given order.

Because the features word and stem play a role in every grammar (as part of the Word Default
Convention and the Stem Default Convention) these two features need not be declared in the Features
statement of the grammar.

24 CL-PATR Reference Manual

Start DG

The Start profile statement is used to specify the DG which serves as the “start symbol” of the grammar.
The format is as follows:)

(profile-stmt) ::= "Start" ":" {dg-constraints) "."

The DG constraints are in an environment where the only bound handie is the handle * which is
bound to the start DG being defined. It is also the default handle. If this statement is left out, the start
DG is assumed to be the left-hand side DG of the textually first grammar rule in the grammar system.

The following is a sample start DG definition stating that the start DG includes only finite sentences.

Start: <cat> = '§*
<head form> = finite.

Note the use of Default Handle Convention I.

Categories

The Categories profile statement is used to define the domain of applicability of the Category Conven-
tion. The format is as follows:

(profile-stm!) ::= "Categories" ":" (handle-list) "."
{handle-list) ::= .
{handle-list} ::= (handle) (handle-list)

The listed handles are considered to be categories for purposes of the Category Convention.

Category path

The Category path profile statement specifies where category information is put during interpretation
by the Category Convention. The format is as follows:

{profile-stmt} ::= "Category" "path" ":" {path-spec) "."

The following four profile statements are likely to be needed, but are not required to be accepted by
an interpreter. They are included here so that implementations that do include this type of information
can do so compatibly.

Restrictor

The Restrictor profile statement allows the grammar system to tell an interpreter that uses restriction
[14] what particular restrictor should be used in interpretation.

{profile-stmt} ::= "Restrictor" ":" (path-list} "."

The S-PATR Grammar Formalism 25

Abbreviations

The following two profile parameters provide a conventional way to specify how category-valued dgs can
be displayed in an abbreviated format. ‘

{profile-stmt) ::= “Abbreviation" "control" "string" ":" (identifier) "."
{profile-stmf) ::= "Abbreviation" ":" {path-list) "."

The interpreter is free to use the information in the following way: a list of the atomic DG values at the
end of each of the specified paths in the dg (as native language atoms) is built (if the value at the end of
the path is non-atomic, nil is substituted); then, the control string is used in a call to the native language
function format with the atom list as arguments.® For instance, the following might be a useful setting
of these parameters:

Abbreviation control string:

=i [X7;7smav][Mel"a"] e ["a"]] .
Abbreviation: <cat>

<agreement number>

<agreement person>,

This would result in the following abbreviations:

[cat: 'vp?

agreement: [person: 3 ==> VP[3sg]
number: sgll

[agreement: [person: 3 ==> X[3sg]
number: sgl]

[cat: *NP? ==> NP[sg]

agreement: [number: sgl]

Semantics path

The Semantics path profile statement specifies where the semantic translation or logical form is built
in the course of parsing, if the grammar does build such structures. The format is as follows:

{profile-stmt} ::= "Semantics" “"path" ":" {path-spec} "."

This may be useful for using the interpreter as a front-end to a system interested in extracting the
semantics of a phrase for further processing.

2.5 Extensions

Disjunction Braces are reserved for an extension to notate disjunction in a manner parallel to the use
of square brackets for conjunction.

3ZETALISP, Common LISP and QUINTUS Prolog all provide a roughly compatible format facility.

26 (CL-PATR Reference Manual

{simple-dg-specifier) ::= "{" (simple-dg-list) "}"

Negation The tilde notation is reserved for an extension to notate negation.

{simple-dg-specifier) ::= """ (simple-dg-specifier)

Other possible extensions The following are further possible extensions.

» Profile statements for declaring whether or not to enforce conventions.

*

Splice paths as in Karttunen.

*

Regular paths as in Kaplan and Zaenen.

Atomic inheritance as in LOGIN.

*

.

Overwriting or default inheritance.

*

Typing of DGs allowing only certain features in the domain of the DG.

Chapter 3

Sample Grammar Files

3.1 The Main File

Sample Grammar

; Compatible with the CL-PATR Common LISP Implementation of S-FAIR

Evaluate ’(format t ""2YLoading CL-PATR Sample Grammar~™2%")°.
Features: cat lex sense head

subcat first rest

form agreement person number gender

trans pred argl arg2 arg3.
Categories: S NP VP V.

Category path: <cat>.

Start: <cat> = '§?
<head form> = finite.

Restrictor: <cat>
<head form>.

Semantics path: <head trans>.
Abbreviation:

<cat>
<head agreement numbexr>

27

28 CL-PATR Reference Manual

<head agreement person>.
Abbreviation contrel string: ’":[X7; :+"2"]"¢[["a"e["a~]]1"]".

Input ’sample.gram’.
Input ’sample.lex’.

3.2 The Grammar File

HHH Sample Grammar

Macro Head(Parent, Child):
<Parent head> = <Child head>.

13 : ~ Grammar Rules

Rule ’sentence formation?

S -> RP VP:
Head (S, VP) ;VP is the head of S
<§ head> = [form: finite] ;S must be finite
<VP subcat> = (NP | ()). :VP nust be saturated

;except for the subject

Rule *trivial verb phrase’
VP > V:

Head(VP, V) ;¥ is the head of VP

<V¥P subcat> = <V subcat>. ;same subcategorization

Sample Grammar Files

Rule complements

VP_parent -> VP_child X:

Head(VP_parent, VP_child) ;smaller VP is the head

;i i Decompose subcategorization of the head into a

;3 subject, a first postverbal complement and the rest
;3 of the complements. HNote that we’ve found the first
;i postverbal complement (X).

<VP_child subcat> = (*Subject*, X | »OtherComplements*)

;3 We're still looking for the subject and the rest of
;3 the complements.
<VP_parent subcat> = (*Subject* | *0therComplements*).

Rule ’adverbial modification’

VP_parent -> VYP_child AdvP:

Head (VP_parent, AdvP) ; Adverbial is the head
i3 parent VP needs all the complements that the child does
<VP_parent subcat> = <V¥P_child subcat>

1; child VP must be saturated except for subject
<YP_child subcat> = (*Subj* | ())

;: parent VP is modified

<VP_parent modified> = yes

;; adverbial gets to look at child to form semantics

<AdvP subcat> = V¥P_child.

3.3 The Lexicon File

Sample Grammar

Lexicon

Noun Phrases

29

30 CL-PATR Reference Manual

Hacre NounP:

<cat> = 'NP’

<head trans> = <word>.
HE Gender
Macre Masc: <head agreement gender> = masculine.
Macre Fem: <head agreement gender> = feminine.
Hacro Neut: <head agreement gender® = neuter.
] Number
Macro Sing: <head agreement number> = singular.
Macro Plur: <head agreement number> = plural.
HHH Person
Macro Person P: <head agreement person> = P.
HFH Other Agreement
Macre 3Sing: Sing

Person 3
<head agreement 3sg> = yes.

Macro Non3Sing: <head agreement 3sg> = no.
HE Subclasses of NPs
Macro ProperNoun: NounP 3Sing.
Word ’Crockett’: Masc ProperNoun.
Word ’Sonny’: Hasc ProperNoun.
Word ’Tubbsa’: Masc ProperNoun.
Word ’Ricarde’: Masc ProperNoun.
Word ’Rico’: Masc ProperNoun.
Word ’Castilloe’: Masc ProperNoun.
Word 'Gina’: Fem ProperNHoun.
Word ’Kait’: Fem ProperNHoun.
Word detectives: Plur NounP.
Word criminals: Plur HounP.

Verb Phrases

Sample Grammar Files

Macro Verb: <cat> = 'y*'.
Macro MainVerb: Verb
<head aux> = false
<head trans pred> = <stem>.

B Verb Forms

Macro Finite: <head form> = finite.

Macro Nonfinite: <head form> = nonfinite.
Macro Infinitival: <head form> = infinitival.

Macro PassiveParticiple:
<head form> = passiveParticiple.

S Agreement

Macro Agrees AgrFeatures:
;3 only finite verbs show agreement
Finite
<subcat first> = AgrFeatures.

Subcategorization Frames

s
-y
-

Macro Intransitive:
MainVerb
<subcat> = ([cat: NP’
head: [trans: *SubjectMeaning#*]]

103
<head trans argi> = *SubjectMeanings.

Macro Transitive:
MainVerb
<gubcat> = ({cat: *NP?
head: [trans: *SubjectMeanings]]
» [cat: *NP?
head: [trans: *0bjectMeaning#]])

<head trans argl> = «SubjectMeaning«
<head trans arg2> = #*0bjectMeanings.

Macro TakesS:

31

32 (CL-PATR Reference Manual

MainVerb
<subcat> = ([cat: ’NP’

head: [trans: *SubjectMeaningx]]

, [cat: ’S?
head: [form: finite
trans: *SMeaning*]])

<head trans> = [argl: *SubjectMeaning*
arg2: *SMeaning=].

Stem *say*: TakesS.

Word says: Agrees 3Sing *say=*,
Word say: Agrees Non3Sing #*say*.
Word say: Honfinite *say=.

Word said: Finite-*say*.

Macro Raising:
Verb
<head trans> = [pred: <stem>
argl: *PredMeaning+]
<subcat> = (*Subjectx =
[cat: ’NP’]
, [Infinitival
cat: ’VP’
head: [trans: *PredHeaningx]
rmodified: no
subcat: (*Subject* | (O)]

Macro Equi:
Verb
<head trans> = [pred: <stem>
argl: *SubjectMeaning*
arg2: #*PredMeanings]
<subcat> = (*Subject* =
[cat: *KP?

head: [trans: *SubjectMeaningx]]

, [Infinitival
cat: *VP?
head: [trans: *PredMeaning*]
nodified: no
subcat: (*Subject= | ())]
).

Macro AuxVerb EmbeddedConstituent:
Verb
<head trans> = *PredMeaning*

<subcat>

= (#Subject* =

[cat: 'NP’]
, EmbeddedConstituent =
[cat: 'VP?

head: [trans: sPredMeanings]
modified: no
subcat: (#Subject* | ())]

Macro ReplaceForm(Input, Form):
<cat> = <Input cat>

Stem
Word
Word
Word
Word

Stem
Word
Word
Word
Word
Word

Stem
Word
Word
Word
Word
Word

Stem
Word
Word
Word

<subcat>

= <Input subcat>

<modified> = <Input modified>

<head form> = Form

<head trans> = <Input head trans>

<head agreement> = <Input head agreement>.

Macro AgentlessPassive Active:
ReplaceForm([cat: <Active cat>

sfumes:
fumes:
fume:
fume:
fumed:

sventilates:

ventilates;
ventilate:
ventilate:
ventilated:
ventilated:

Kill:
kills:
kill:
kill:
killed:
killed:

®*shoot*:
shoots:
shoot:
shoot:

subcat: <Active subcat rest>
head: <Active head>],
passiveParticiple).

Intransitive.

Agrees 3Sing *fume».
Agrees Non3Sing #fume=.
Nonfinite *fume=.
Finite sfumex.

Transitive.

Agrees 35ing *ventilates.
Agrees Non3Sing *ventilates.
Nonfinite #*ventilates.
AgentlessPaasive #ventilates.
Finite sventilate=.

Transitive.

Agrees 35ing *kills.
Agrees Non3Sing *kill=.
Nonfinite *kills.
AgentlessPassive *kills.
Finite #kill*.

Transitive.

Agrees 35ing *shoot*.
Agrees Non3Sing #shoots.
Nonfinite #*shoot*.

Sample Grammar Files

33

34 CL-PATR Reference Manual

Word shot: AgentlessPassive *shoot=.

Word shot: Finite *shoot=*.

Stem *lovex: Transitive.

Word loves: Agrees 35ing *lovex.

Word love: Agrees Non3Sing *loves.

Word love: Nonfinite *loves.

Word loved: AgentlessPassive xlove=.

Word loved: Finite *loves.

Word is: AuxVerb PassiveParticiple
Agrees 3Sing.

Word was: AuxVerb PassiveParticiple
Agrees 3Sing.

Word were: AuxVerb PassiveParticiple

Agrees Plur.

Word to: AuxVerb Nonfinite

© Infinitival.
Stem *seems: Raising Verb.
Word seems: Agrees 33ing xseem*.
Word seem: Agrees Non3Sing *seem*.
Word seem: Nonfinite »seem=*.
Word seemed: Finite *seem=*.
Stem #want#: Equi Verb.
Word wants: Agrees 35ing *wantx,
Word want: Agrees Non3Sing »want#.
Word want: Nonfinite »want=.
Word wanted: Finite *wante.
HEH - Adverbials
R -
Macro Adverb: <cat> = ’AdvpP’

<head form>» = <subcat head form>
<head trans> = [pred: <word>
argl: <subcat head trans>].

Word passionately: Adverb.
Word quickly: Adverb.
Word happily: Adverb.
Hord yeaterday: Adverb.

Chapter 4

The CL-PATR, Version of S-PATR

CL-PATR implements an interpreter for the s-PATR grammar {ormalism described in Chapter 2. This
chapter describes how ¢L-PATR makes implementation-dependent decisions and extensions to the speci-
fication in Chapter 2.

Pseudo-Words Implemented (Refer Section 2.2.2). The following pseudo-words
are implemented: +unknown+ for unknown words and +number+ for integers in the input.

Disambiguating Identifiers (Refer Section 2.2.2), In parsing a2 grammar file, an
attempt is made to disambiguate identifiers as to whether they are specifying an atomic
DG, feature, or keyword. The following method is used:

1. If context disambiguates, the use dictated by context is assumed. If this dictates
treating the identifier as a feature name, and the feature name was not declared in
a Features statement (Section 2.4.6), the identifier is implicitly declared as a feature
and the user is so notified.

2. Otherwise, the identifier is treated as the first one of the following which context
allows: keyword, feature, atomic DG. To be treated as a keyword, the identifier
must, of course, match the spelling of a contextually allowed keyword. To be treated
as a {eature, the macro need not be declared as a feature; it will be implicitly so
declared as above. Any identifier can be treated as specifying an atomic DG.

Similarly, handles are disambiguated by a hierarchy as well. A handle is treated
as the first one of the following which context allows: keyword, macre name, bound or
introduced handle,

Warning: because of this disambiguation strategy, if you use a macro before defining
it, no error will be reported. Rather, the intended macro name will be treated as an
introduced handle.

Known Bug in the Grammar Reader. This disambiguation strategy leads to a
bizarre scoping inconsistency. Since identifiers are treated as macros preferentially to
bound handles, a macro definition that occurs before a statement with the same name
as a bound handle, or that was installed before the incremental compilation of such a

35

36 CL-PATR Reference Manual

statement, makes the bound handle impossible to reference. Consequently, it is strongly
advised that macro names not be used that occur elsewhere (even textually earlier) as
handles. The fix to this misfeature is to make bound handles have higher precedence than
macros.

No Nesting Comments (Refer Section 2.2.3). No nesting comment notation is
implemented.

Default Handle Convention (Refer Section 2.3.1). The Default Handle Convention
I is detected in full generality. No restriction is placed on the first elements of paths.

Gap Threading Unimplemented (Refer Section 2.4.2), The Gap-Threading Con-
vention has not yet been implemented.

Multiple Macro Definitions Disallowed (Refer Section 2.4.4). Multiple definitions
of macros are disallowed, although files with multiple definitions can be installed. The
later definition will be in force, and a one-argument definition will take pricrity over a
zerc-argument definition. Users should not, however, rely on this behavior.

External Macros Unimplemented (Refer Section 2.4.4). External macros have
not been implemented.

Profile Statements Augmented (Refer Section 2.4.6). All profile statements listed
are implemented. The Restrictor statement is used by all parsers and generators based
on the chart system architecture. The Semantics pathis used by the bottom-up generator
for installing the logical form. ~The Abbreviation statements are used in general for
printing DGs in abbreviated form, as in printing edges.

An additional profile statement has been added to allow for the normalization of
spelling of word and stem names, since they are frequently used as portions of the logical
forms for phrases. The structure of the statement is

(profile-stmt) ::= "Normalization" ":" (identifier-list} "."

where the identifiers in (identifier-list) are zero or more of strip, lovercase, or uppercase.
If strip is included, special characters, i.e., underscore and asterisk are removed from
the ends of the identifiers before using them as the atom values for the word or stem
features as per the Word Default Convention and Stem Defanlt Convention. If Jovercase
or uppercase are included, then the identifiers are forced to lowercase or uppercase,
respectively.

In addition, the same normalization is applied to the atoms in S-expressions being
generated {from. The importance of the profile parameter, then, is to insure compatibility
of the S-expression logical forms and lexical information.

The default setting for the parameter applies no normalization to atoms for com-
patability with the standard of Chapter 2. In general a setting of strip and lovercase
is more appropriate, however.

Two additional profile statements allow the specification of different restrictors to
be used for parsing and generation. If either of these are specified, they take precedence
over a restrictor defined by a Restrictor statement for the specific process they apply
to. The syntax is

The CL-PATR Version of S-PATR. 37

{profile-strt) ::= "Generation" "restrictor" ":" (path-list) "."
{profile-stmt) ::= "Parsing" "restrictoer" ":" {path-list) "."

Extensions Unimplemented (Refer Section 2.5). None of the listed extensions have
been implemented.

Chapter 5

Installing and Running CL-PATR

The cL-PATR system is distributed as a set of binary files, plus sources for a subset of the files. The files
are organized under the following directory structure:

CL-PATR directory: Source and object code for CL-PATR, plus two subdirectories. The sources dis-
tributed include the following files:

cl-patr-3600.1isp
cl-patr.lisp
metaparse.lisp
sh-red-p.liasp

earley-p.liasp

topdown-g.lisp
earley-g.lisp
bridge.lisp
interface.lisp
top-level,lisp
mac-iface.lisp

gnu-iface.el
3600-iface.lisp

The subdirectories are:

the main installation file for Symbolics 3600s
the main installation file for other computers
metaparser for reading S-PATR files

a particular parser built on the chart system architecture simulating a
shift-reduce parser

a particular parser built on the chart system architecture simulating an
Barley parser

top-down backtracking generator
bottom-up chart-based generator

converts S-expr LFs to DG encoding
portable read-eval-print loop interface
user interface based on labeling REP loop
Macintosh-specific interface code

GNU Emacs interface commands
Symbolics-3600-specific interface code

documentation directory: Documentation of CL-PATR, In particular, this document in DVI for-
mat stored as cl-patr.dvi.

grammars directory: Sample grammars for use by CL-PATR including the sample grammar given
in Appendix 3 is stored in the files sample.patr, sample.gran, and sample.lex, with appro-
priate sentences and LFs in sample.data. Variants of two other grammars taken from Lauri

38

Installing and Running CL-PATR 39

Karttunen’s D-PATR documentation are provided as toycgram and toypsggram. Both .patr
and .data files are included.

ParEn directory: Source and object code for the driver sub'system of the ParEn parser environment
system; this is auxiliary code developed at SRI International that is needed for CL-PATR to run.
The driver subsystem of the ParEn parser environment system includes the following source files:

paren-3600,lisp the main installation file for Symbolics 3600s

paren.lisp the main installation file for ether computers
def-parse.lisp code for building parsers using the driver
lr-parse.lisp parser driver for L.LR parsers

In general, the file c1-patx.lisp in the CL-PATR directory is configured to load the system from
the distribution disk. This file must be modified, as per instructions in the file, to load the system from
a different location such as a local hard disk or file server.

Compiling the Systems. Full object code is distributed with the system, so users
should not need to compile the code. However, users modifying the source, may find the
following information useful. The file c1-patr.lisp is the main file that includes all the
pertinent settings and functions for compiling and loading the system. In particular, it
includes a function system-compile to recompile and load all files that have been
modified since the last file compilation and a function system-load to load the most
current or compiled versions of the files. All functions are in a separate patr package
or other packages that inherit from lisp and user.

Similarly, the package paren includes system—compile and system-load for com-
piling and loading the driver susbsystem of ParEn.

5.1 Installing the System on a Macintosh Computer

The system requires Allegro Common Lisp from Coral Software, version 1.2 or later. It is recommended
that the system be run on Macintosh computers with at least 2 megabytes of memory. Code is distributed
on a single 3.5 inch floppy disk. The contents of the disk can be copied to a hard disk or the system can
be run directly from the distribution disk.

5.1.1 Running from the Distribution Disk

1. Open the disk icon and the folder CL=PATR. Double-click on the icon for the file init.lisp. Allegro
Common Lisp should start up.

2. An error message will appear in the listener window. You should continue from this error with the
<command>-/ key. The error is a result of CL-PATR installing a fix to Allegro Common Lisp version
1.0. The message should not appear if running Allegro CL version 1.2 or later.

3. From the Eval menu, choose the Lroad entry and load the file c1-patr.1isp, the main installation
file for cL-PATR. A copyright message will be printed and a long series of files will be loaded.
Finally, the interface window will be created and zoomed to cover the entire screen.

40 CL-PATR Reference Manual

4. The system is now loaded and commands can be typed to the window.

If the underlying LISP encouniers an error, it will enter .a LISP break loop in the listener window.
Typing <command>-. to the break loop will exit the break loop and move up one break level. Returning
to the interface window allows reentering CL-PATR where it was stopped at the break. However, some
extraneous characters may have been added at the end of the interface window; these can be safely

deleted.

5.1.2 Running from the Hard Disk
1. Copy the contents of the distribution disk to the hard disk, preserving the directory structure.

2. Open the folder CL-PATR. Double-click on the icon for the file init.1isp. Allegro CL should start
up.

3. An error message will appear in the listener window. You should continue from this error with the
<command>~-/ key. The error is a result of CL-PATR installing a fix to Allegro CL version 1.0. The
message should not appear if running Allegro CL version 1.2 or later.

4. Edit the file c1-patr.lisp as per the instructions in the file.

5. Continue from Step 3 of the instructions for running from the distribution disk.

5.2 Installing the System on a Sun Workstation

The system requires Lucid Common Lisp for the Sun workstations. Separate object code is available for
Sun 2 and Sun 3 computers. In addition, GNU EMACS is needed if the extended interface is to be used.
The EMACS interface assumes that the shell.el GNU code is available and that it is configured so
that Lucid Lisp is loaded by default by m—x run-lisp.

After copying the files to the server disk from the distribution tape, and editing the file
cl-patr.lisp as per the instructions in the file, run and load the system with the exiended interface as
per these steps. ‘

1. Run GNU EMACS.
2. Load the file gnu—iface.el (with m-x load-file).

3. Execute the command m~x run-patr. A buffer for interacting with cL-pATR will be created and
the system loaded. Special commands can be typed to this buffer.

Running the system with Lucid Lisp alone (without the EMACS extensions to the interface} pro-
ceeds as follows:

1. Run Lucid Lisp.

2. Load the file c1-patr.lisp with the load function. A whole series of other files will be loaded.

Installing and Running CL-PATR 41

3. Call the function (patr::patr t). This starts up CL-PATR with its portable interface. Commands
can be typed to the interface.

If the underlying Lisp encounters an error, it will enter a Lisp break loop. Typing :a to the break
loop will exit the break loop all the way to the top level. Then calling the function (patzr::patr) will
restart CL-PATR where it stopped at the break.

5.3 Installing the System on an IBM-RT

The system requires Lucid Common Lisp for the IBM-RT workstation running IBM’s A/IX operating
system. Code is distributed on a single 5.25 inch floppy disk. The contents of the disk can be copied to
the hard disk or the system can be run directly from the distribution disk.

5.3.1 Running from the Distribution Disk

1. Mount the disk as /diskette0 with the A/IX command mount /diskette0.
2. Run Lucid Lisp.

3. Execute the Lisp call (1oad "/diskette0/c1—patr/'cl—pa.tr.lisp").

4. Execute the Lisp call (patz::patr t).

5. The system is now loaded and running; commands can be typed to the prompt.

If the underlying LISP encounters an error, it will enter a LISP break loop. Typing :a to the break
loop will exit the break loop all the way to the top level. Calling the function {patr::patr) will restart
CL-PATR where it stopped at the break. The contents of the disk can be copied directly to the hard d1sk
or the floppy disk can be used as the place where code resides.

5.3.2 Running from the Hard Disk

1. Mount the disk as /diskette0 with the A/IX command mount /diskette0.
2. Copy the contents of the distribution disk to the hard disk, preserving the directory structure.
3. Edit the file cl-patz.1lisp as per the instructions in the file.

4. Continue from Step 2 of the instructions for running from the distribution disk, except that the
directory used in the load command should be changed appropriately.

42 CL-PATR Reference Manual

5.4 Installing the System on a Symbolics 3600

To install the system on a Symbolics 3600 running Genera 7.0.or later software, the files are downloaded
from a distribution tape as follows:

1. Create .system and .translation files for the CL-PATR system and the ParEn system. Appendix
13 includes samples of these files, ’

. Place the distribution tape in a tape drive.
. Type Restore Distribution to the command processor.
. Edit the file c1-patr.lisp as per instructions in the file.

. Type Load System CL-PATR :version :newest to the command processor.

Lo T L R~

. Type <select>-+ to create and expose a CL-PATR frame.

Chapter 6

Overview of CL-PATR Concepts

The functions provided by the CL-PATR system fall into a number of areas. In this chapter, we provide a
taxonomy of these functions independent of the way in which they are accessed by the various interfaces
to the system, and discuss the intended usage of these functions. This taxonomy will be used in later
chapters to organize the descriptions of particular interface aspects.

The functionality of CL-PATR separates into six categories:

1. Interface interaction.

. Grammar file manipulation.
. Grammar testing.

. Grammar debugging.

. Grammar modification.

L= B L B - N . &

. System configuration.

We will discuss each of these areas in turn.

6.1 Interface Interaction

A limited amount of the functionality of a CL-PATR interface is concerned with interaction with the
interface itself, for example configuring the display or exiting the interface.

6.2 Grammar File Manipulation
As discussed in Chapter 2, grammatical information is codified in files containing grammar rules, lexical

entries, and so forth. CL-PATR can access grammar information stored in one of two ways, either as the
raw 5-PATR grammar files described in Chapter 2, or as compiled versions of such files. Conventionally,

43

44 CL-PATR Reference Manual

a file containing the uncompiled, raw $-PATR form of a grammar is named with a .patr extension, e.g.,
sample.patr. (Such a file may use Input statements to load other files of grammatical information
without the .patr extension, but the main-file should have a .patr extension.) Similarly, the compiled
version of a grammar uses .ptro (for ‘PaTR Object’) as its extension. Thus, the compiled version of
the 5-PATR grammar stored in sample.patr and any files it inputs would be named sample.ptro. In
general, users of CL-PATR create only the .patr files; the compiled . ptro versions are created by CL-PATR
automatically.

The accessing of grammatical information from these two sources goes by different names: .patr
files are read, whereas .ptro files are installed.

The end result of reading a .patr file or installing its . ptro equivalent is identical; the grammatical
information is available to the system. However, the installation of a .ptro file is much faster than the
reading of its .patr equivalent,

While reading a .patr file, the system generates a compiled version in a file with the same name
but with the .ptro extension. Thus a grammar need only be read once; as long as no changes have been
made to the grammar, its automatically created .ptro can thereafter be installed.

Another class of files associated with grammars include data upon which the CL-PATR system is
intended to operate, in particular, sentences to be parsed or logical forms to be generated from. These
files conventionally have the extension .data. The format of such files is merely a sequence of double-
quoted strings and LISP s-expressions corresponding to sentences to be parsed and logical forms to be
generated from, respectively.

CL-paTR functions specifically geared toward grammar file manipulation include reading and in-
stalling .patr and .ptro files, respectively, listing the grammar files known to the system, and displaying
information about the various grammar components such as rules and lexical entries.

A user might list the grammar files, then read or install one of the available files, and finally use
the display facilities to browse through the grammar.

6.3 Grammar Testing

Once the grammatical information has been accessed, either by reading or installing a grammar, the
grammar can be tested by presenting sentences to be parsed or logical forms to be generated from and
perusing the resuits of these processes. CL-PATR performs such natural-language-processing tasks using
a system based on chart parsing techniques. During parsing or generation, a chart stores all the partial
and complete phrases built during the course of processing along with the grammatical information
associated with the phrase encoded as a feature structure. Each such pairing of a phrase and associated
information is a chart edge, which can be thought of as spanning the phrase between two string positions,
or vertiees. Edges associated with partial constituents are active edges; those associated with complete
constituents are passive edges. Parsing or generation proceeds by combining an active edge with a passive
edge immediately to its right.

CL-PATR includes two different parsing algorithms, one based on Earley’s algorithm, and one that
models a nondeterministic version of a shift-reduce parser. Details of the operations of these two algo-
rithms and the chart-based generation algorithm are given in more detail in Chapter 12.

The ability to store a corpus of sentences and logical forms in a .data file is useful in grammar
testing as well.

Overview of CL-PATR Concepts 45

6.4 Grammar Debugging.

After the parsing or generation process is completed, it is often useful to examine the contents of the chart
to aid in the process of finding errors or inadequacies in the grammar. The various GL-PATR interfaces
allow for display of this information, including information about chart vertices. In general, the edges in
the chart are indexed by one of their vertices, passive edges by their leftmost vertex, and active edges by
their rightmost vertex. Thus, when displaying information about a vertex, the edges listed will be those
active edges ending at the vertex, and those passive edges starting at the vertex. Such a scheme presents
exactly those active and passive edges that might be combined to form edges spanning longer strings.

In fact, the system allows for manual combination of two edges (that is, the eztension of an active
edge with a passive edge to its right) as one of its functions. The outcome of performing such parsing or
generation steps by hand can often aid in the location of errors in the grammar.

6.5 Grammar Modification

Once an error in a grammar has been identified, a revision to the grammar must be made and the revised
version put in effect. One method for doing this is to edit the original .patr file, and then read the file
again. However, reading the entire file just to get the effect of a small change is quite wasteful. Instead,
GL-PATR allows for the incremental compilation of changes to the grammar. Suppose a single grammar
rule is to be changed. The edited version of the rule can be incrementally compiled; it will then be in
force in later grammar testing, replacing the previous incarnation of the rule, without having to reread
the entire grammar. A sequence of grammar rules can alsc be incrementally compiled.

Any component of a grammar—profile statements, macro definitions, grammar rules, lexical entries,
etc.—can be incrementally compiled. The effect of the incremental compilation depends on the type of
structure. Compiling a grammar rule replaces a rule of the same name, or adds the rule if no rule of
the same name previously exists. When compiling a lexical entry for which a previous definition or
definitions exist, the user is prompted as to whether the entry should replace all previous such definitions
or augment them.

Compiling Multiple Lexical Entries. When compiling a series of lexical entries with
the same spelling, the system inquires about replacement of previous definitions each time.
The user will probably want to replace previous definitions on the first inquiry, thereafter
adding definitions without replacement.

Macro Changes Do Not Propagate. Incrementally compiling a macro changes the
macro definition, but previously read, installed, or compiled uses of the macro will not
be affected by the change. Of course, grammar components using the changed macro can
themselves be compiled incrementally, thus replacing the definitions using the old version
of the macro with the new one.

6.6 System Configuration

CL-PATR provides for the modification of various parameters governing its behavior. For instance, the
choice of which of the two parsing algorithms is used can be made.

46 CL-PATR Reference Manual

6.7 Accessing the Functions

These various functions are accessed in different ways depending on which user interface is in force. The
portable interface which runs on all machines is based on the invocation of commands to perform the
CL-PATR functions. The user might give a command to list the grammar files or to read one of the listed
files, to parse a sentence or to display the chart. The graphical interface for the Symbolics 3600 allows
the functions to be accessed by clicking with a mouse on items in a menu or on pieces of text on the
screen. For instance, the user might click on a menu item to list the grammar files or click on a file
name to read that file, and so forth. Certain computers have enhanced versions of the portable interface
that add simple mouse access to the command-oriented style of interaction. Despite the differing access
methods, however, the same functionality is available in all interfaces.
The particulars of the various interfaces are discussed in the following chapters.

Chapter 7

The Command Interface

The portable command interface is a modified L1sP read-eval-print (REP) loop augmented in two ways:

1. Objects are labeled with numeric labels, which allows the user to refer to them later and to redisplay
them in an expanded format for browsing.

2. Certain special commands are known to the system, which use a simple non-LisP syntax and which
can operate on the labeled objects.

Extensions to the Command Interface. Standard extensions to this interface are
available on Macintosh computers and UNIX systems running Guu EMACS (e.g., Suns)
that allow for single keystroke equivalents to the special commands. See Chapter 11 for
details.

Chapter 8 includes an annotated session with the command interface.

7.1 Basic Structure of the Interface

The interface issues the command prompt ¢ > . Any LISP s-expression can be typed in response to the
prompt for evaluation, or a special command (described below) can be invoked. Forinstance, after reading
a grammar and parsing a sentence, the Chart command can be used to provide a printed representation
of the vertices in the chart,

> chart
68> <0> <--— Crockett ——->
69> <i> <--= ygants —-——>
70> <2> == o =—=>

71> <3> <--- ventilate --->
72> <4 <--- criminals --->
73> <5»

47

48 CL-PATR Reference Manual

Notice that after each command is read and its response is given, a separating line of dots is printed
to demarcate the interaction from the next such. {The printing of these separators is controlled by the
Separators parameter described in Section 7.7.)

Interface as a LISP Interpreter. Arbitrary s-expressions can be typed to the
interface. Lists are evaluated, as are numbers, strings, and bound symbols. Unbound
symbols typed to the top-level prompt are ignored.

> foo ; This unbound symbel is ignored. The user is prompted again.
> ’(a b c¢) ; This list is evaluated...
2> (ABC)

> {print ’test) ; as is this one.
TEST
3> TEST

7.1.1 Labeling of objects

Labeled lines are output with the format seen above. The marker string ‘> ’ separates a numeric label
from a printed representation of the labeled object. In the example, one of the lines is labeled with the
number ‘71’; and the labeled object is the vertex following the third word in the sentence ‘Crockett wants
to ventilate criminals’, which was presumably parsed previously.

7.1.2 Browsing with the Display Command

Labeled objects can be referred to in certain commands by their labels. Of particular interest is the
Display command which takes a label as its argument and merely redisplays the object so labeled. The
redisplaying typically presents more information than is given on the original labeled line, or breaks the’
information up so that components are labeled for later reference. In this way, the Display command
allows browsing through data structures of interest.

For instance, further information about the chart vertices listed above by the Chart cornma.nd can
be displayed.

> Display 71 ; <3> <-== yentilate --->
74> Vertex: <3>
75> Next vertex: <4>
76> Following terminal: ventilate
77> Incoming actives...
78> Outgoing passives...

> Display 77 ; Incoming actives...

The Command Interface 49

79> <3>—— VP ==> . VP AAvP /[/ =—--<2>
80> «<3>- VP --> . VPX /[-——<3»
81> <3>—= VP -=> .V [[/ --<3>

82> <3>-— VP ==> , VP AdvP [/ / =-=<3>
83> <3>—- VP —-> VP X / /7 —<
84> <3p~= VP > . ¥ [[/ =<3

85> €2>== VP ==> VP _ VP /[to / -=-<3>

> Display 78 ; Outgoing passives... ‘
86> <3>-- VP --> VP NP[plural] . / ventilate criminals / --<5>
87> <3>-- VP —-> VP NP[plurall . / ventilate criminals / --<5>
88> <3>-- VP —->V . [/ ventilate / --<4>
B9> <3>-- VP --> ¥V . / ventilate / -—<4>
90> <3»=- V -=> ventilate . / ventilate / --<4>
91> <3>-- V --> ventilate . / ventilate / —-<4>

Here vertex number 3 is redisplayed in more detail, and its list of incoming and outgoing edge lists can
then themselves be displayed.

7.1.3 Special Commands

As we have seen, the basic interaction with the interface is through typing of special commands to the
prompt. Already, we have seen examples of two special commands, the Chart and Display commands.

Special commands are typically single words. Certain commands (like Display) take arguments
that are typed following the command on the same line.

All Commands on One Line. Unlike . does not use parentheses to delimit
the start and end of a special command. For this reason, all input to the top-level interface
1s assumed to be given on a single line. This includes s-expressions.

Command Arguments Are Not Evaluated. The arguments to special commands
are not evaluated. For instance, if the variable x has the value 3, a ‘Display x’ command
will not display the object labeled 3, but instead will lead to an error as the argument
provided the Display command was the symbol x rather than an integer.

Known Bug: Argument Checking. Some commands do insufficient checking of their
arguments,

The next sections describe how the special commands can be used to access all the functions of the
CL-PATR system.

7.2 Interface Interaction Commands

The following commands deal with generic capabilities of the interface.

50 CL-PATR Reference Manual

Browsing displayed information: The Display command is described in Section 7.1.2 above and is
used for browsing by redisplaying labeled objects usually in an expanded format. It takes a single integer
label as its argument.

Listing available commands: The Help command takes no arguments and displays information
about the available special commands.

> Help
DISPLAY <return>, <enter> Display information about a labeled object
HELP <help> Supply help information about existing special commands
RESTART Restart the history mechanism -
FILES List grammar and data files
READ <c-m-r> Read a .patr grammar FILE
INSTALL <c-m-i> Install the compiled ’.ptro’ version of FILE (a
filename).
UPDATE Incrementally update the grammar accerding to a STRING containing

grammar rules.
GENERATE <c-m-g> Generate sentences with logical form LF (an
s-expression).

PARSE <c-m-p> Parse a SENTENCE using the current grammar.

EXTEND Attempt to extend an ACTIVE EDGE with a PASSIVE EDGE.

CHART Display chart vertices.

TREE <c-m-t> Display parse tree representation for EDGE (an edge).

RULES List rules in the grammar.

RULE Print the rule associated with a given SPELLING (a string).

WORDS List words in the grammar.

WORD Print the lexical entry associated with a given SPELLING (a
string}.

STEHS List stems in the grammar.

STEM Print the stem definition associated with a given SPELLIKG (a
string}.

HACROS List macros in the grammar.

MACRD Print macro definition associated with a given SPELLING (a
string).

SHOW Show the current value of a configuration PARAMETER

SET Assign to a configuration PARAMETER a given VALUE

Information displayed by the Help command includes: the name of the command through which it can
be invoked; a list of keystroke equivalents for the command (as described in Sections 11.1.1 and 11.2.1);
a short description of the command’s function, including an idea of its arguments (capitalized and often
described separately).

Clearing the labeling mechanism: The labeling process can be cleared and restarted with the
Restart command. After execution, labeling of objects begins with the label ‘1" again. Previously
labeled objects are discarded and can no longer be referred to by their labels.

Thg Command Interface 51

Exiting the system: Certain ports of the system include an Exit command to exit the interface and
return control to the Li1sP system in which CL-PATR is executing.

7.3 Grammar File Manipulation Commands

Listing availlable files: The Files command prints a list of all the files with .patr or .data extensions
that reside on grammar directories. The grammar directories are set when the CL-PATR system is installed
for the first time by setting the value of the variable *c1-patr-grammar-file-pathnames#*. See Section 5.

> Files
8> #.(pathname "internal:cl-patr:grammars:sample.patr")
9> #.(pathname "internal:cl-patr:grammars:sep87.patr")
10> #.(pathname "internal:cl-patr:grammars:toycgram.patr")
11> #. (pathname "internal:cl-patr:grammars:toycgram2.patr'")
12> #.(pathname "internal:cl-patr:grammars:toypsggram.patr")
13> #.(pathname "internal:cl-patr:grammars:sample.data")
14> #.(pathname "internal:cl-patr:grammars:sep87.data")
15> #. (pathname "internal:cl-patr:grammars:toycgram.data")
16> #.(pathname "internal:cl-patr:grammars:toypsggram.data™)

The labeled filenames can be used as the arguments to the Read and Install commands. Note
that although the file type in the listed pathnames is .patr, the Install command will find the .ptro
version if it exists. ‘

Reading grammar files: The Read command prompts for a file name, and reads the specified file in
5-PATR format. (See Chapter 2.) The state of the system is modified so that the grammar read is in
force for parsing and generation. At the same time, the grammar is converted into an intermediate LISP
representation. This representation is printed in a file with the same name as the input file but with the
extension .ptro and is intended for later use by the Install command.

The input file can be specified by giving a string surrounded by double quotes with the pathname
of the file. If no extension is given, the extension .patr will be added. Alternatively, a labeled item can
be used to specify a file if the object is a pathname, as, for instance, provided by the Files command.

As the grammar file (along with any auxiliary files specified with Input statements) is loaded, an
appropriate message can be printed for each statement read and processed. (See the discussion of the
Reading parameter in Section 7.7.) In case of a parsing error, the reader will attempt to resynchronize
itself by skipping tokens in the file until the next period is found marking the end of a statement. It
then continues reading the file, processing further statements.

Reading data files: A filename with the extension .data is read differently by the Read command.
Rather than interpreting the contents of the file as a grammar, the contents are read as LIsp objects and
listed as labeled objects. In particular, double-quoted strings and lists in the file are available for later
reference by their labels as the arguments to the Parse and Generate commands, respectively.

> Read 8 ; #.(pathname "intermal:cl-patr:grammars:sample.patr")

52 CL-PATR Reference Manual

. Loading CL-PATR Sample Grammar

Starting file intermal:cl-patr:grammars:sample.gram
Finishing file intermal:cl-patr:grammars:sample.gram
Starting file internal:cl-patr:grammars:sample.lex
Warning: implicitly declaring 3sg to be a feature.
Warning: implicitly declaring aux to be a feature.
Finishing file intermal:c¢l-patr:grammars:sample.lex
> Read 13 ;#.(pathname "internal:cl-patr:grammars:sample.data”)

17> Crockett fumes

18> Crockett ventilated Tubbs

15> Crockett wants to ventilate criminals

20> Crockett seems to vant to ventilate criminals

21> Crockett vas ventilated

22> criminals vere killed

23> Castillo said Sonny shot Rico yesterday

24> Castillo said Sonny was shot

25> Sonny loves Kait passionately

26> (FUME CROCKETT)

27> {(VENTILATE CROCKETT TUBBS}

28> (WANT CROCKETT (VENTILATE CROCKETT CRIMINALS))

29> (SEEM (WANT CROCKETT (VENTILATE CROCKETT CRIMINALS)))

30> (KILL ?X CROCKETT)

31> (KILL ?X CRIMINALS)

32> (YESTERDAY (SAY CASTILLD (SHOOT SONNY RICO)))

33> (SAY CASTILLD (SHOOT ?X RICOD))

34> (PASSIONATELY (LOVE SONNY KAIT))

Installing grammar files: The Install command prompts for a file name as the Read command does,
but adds the extension .ptro by default, and installs that file’s grammatical information, which should
be in in intermediate representation. Installation consists of loading the intermediate representation of
the grammar so that the state of the system is the same as if the .patr file had been read. However,
Install is typically much faster than Read.

The following commands are used for browsing through the currently loaded grarnmar.

Listing all rules, words, macros, stems: The Rules, Words, Hacros, and Stems commands list the
rules, words, macros, or stems, respectively, of the grammar as labeled objects, thereby enabling them
to be browsed.

Listing particular rules, words, macros, stems: The Bule, Word, Macro, and Stem commands
prompt for a string or symbol identifying the grammatical element and lists the matching rules, words,

The'Comma.nd Interface 53

macros, or stems, respectively as labeled objects, thereby enabling them to be browsed. Rules are
identified by their identifier string, all others are identified by spelling. If a string is entered, it is used
directly for lookup. Symbols, however, are [orced to lowercase before lookup.

7.4 Grammar Testing Commands

The following commands are used to parse or generate senfences.

Generating bottom-up from a logical form: The Generate command takes as its argument an
s-expression or label whose object is an s-expression, and interprets the expression as a logical form to
be generated from. The logical form is converted to DG form and used as the input to the bottom-up
chart-based generator. .

‘The logical form conversion works as follows. If the s-expression is an atom starting with a question
mark, its conversion is a variable (null DG). All such atoms in the s-expression with the same spelling are
converted to the token-identical variable DG. If the s-expression is any other atom, the DG conversion
is the atomic DG with that name. If the s-expression is a list, the elements of the list are each converted
recursively and made the values of the features pred, argl, arg2, etc., respectively. Finally, the DG thus
generated is taken to be the value of the start DG’s semantics path as specified in the Semanties path
statement.

> Generate 26 ; (FUME CROCKETT)
Real time elapsed: 8.77
Run time elapsed: 8.78
Actives: 9
Passives: 15
Total: 24
Agenda items: 46
97> <0>-- 8§ —-> NP[singular3] VP . / Crockett fumed / --<0>

..

Parsing sentences: The Parse command takes as its argument a string or label whose cbject is a
string or edge and parses the string with respect to the currently installed grammar. If an edge label is
given, the string covered by that edge is used as the sentence to be parsed. The chart edges corresponding
to the full parses for the sentences are listed as labeled objects for browsing. Also the chart is available
with the Chart command.

> Parse 19 ; Crockett wants to ventilate criminals
Real time elapsed: 8.40
Run time elapsed: 8.37
Actives: 28
Passives: 15
Total: 43
"Agenda itemsa: 74
35> <0>-~ 8 —-> NP[singular3] VP . / Crockett ... criminals / --<5>

54 (CL-PATR Reference Manual

..

Generating top-down: The Top-down command implements a simple top-down, depth-first, back-
tracking generator. The start DG is expanded according to one of the rules or lexical items in the
grammar to form a partial tree. The leftmost unexpanded node in the partial tree is then further ex-
panded, and so forth, until a full tree has been generated or no further expansion is possible. In the
former case, the sentence generated is printed and the user can type a newline to exit the generator, a
semicolon to backtrack for more solutions, or a p to push into a new labeling REP loop (typically so that
the user can use the Set command to change some parameters during generation). Exiting this secondary
REP loop with Exit leaves the user in the same state of being prompted for a newline, semicolon, or p.

Because depth-first generation of this type has well-known problems with left-recursion, the search
is depth-limited. The depth limit can be changed with the Max depth parameter.)

The choice of whether a word or rule should be used for expansion and in what order the various
possibilities should be tried is governed again by various configuration parameters (see Section 7.7).
The Choice mode parameter determines whether the choice is made interactively, by textual order (a la
Prolog), or randomly. The Choices parameter determines whether each choice made by the generator
is reported to the user. Indentation of the choices corresponds to recursion depth {i.e., how far from
the root the expanded node is). The Backtracking parameter determines whether a report is made
whenever backtracking is forced.

Known Bug: No Top-down Command. The Top-down command has not yet been
incorporated into the pertable interface.

7.5 Grammar Debugging Commands

The following commands provide for the perusal of the results of parsing and generation and other
grammear debugging functions.

Displaying the chart: The Chart command prints a representation of the chart where each vertex of
the chart is printed as a separate labeled item.

> chart
68> <0> <-== Crockett ———>
69> <1> <--- wants --->
70> <2> === to ——=>

71> <3>» <--- ventilate —-—>
72> <4> <---— ¢riminals —--->
73> <5>

Browsing the chart The Display command can be used in the normal way to display further infor-
mation about the chart vertices.

The ‘Command Interface 55

Displaying parse trees: The Tree command takes as its argument a label for an edge. The edge and
all inferior passive edges in the chart are printed in an indented tree format with each line in the output
being a labeled item that can be further browsed.

> Tree 35 ; <0»-- S --> NP[singular3d] VP . / Crockett ... criminals / --<5>
41> S
42> NP[singular3]
43> Crockett
44> VP
45> YP
46> v
47> wants
48> VP
49> VP
50> v
51> to
52> VP
53> VP
54> A
55> ventilate
56> NP[plurall
57> criminals

..

Extending edges: The Extend command takes as arguments two labels, one for an active edge and
one for a passive edge which abut in the chart, that is the active edge ends at the vertex the passive edge
starts at. (The edges would therefore both be available by browsing the single vertex that lies between
them.) An attempt is made to extend the active edge with the passive edge by unifying the passive
edge- DG with the DG of the next child constituent to be found in completing the active edge. Then the
D@ corresponding to the active edge after the extension is displayed whether or not the attempt was
successful. If the attempt was unsuccessful, the clash in the DG will be put in the display as well.

> extend 85 87
Unification failed.
[*0therComplements*: *3*=()
Subject: *2+=[cat: NP
head: [agreement: [3sg: mnol
trans: *=I1*=[J]]
0: [cat: VP
head: *4*=[form: infinitival
trans: *5*=[pred: VENTILATE
argl: =1x
arg2: CRIMINALS]]
subcat: [first: =2=
rest: *3x]]
1: [cat: VP

56 (CL-PATR Reference Manual

head: *4= .
subcat: [first: =2=%
rest: [first: =6+=[cat: VP
head: [form: finite
|_. failed
| against
nonfinite
trans: [pred: VENTILATE
argl: [}
arg2: CRIMINALS]
aux: false]
subcat: [first: [cat: NP
head: [agreement: [3sg: nol
trans: [111
rest: ()11
rest: ()11]
2: [cat: VP
head: [form: finite
trans: [pred: VENTILATE
argl: [
arg2: CRIHMINALS]
aux: false]
subcat: [first: [cat: NP
head: [agreement: [3sg: nol
trans: [O1]
rest: (0111

..

Notice on the preceding example that the value for <1 subcat rest first head form> is marked as
having two contradictory values, finite and nonfinite.

7.6 Grammar Modification Commands

Updating a portion of the grammar: The Update command prompts for a double-quoted string
and interprets the string as a series of PATR, statements, an update to the currently loaded grammar.
The statements are parsed and the grammar tables are modified or augmented to reflect the changed
or additional rules. A grammar rule replaces a previous definition with the same identifier. Macrcs
and stem definitions replace previous definitions with the same spelling. Word definitions either replace
or augment previous definitions with the same spelling; the user is prompted for whether the previous
definitions should be removed or stay extant. See the notes on incremental compilation in Chapter 6.

7.7 System Configuration Commands

Various modifiable parameters control the operation of the system. This section describes the Set and
Show commands for manipulating these parameters and lists the various parameters themselves. Unless

The Command Interface 57

otherwise specified, the possible values for a parameter are the two symbols on and off.

Displaying the current parameter settings: The Show command takes an optional series of symbols
as arguments and lists the current value of the parameter with that name. With no argument, lists the
current values of al]l the parameters.

Modifying the value of a parameter: The Set command takes an optional series of symbols as
arguments and interprets the symbols as sequences of a parameter name f[ollowed by a value to assign
to the parameter. In this way, several parameters can be set with one command. If no arguments are
given, or the single argument ?, the command lists the current values of all the parameters.

> show
Max depth: 20
Choice mode: Interactive
Choices: 0ff
Backtrack: Off

Agenda tracing: 0ff
Agenda additions: Off

Edge tracing: 0ff
Statistics: On
Timings: On
Reading: 0ff
Installation: off
Print level: 5
Algorithm: Earley
Separators: On

> set print level 10
Setting print level to 10.

> show print level
Print level: 10

7.7.1 Configuration Parameters
The following parameters control the current configuration of the system.

Max depth: Changes the depth limit used by the top-down generator invoked by the Top~down com-
mand. The value is an integer.

Choice mode: Changes the method of making choices concerning search order in top-down generation.
- The possible settings are ordered, interactive, or random. With the ordered setting, the generator
always attempts to expand a node with a lexical entry before any grammar rules are tried; the choice

58 CL-PATR Reference Manual

of which lexical entry or grammar rule to use is determined by the textual order of definition in the
grammar itself like Prolog search order. The interactive setting places all decisions at the discretion of
the user, leading to a very tedious generation process. The.-random setting makes choices randomly,
although backtracking maintains the choice point structure.

Choices: Determines whether trace lines are displayed for all choices made during top-down generation
by the Top-down command. The trace lines are indented to reflect the recursion depth of the choice, i.e.,
the distance from the root to the node being expanded.

Backtracking: Determines whether trace lines are displayed for all invocations of backtracking made
during top-down generation by the Top-down command. Indentation is similar to that in trace lines for
choices.

Agenda tracing: Determines whether a trace line is printed whenever an agenda itern is removed from
the agenda and processed by placing in the chart.

Agenda additions: Determines whether a trace line is printed whenever an agenda item is added to
the agenda.)

Edge additions: Determines whether a trace line is printed whenever an edge is added to the chart.

Statistics: Determines whether statistics are kept as to the number of edges of various sorts (active,
passive, hypothesis, empty) built during the course of parsing or generation. (This applies only to the
chart-based operations, not Top-down.)

Timings: Determines whether statistics are kept as to the run time and elapsed time required for
parsing or generation. (This applies only to the chart-based operations, not Top-down.)

Reading: Determines whether a trace of every token read during a Read command is echoed to the
screen. This might be useful in testing to see at what point a reading error occurs in the file. If used
for this purpose, the user should keep in mind that the tokenizer reads ahead by one token so that the
metaparser can use a one token lookahead.

Installation: Determines whether a trace line is printed after each statement is installed using the
Read or Install commands.

Print level: Determines how deep DGs can be printed before being replaced with a labeled item as a
stand-in for the rest of the DG.

The_ Command Interface 59

Algorithm: Determines which parsing algorithm to use. Currently, two parsing algorithms are avail-
able with this mechanism: one which runs the chart system as an Earley parser and one which simulates
a nondeterministic shift-reduce parser so that parses are generated in right association, minimal attach-
ment order. The possible values, therefore, are earley and sr.

Separators: Determines whether a separating line of dots is printed to demarcate each iteration of the
top-level loop.

Known Bug: Missing Parameters. The verbose edge printing flag and the grammar
file pathname list should be added to the parameter list.

Chapter 8

Sample Session with the Command
Interface

This chapter presents a session with CL-PATR running under the command interface.

CL-PATR (tm) Grammar Development Environment

Unpublished rights raserved under the copyright laws of the United
States, .

This data and informatien is proprietary te, and a valuable trade
secret of, SRI International. It is given in confidence by SRI
International. Its use, duplication, or disclosure is subjact ‘to
the restrictions set forth in the License Agreement under which it
has been distributed.

Unpublished Gopyright {(c) 1987, SRI International
CL-PATR and PATR are Trademarks of SRI International

Initializing metagrammar tables from ¥P"internal:cl-patr:spatr-tables.fasl".
;Loading “internal:cl-patx:spatr-tables.fasl™...

>3
1> 3
»abec)
2> (A B C)

> (print ’test)
TEST
3> TEST

Sample Session with the Command Interface 61

> Display 1
4> 3

> Display 2
5> Element: A
6> Element: B
7> Element: C

> Help
DISPLAY <return>, <enter> Display information about a labeled object
HELP <help> Supply help information about existing special commands
RESTART Restart the history mechanism
FILES List grammar and data files
" READ <c-m-r> Read a .patr grammar FILE
INSTALL <c¢-m-i> Install the compiled ’.ptro’ version of FILE (a filename).
UPDATE Incrementally update the grammar according to a STRING containing

grammar rules.
GEHERATE <¢-m-g> Generate sentences with logical form LF (an s-expression).

PARSE <¢-m=-p> Parse a SENTEECE using the current grammar.
EXTEND Attempt to extend an ACTIVE EDGE with a PASSIVE EDGE.
CHART Display chart vertices.
TREE <c-m—-t> Display parse tree representation for EDGE (an edge).
RULES Lists rules in the grammar.
RULE Print the rule associated with a given SPELLING {a string).
WORDS List words in the grammar.
WORD Print the lexical entry associated with a given SPELLING {a string).
STEMS List stems in the grammar.
STEM Print the stem definition associated with a given SPELLING (a string).
MACROS List macros in the grammar. :
MACRO Print macro definition associated with a given SPELLING (a string).
SHOM Show the current value of a configuration PARAMEIER
SET Assign to a configuration PARAMETER a given VALUE
> Files

8> #.(pathname "internal:cl-patr:grammars:sample.patr")

9> #.(pathname "internal:cl-patr:grammars:saep87.patr")

10> #.(pathname “internal:cl-patr:grammars:toycgram.patr")

11> #.(pathname “internal:cl-patr:grammars:toycgram2. patr')

12> #.{pathname "internal:cl-patr:grammars:toypsggram.patr")

13> #.(pathname "internal:cl-patr:grammars:sample.data™}

14> #.(pathname “internal:cl-patr:grammars:sepd7.data")

15> ¥.{pathname “internal:cl-patr:grammars:toycgram.data')

16> ¥.{pathname "internal:cl-patr:grammars:toypsggram.data™)

> Read 8 ; #.(pathname "internal:cl-patr:grammars:sample.patr'})

Loading CL-PATR Sample Grammar

Starting file internal:cl-patr:grammars:sample.gram
Finishing file internal:cl-patr:grammars:sample,gram
Starting file internal:cl-patr:grammars:sample.lex
Warning: implicitly declaring 3sg to be a feature.
Warning: implicitly declaring aux to be a feature.
Finishing file internal:cl-patr:grammars:sample.lex

62 CL-PATR Reference Manual

> Read 13 ;%.{pathname "internal:cl-patr:grammars:sample.data")
17> CQrockett fumes
18> Crockett ventilated Tubbs
19> Crockett wants to ventilate criminals
20> Crockett seems to want to ventilate criminals
21> Crockett was ventilatad
22> criminals were killed
23> Castillo said Sonny shot Rico yesterday
24> Castillo said Sonny vwas shot
25> Sonny loves Eait passionately
26> (FUKE CROCKETT)
27> (VENTILATE CROCEETT TUBBS)
28> (WANT CROCKETT (VEETILATE CROCEETT CRIMIFALS))
29> (SEEM (WAFT CROCKETT (VESTILATE CROCEKETT CRIMIBALS)))
30> {(KILL ?X CROCEKETT)
31> (EILL ?X CRIMINALS)
32> (YESTERDAY (SAY CASTILLO (SHOOT SONEY RICO))})
33> (SAY CGASTILLO {SHOOT 7X RICOD))
34> (PASSIOEATELY (LOVE SOHEY KAIT))
> Parse 19 ; Crockett vants to ventilate criminals
Raeal time alapsed: 8.40
Run time alapsaed: 8.37
Actives: 28
Pagssives: 15
Total: 43
. Agenda items: 74
35> <0»-- S --> BP[singular3d] ¥YP . / Crockett wants to ventilate criminals / -=-<5>
> Display 35 ; <O»>-- 5 =-=> IP[singular3] VP . / Crockett wants to ventilate
crimipnals / =--<5>
36> Edge: <0>~- S --> HP[singular3d] YP . / Crockett wants to ventilate criminals / =--<5>
3r> Rule:sentence formation
Sources of tha adge:
3g> Extended: <Q>-- S --> WP[singular3d] . VP / Crockett / =-~<i>
39> with: <1>~- VP -~-> VP VP ., / wants to ventilate criminals / ~=~<5>
40> Directed graph: ...

> Display 40 ; Directed graph: ...
[0: [cat: §
head: #3#=[form: finite
trans: [pred: WART
argl: »1»=CROCKETT
arg2: [prad: VENTILATE
argl: »i=
arg2: GRIMINALS}]]]
1: #=2#=[cat: HP
head: [agreement: [person: 3
number: singular
gender: masculina
3sg: yes]
trans: »i%]
word: *1+]
2: [cat: VP

Sample Session with the Comm-and Interface 63

head: +3% .
subcat: [first: 2=

rest: ()111

> Tree 35 ; <0»== S ~-> BP[singular3] VP . / Crockett wants to ventilata
criminals / --<5>
41> S
42> HP[singular3]
43> Crockett
44> YP
45> VP
46> v
47> wants
48> VP
49> Yp
50> v
51> to
52> vp
53> VP
54> v
55> ventilate
56> BP[plurall
57> criminals

> Display 48 ; P
58> Edge: <2»>-- VP --> VP VP . / to ventilate criminals / --<5>
598> Rule:complements
Sources of the edge:
60> Extended: <2>—— VP -=> ¥P . VP [/ to / ~--<3>
61> with: <3>== VP --> VP HP[plural] . / ventilate criminals / --<5>
62> Directed graph: ...

» Display 62 ; Directed graph: ...
[*DtherComplements#*: s4%=()
#Subjects: *2x=[cat: HP
head: [trans: #1+=[]]1]
0: [cat: VP
head: #6*=[form: infinitival
trans: »3*=[pred: VENTILATE
argl: =i=
arg2: CRIMINALS]]
subcat: [first: »2*
rest: *4x]]

1: [cat: YP
head: =6»
subcat: [first: »2*
rest: [first: s5e=[cat: VP
head: [form:

63> e
trans:

64> .
aux:

65> ..

modified: no
subcat: [first:

64 CL-PATR Reference Menual

66>) ees
rest:
67> ; ..
rest: *4+]]]
2: #54]
» chart
68> <0> {~=-~ Crockett --->
69> <1> <=== wants ===>
70> <2> === to ===>
T1> <3> <--- wvantilate --->
72> <4 <=== criminals =-=-->
T3> <5>

> Display 71 ; <3> <==-=- yentilate =-->
74> Vertex: <3>
75> Haxt vertex: <4>
76> Following terminal: ventilate
77> Incoming actives...
78> Outgeing passives...
> Display 77 ; Inceming actives...
79> €3>-— VP -=> _ VP AdvP / / --<3>
80> €3>-~ VP -=> . VP X [/ --<3»
81> «3>== YP ==> .V [[==<P>
82> <3>== VP ==> . VP AdvP /[[/ ==<3>
83> €3%-- VP -=> VP X [/ -—-<3>
84> €3%-= VP -=> .V [[--<3>
85> €2%-= VP --> VP . VP [to / --<3>

> Display 78 ; Outgoing passives...
86> <3>-— VP ~-> VP EP[plural]l . / ventilate criminals / --<5>
87> <3>-- VP --> VP EP[plural]l . / ventilate criminals / =--<5>
88> <3>—— VP ~-> V . /[ventilate / --<4>
89> <3>-— VP --> V . /[ventilate / --<4>
90> <3»-- ¥V -=> ventilate . / ventilate / --<4>
91> <3>=-~ V¥V ==> yentilate . / ventilate / =--<4>

» extend 85 87
Unification failed.
[*0therComplementss: #4s=()
#5ubject#: »2+=[cat: NP
- head: [agreement: [3sg: no]
trans: #1s=[]]]
0: [cat: VP
head: »6s=[form: infinitival
trans: #3+=[pred: VERTILAIE
argl: «i»
arg2: CRIMINALS]]
subcat: [first: «2«
Test: »4%]]
1: [cat: VP
head: »6»
subcat: [first: »2»
test: [first: s5e=[cat: VP

92>

93>

94>

95>

96>

2: #5%])

Hax depth:
Choice mode:
Choiceas:
Backtrack:
Agenda tracing:

Agenda additions:

Edge tracing:
Statistics:
Timings:
Reading:
Installation:
Print level:
Algorithm:
Separators:

print level 10

Sample Sessicn with the Command Interface

head: [form:
trans:

aux:
N

subcat: [first:

rast:

.11
rest: w4+]]]

20
Interactive
off

0ff

0ff

0ff

off

On

Setting print level to 10.

........ Arrrasasaa

> extend B5 87
Unification failed.

[#0therComplements*: *3»=()
#*Subjecte; #2e=[cat: EP

0: [cat: VP

head: [agreement: [3sg: nol

trans: *1*=[]}]

head: #de=[form: infinitival

trang: s5e=[pred: VENTILATE

argi: *l=
arg2: CRIMINALS]]

subcat: [first: 2
rest: *3+]]

1: [cat: VP
head: »4#

subcat: [first: #2»
rest: [first: =6e=[cat: VP

head: [form: finite
| .- failed
| against

65

66 CL-PATR Reference Manual

2: [cat: VP

nonfinite
trans: [pred: YENTILATE
argl: []
arg2: CRIMINALS]
aux: false]
subcat: [first: [cat: HP
head: [agreement: [3sg: neol
trans: [1]1]
rest: (}1]
rest: ()11]

head; [form: finite

subcat:

trans: [pred: VEETILATE
argl: []
arg2: CRIMINALS]
aux: falsel
[first: [cat: ¥P
head: [agreement: [3sg: nol
trans: [1]]
rest: (0111

Generate 26 ; (FU
Real time elapsed

Run time elapsed:
Actives:
Passives:

Total:

Agenda items:

<0»-- § =-> HP[s

ME CROCRETT)

1 8.77

8.78

9

15

24

496

ingular3] VP . /[Crockett fumed / --<0O>

Tree 97 ; <0>-- § —-> HP[singular3] VP . / Crockett fumed / --<0>

s
BP[singular3]
Crockett
VP

Word:Crockett
Word:Sonny
Word:Tubbs
Word:Ricarde
Word:Rico
Word:Castillo
Word:Gina
Word:EKait
Word:detectives
Word:criminals
Word:says
Word:say
Word:say
Word:said
Word:fumes
Word:fume

Sample Session with the Command Interface 67

120> Word:fume

121> Word:fumed

122> Word:ventilates
123> Word:ventilate
124> Mord:ventilate
125> Word:ventilated
126> Word:ventilated
127> Mord:kills

128> Word:kill

129> Word:kill

130> Word:killed
131> Word:killed
132> Word:shoots
133> Word:shoot

134> VWord:shoot

135> Word:shot

136> Word:shot

137> Word:leves

138> Word:love

139> Word:love

140> Word:loved

141> Word:loved

142> ‘Word:is

143> Word:was

144> Word:were

145> Word:to

146> Word:seams

147> Mord:seem

148> Mord:seem

149> Word:seemed
150> Mord:wants

151> Word:want

152> Word:want

153> Word:wanted
154> Word:passionately
155> Word:quickly
156> Word:happily
157> Word:yesterday

> Display 104 ; Word:Crockett
158> Word:Crockett
Constraints:
<* word> = CROCKEIT
Masc
ProperNoun
159> Directed graph: ...
> Display 1569 ; Diraected graph:
[cat: EP
head: [fagreement: [person: 3
number: singular
gender: masculine
3sg: yes]
trans: *1#=CROCEKETT]
word: *1%]

68 C(CL-PATR Reference Manual

> vord manted
160> Werd:wanted
> Display 160 ; Word:wanted
161> Word:wanted
Constraints;
<% gord> = WANTED
Finita
*gant+
162> Diracted graph: ...

Chapter 9

The Symbolics 3600 Graphical
Interface

CL-PATR makes available a graphical interface to the kinds of functions previously described for the
Symbolics 3600 running Genera 7.2 or later software. This section describes this graphical interface.
Chapter 10 includes an annotated session with the graphical interface.

9.1 Basic Structure of the Interface .

All interaction with cL-PATR is through the CL-PATR frame, a collection of menus, and displays on the
screen. The CL-PATR frame can be selected by typing <select>—+ (the <select> key followed by the
plus key). This will create a CL-PATR frame and expose it on the screen if no such frame existed before,
or will expose an existing frame.

The frame consists of twelve panes, only eight of which are initially visible. These include, from top
to bottom and left to right, the title pane, the command menu, up to eight display panes, an interactor,
and a display menu. On startup, only four of the display panes are visible. The upper left pane includes
a legal notice.

Interaction with CL-PATR proceeds by typing commands to the interactor (at the ‘CL-PATR
command:’ prompt) or by clicking the mouse on menu items or mouse-sensitive items in the display
panes.

All menu items are invoked by clicking left or right on the item. Most operations on mouse-sensitive
items are invoked by clicking middle on the item, although shift-middle (= double-middle) is also used.

Most menu items have corresponding interactor commands that can be typed into the interactor
pane instead of clicking on the item.

9.1.1 Display Panes

The frame includes eight display panes in two columns of four panes each, divided conceptually into an
upper and a lower bank of four panes. Usually, only one of the two banks is visible. Some operations

69

g
s

&

70 CL-PATR Reference Manual

require the user to choose a pane in which the output of the operations is to be displayed. In such a case,
all eight panes will be displayed simultaneously (allowing only the top few lines of each to be easily read.
The mouse cursor will change from an arrow te a circle with a cross inside. Clicking the mouse on one
of the eight panes selects that pane for output. The bank that the chosen pane is in will be displayed,
and the operation will use the chosen pane for output.

The eight display panes-are able to scroll both horizontally and vertically using the scroll bars in
the left and bottom margins. This allows output that was clipped to be viewed. Another method for
viewing clipped output is to configure the frame so that only one of the eight panes occupies the entire
area for display panes, four times the usual area. Techniques for reconfiguring the display panes are
described below.

9.1.2 Browsing with the Mouse

Many items printed in the display panes are mouse-sensitive; mouse-sensitive items representing rules,
lexical entries, chart vertices, edges, and so forth will be displayed in these panes. Just as these items
can be browsed using the Display command in the portable command interface, the graphical interface
allows for browsing using the mouse. By clicking middle on these items, the user is asked to choose a
display pane in which to display the expanded information about the chosen item. This information
itself may contain mouse-sensitive items that can be further browsed.

9.2 Interface Interaction Functions

In addition to browsing information using the mouse as previously described, the configuration of the
graphical interface can itself be modified in various ways. The configuration is controlled through the
use of the bottom display menu.

Selecting panes 1 through 4 for single-pane display: The display panes in the upper bank can
be individually selected for full screen display by clicking on the Display 1-4 menu items.

Switching display banks: The Change display menu itemn reconfigures the display panes so that
the bank other than the one being currently displayed is made visible. If a single pane is being displayed,
the bank that does not include that pane is made visible.

Configuration changes can also be performed through certain mouse actions.

Selecting a pane for single-pane display: Any display pane can be chosen for single-pane display
(not just display panes 1 through 4) by clicking middle in an otherwise unoccupied area of the pane.

Deselecting a pane in single-pane display: If a single pane is being displayed, clicking middle in
an unoccupied portion of the screen reverts to displaying the bank of panes that includes the single pane.

Clearing a pane: Double-clicking or shift-clicking middle on a pane clears the contents of the pane.

The Symbolics 3600 Graphical Interface 71

Increasing the interactor pane size: Clicking control-middle anywhere in the frame increases the
size of the interactor pane at the bottom of the screen. When in the increased size configuration, clicking
control-middle reduces the interactor pane back to its normal size.

9.3 Grammar Manipulation Functions

Listing available files: TheFiles menu item in the top command menu places a list of file pathnames
in a chosen pane. (See Section 9.1.1.) The last file to be operated on (i.e., read or installed) is printed
in boldface. The pathnames are mouse-sensitive. Clicking on them can cause the files to be read or
installed.

This operation can also be invoked by typing the interactor command Files.

Reading and installing grammar files: Clicking middle on a pathname causes the file to be read
as a grammar file. Clicking shift-middle (= double-middle) on a pathname causes the .ptre version of
the file to be installed.

The Read and Install menu items can also be used. After clicking on these commands the user
enters a pathname, either by typing in the pathname as a double-quoted string or by clicking left on a
pathname being displayed. To complete the command, type a return.

In either case, the selected file will be read or installed, output being sent to a chosen pane.

This operation can also be invoked by typing the interactor commands Read file and Install
file.

These operations correspond to the Read and Install commands in the portable interface.

Reading data files: A filename with the type .data is read differently by the Read command and by
clicking middle on it. Rather than interpreting the contents of the file as a grammar, the contents are
read as LISP objects and listed in a chosen pane. These objects are mouse-sensitive, so that the file can
contain sentences to be parsed {as double-quoted strings) or s-expressions to be interpreted as logical
forms to generate from, or pathnames of other files to be loaded.

Initializing grammars:

Known Bug.The Initialize menu item should be removed. It is obsolete.

Listing rules, words,; macros, and stems: The components of the currently loaded grammar, the
rules, words, macros, and stems, can be listed in a chosen pane by invoking the corresponding menu
items: Rules, Words, Hacros, and Stems.

These operations can also be invoked by typing the interactor commands List rules,List words,
List macros, and List stems. The commands correspond to the Rules, Words, Macros, and Stems
commands in the portable interface.

The interactor commands Show rule, Show word, Show macro, and Show stem prompt for a string
and display the specified grammatical item in a chosen pane. The commands correspond to the Rule,
Word, Macro, and Stem commands in the portable interface. There are no menu equivalents of these
commands.

72 (CL-PATR Reference Manual

Browsing the grammar: The listed rules, words, macros, and stems are mouse-sensitive. Clicking
middle on an item causes its definition to be displayed in a chosen pane.

9.4 Grammar Testing Functions

Parsing sentences: Clicking middle on a string (as displayed, for instance, in a listing of a .data
file) causes the string to be parsed. QOutput, including edges corresponding to complete parses and a
representation of the chart, is displayed in a chosen pane.

This operation can also be invoked by the command menu item Parse or the interactor command
Parse. The sentence must be entered as a double-quoted string or by clicking left on a displayed string.

Generating bottom up from a logical form: Clicking middle on an s-expression (as displayed,
for instance, in a listing of a .data file) causes the s-expression to be generated from as a logical form.
QOutput, including edges corresponding to successfully generated strings and a representation of the chart,
is displayed in a chosen pane.

The bottom-up generator can also be invoked using the Generate command menu item. A logical
form is prompted for in the interactor window and can be entered by typing an s-expression or by clicking
left on a displayed s-expression (for instance, in the listing of a .data file). Results of the generation
process are displayed in a chosen pane, including the edges corresponding to successfully generated
sentences and a representation of the chart.

This operation can also be invoked with the interactor command Generate bottom up.

Generating top-down: The top-down generator can be invoked using the Generate top down in-
teractor command. Cutput is sent to a chosen pane, The user is prompted with menus to guide the
generation process, if the choice mode (as specified in the Parameters menu) is interactive.

9.5 Grammar Debugging Functions

Displaying the chart: The Chart command menu item displays in a chosen pane a representation
of the chart for the last sentence parsed or generated. The vertices in the representation are mouse-
sensitive. A representation of the chart is also printed whenever a sentence is parsed or generated in the
same pane as the parsing or generation output.

Browsing the chart: Clicking middle on a vertex in a chart causes the vertex information to be
displayed in a chosen pane. The information includes all of the incoming active edges and outgoing
passive edges. These are also mouse-sensitive and can themselves be clicked on to display further details.

Displaying parse trees: Clicking shift-middle (= double-middle) on a displayed edge causes the parse
tree for that edge to be displayed in a chosen pane.

The Symbolics 3600 Graphical Interface 73

Extending edges: The command menu item Extend allows the user to attempt to extend an active
edge in the chart with a passive edge. Results of the attempt are output in a chosen pane. If the attempt
is successful, the resulting extended edge is displayed. If the result is unsuccessful, the DG associated
with the edge is displayed with an indication of where the unification failed.

9.6 Grammar Modification Functions

Updating a portion of the grammar: The ZMACS editor on the 3600 is given an additional com-
mand, bound to the key <super>-c, to incrementally compile changes to a loaded grammar. The
currently selected region, which should include a series of S-PATR statements, is parsed and the gram-
mar tables are modified or augmented to reflect the changed or additional statements. A grammar ruie
replaces a previous definition with the same identifier. Macros and stem definitions replace previous
definitions with the same spelling. Word definitions either replace or augment previous definitions with
the same spelling; the user is prompted in a pop-up menu for whether the previous definitions should be
removed. See the notes on incremental compilation in Chapter 6.

9.7 System Configuration Functions

Displaying and modifying the parameter settings: The Parameters menu item pops up a menu
of configuration parameters that can be altered. It replaces the Set and Show commands in the portable
command interface.

9.7.1 Configuration Parameters

The parameters menu allows the setting of CL-PATR system parameters. These parameters are, for the
most part, identical to those available under the portable command interface by the Set command (see
Section 7.7.1). The differences are described here.

Set maximum print level for directed graphs. Not included in the parameters menu. Scrolling
of windows makes it reasonable to display entire graphs.

Orientation of parse tree printing.. Determines whether parse trees are displayed horizontally with
the root at the left, or vertically with the root at the top.

Known Bug: Missing Parameters. The verbose edge printing flag and the grammar
file pathname list should be added to the parameter list.

9.8 Normal Interaction

The normal method of interacting with the system using the graphical interface is the following. The
Files command menu item is invoked and the file listing placed in one of the lower bank panes. The

T4 CL-PATRE Reference Manual

lower bank panes are usually reserved for longer term information, as panes in the upper bank are more
easily selected.

A pathname in the listing is clicked on to be read or installed, as is a corresponding .data file.
Again, output is put in the lower bank. Sentences from the data file listing can be parsed, with output
including the chart placed in the upper bank. Browsing through the chart and the edges is best done in
the upper bank, because of the simplicity of entering single-pane display using the display menu items.

Grammar debugging proceeds by browsing through the chart, attempting to extend edges using
the Extend command menu item, and so forth.

-Chapter 10

Sample Session with the Symbolics
3600 Graphical Interface

This chapter presents snapshots of the graphical interface during a CL-PATR session.

1.

The initial appearance of the CL-PATR frame includes a legal notice in the upperleft display
pane. Note that in this and future snapshots, the documentation line at the bottom of the screen
describes what operations can be performed by clicking the mouse buttons.

The user-clicks shift-middle to clear the pane.
The pane that was clicked on (upper left) is now clear. The mouse is over the Files command
menu item, which appears highlighted with a surrounding rectangle.

The user clicks left on Files.

. The mouse cursor changes from an arrow to a circle with a cross inside, signalling that the user

should select a display pane for output. Note also the documentation line. The frame is now
configured to display all eight panes; at the moment, all are empty.

The user clicks on the lower left pane to place the file listing there.

- A listing of grammar and data files is placed in the chosen pane and the display is configured to

show the lower bank of four display panes.

The user clicks middle on the pathname for the sample grammar to read it.

Again, the user is asked to choose a pane for output. The lower right pane is chosen.

. The user clicks middle on the corresponding data file pathname to read the sentences and logical

forms into a pane to be chosen. (As the pane choice method has been demonstrated, we will skip
that portion of the interaction in the future.) ‘

. The sentences and logical forms are listed in the chosen pane. Note that the pathname is mouse-

sensitive.

75

76 (CL-PATR Reference Manual

8.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

The user clicks on Initialize to initialize the grammar in preparation for parsing or generating
sentences.

. The user clicks middle on the sentence “Crockett wants to ventilate criminals” to parse it.

After choosing the upper left pane, the parse information is listed.

The user clicks shift-middle on the chart edge icon corresponding to the single parse of the sentence.
A parse tree for the edge is displayed. The nodes are mouse-sensitive and can be clicked on to
display information about the corresponding edge.

The user clicks middle on one of the VP nodes.

Information about the edge is printed in a chosen pane. The information does not all fit in the
pane. The scroll bars record how much of the information is visible.

The user clicks middle on a blank area of the pane to change the configuration to show only this
pane.

Now the display fits.

The user clicks on the icon for the rule used in constructing the edge.

The user chooses a pane in the lower bank in which to display the rule.

The rule is displayed.

The user clicks on Change display to switch the display configuration to show the upper bank.

The upper bank is displayed.

The user clicks on Display 4 to display the lower right pane of the upper bank in single-pane
mode. (Note that this would work even if the lower bank were being displayed at the time.)

The appropriate pane is displayed.

The user clicks on the vertex component of the edge icon. (Notice that the edge and certain of its
components are separately mouse-sensitive.)

Information about the vertex is displayed in the chosen pane. Some of the edges have scrolled off
the bottom.

The user clicks on Extend to try to combine some of these edges manually.

The user is prompted for an active edge in the interactor window at the bottom of the screen. An
active edge is chosen by clicking left.

The user is prompted for a passive edge in the interactor window. The user scrolls the display pane
to reveal more of the edges.

The user selects a passive edge by clicking left, and types the end key to complete the command.

22.
23.

24.
25.

26.

27.
28.

29.
30.

Sample Session with the Symbolics 3600 Graphical Interface 77

Informatijon about the attempt to combine these two edges is displayed in a chosen pane. In this
case, the attempt failed.

The user clicks middle on a blank area of the pane to change to single-pane mode.
The cause of the failure is listed in the DG for the edge. The active edge required a nonfinite verb
phrase complement, but the passive edge was finite.

The user clicks middle to return to four-pane mode.
The user clicks middle on a logical form from which to generate.

Information about the generation is displayed in the chosen pane. Only one sentence is generated
since the generator was asked only to generate the first sentence. There is only one vertex in the
chart for reasons explained in Chapter 12. The user has clicked shift-middle on the icon for the
generated sentence and displayed its parse tree in the lower right as well.

‘The user clicks on Parameters to change some system parameters.

The parameters menu is displayed. The user clicks on Vertical to change the parse tree display
from horizontal trees to vertical trees.

‘The user clicks on Done to enable the changes.

The user again shift-clicks middle on the edge icon to redisplay the parse tree, now in the lower
left, and in vertical format.

The user clicks on Words to list the words in the grammar.
A list of words is displayed in a chosen pane. The user selects one of the words by clicking middle.

Information about the selected word is displayed in a chosen pane.

78

s1a)9wmele Aeydsip aSuey)
p Lerdsiq € &erdeyq
T Aepdsiq I Aeldsiq

1 aanbt4

*4adng J0 ‘3JIUs-e19) '|oJdlue) F34iyg SSBUd ‘SPUBLILIOD U310 B35 O]
~Ae|dsip eued-unoj pue sued s|y3 ueamieq 8)660]1 :|H-8snol

rouopIDaretay 145 CLedE (2 JuFjakden payspiquday

A A O A B Y YN EN R AR R AR

J spuvenoe yrvd o)

T 2 R T A D B T T AR T NG00 OO R A TRORNOROPT i

EHRNNG RO NENG B

frespuLIna JHS I8 AP WIPpra] 0I¢ HIVd PUY TLVI-1D
IvusRYRINVE [US ‘2est (2) IqTzaded paysandun

TPRRALIISEP waag vy

W WA Zapun yuawaaTy HuIJT Oy ¥ Y38 1 1HaI[IAI S}
€ 1fqus 5f eIRMIAP I8 'y eopday U £y IrEORYRINN

1S 44 sawap)juna wy waA(¥ ST)] ‘I¥MepeRINU] [YS ‘Je Y2Ies
pray SIgYMIRA ¥ pun ‘o) Aawyarzdead ST xepwuLiszuy PR WP SIYL

TRNIS
PEN AW} Jo sav] yFraddes oy Japuu PRANHM YT jz-pagstIgrdEn

ysmnesgawy 1Tamds[aang JvwmrIn (wn) HIvd-ID

T A YA A TP TP PV S AP WAoot

ARIAUID g
asivg s01av

propm puaxy uEsa] 1)
saqny azfepnfu] peay L]

HIivd-10

3Adul Jas0 $¥35N-13 J3Y3tUs [GTIEZIE 390 2 9ni]

79

Z =2anbtg

3nduU] Js3sn Y3501 J2q314g [9E£:6Z:E 390 42 3N
“43dng J0 *3J14S-BIBY "1JIUS-]04U0D F|0AIU0) *33IYS Ssaud ‘SPUBLLILIOD JBYJO 095 Of
52014 4~ "1-95N0K

sIeaweie g Leydsyp afuvyn 1oUepIpasetn] 185 "LR6T (o) 1uNpakded pryspiqndun
v dedsia ¢ depdsiq . i
T Lerdsia 1 &epdsig ' [:pevmwes g1vd 104

|
|
|
W
|
!
|

O e T e,

ajelanan g sprogy puaxg 1ersug IRy
asIvg [ITELIN sapny eZJIv iUy peay E

HIivd-10

80

siajouvivg
y Lepdsiq
T deidsig

Avgdsp afuvyn
¢ &erdsiq
1 Aepdsia

¢ 2anbta

nopuUln B S5004g ~JRq#Ys [IGIPE:E 330 L2 A)

ndine Joy 3] esooys o3 sued B U0 aSAOW 3YJ HOLH
1PU0gIDUINY] 1S "L ST (2) 1uT|kde) prysrqudan

$011J ‘pueurwiod YLYd IO

SRR |

(@ P AR W
(W rorerrny A e

H
|
:
m
| = :
avieuan ana)g Splog puaixg 1esug ey
asred s0fvy sany ez[epia] peay safd

Hivd-10

81

¥ @2anbra

: anduy Jasn $¥350~10 <2G314g [9T:T8:E 350 #2 Inj
*43dng JO "15{US-BIB|K ‘BIDN ‘34|US-[043U0] *|ea3uo) ‘14{yG §S0.d 'SPUBLLLIOD JBYIO 893S O
‘IUBY Y-BENO) £°9|1J JEWWEIE YIvd B SE OffJ S|y} PEIY W-85N0)H

F12)aWeIvg Lvrdspp a¥eugs 1DUOPIRRINTTY JH5 CLRET () 1¢Tp2kd o) pagajrqeden
v &erdsiq £ derdsiq
T Lepdsiq 1 fepdsig puvrwes ¥IVd T

HLvgsivefqo-nedqiucieqeqsGUALSIYO
ned-owspoun{ciucIeqeIys¢ NI IIINO
YLvgowepAinfciuctoqoiys¢iaISaN0
ned'dwaimefcucIoqoysCGHRISTHOL
sred-owep guefaiu¢ieqeiysGY A LSTYOL
sedrisorre- 1y B-reyo-z-a-cwWerd NUIeqoIYsCY I LSAY0
ned cureIfatucioqoIYsCHILSIHO
ned-otepaiucieqelysGYIISINOI
YILV4'o3pqucIeqeIys A LEIN0l
ned-omespgineqiucieqeys¢ Y ALEIUOL
ned-ejdoesced¢dsii<iaqeius YA LEIYOA
ned-pureiBcnedcdsiicreqeys¢eyTISHYOL
wiepraydues¢sogp-ned¢srodedciaqapsCGUaLSTLOL
hedsjdwescsoop-nedisiadedcioqbisCEHIISIHO

e e e L}

R T e e e e e)

& P

Bansy eng

OO AR NN OIP00% @

O T B R e P KA 7

avianen swayg pIom puaxy Iesug ey
asIvg 101av]y sany azjenug peay so[14

Hivd-10

82

g sanbtg

AOpULH B 2CO64] SR LYS (2 TEIE 320 42 I0)

ndino Joj 3) esooyd o3 vuad ' uo Bsnow B3 HIIED

£I213UIR IR g Aegdsip aSuvyn TOWHBINUT IS TLPSE (o) 1YTpIEdOD paysirqndug
p derdsia ¢ derdsia
7 depdsiqy 1 depdsig

J sywveruns yivd

nedowepsgEneiuciegatys

ned-eidmes¢nedcdsicioqorys
ned-purerf¢ned(dsiicioqe1qsGuILSTIOL
wepapdwes¢soop-ned¢sraded¢ragen sy ISTHOL
ned-eidures¢soop-ned¢szeded1eqorysE I LITHOI

tBupisy e

T P TP

(B PN T LA PR B
W AR AP W

RV A

T TR TN YA W

B PRI B

@ e e R W

ejeIeuan g spIog puaixa sisu] 1vg)
asieg LLEET RN sa[ny azZjie Ml peay LLTIE

Hivd-T10

83

s1gjourwIed
y Aepdsiqq
T depds)q

Avidsrp eSuwy)
£ Aepdsig
1 Lerdsiq

9 2anbtg

Induy .._un: 1 4391-10 JIG3IYS [ZRIGEIE 390 42 In)
G-EJOY ‘EBlO| Pz:m |043U0) *joajue] ‘J414S S5O ‘SPUBLLILIOD ..m:zo Qa5 o]
‘NUSY tY-2SNO B3 JEWWRID ylvd B S8 21§ S|3 PedY p-95N0op

IDUOIDEING] THS "LRET (2] sxFpiidoy pryspquday

paewrass JILVd 1)

xe)'sjdmes¢soop-ned¢sioded¢Ieqeusc: YT LSaHO BI1F Fupyspol

YIvdsoe[qo-ned QiucioqoIusCUILEIHOS
ned owepsuni<iuieqeIqsGYILIUOL
YLV ewepinfudieqe YU HLsIn0d
ned-dweyme{ciiacieqeRSGYILETHO
ted-omop, guefiucieqoys¢ I LeTHOI

*piniEs] € Bq ¢} xne Zapeoep Anjopdwy Bujuren Iedrsmorre-yB -y d-¢ -1 M-g WeI3uIaqe s G U I LT O
*eimEs] € 8q o} Beg Bupmioep Anjondwy :3ujuiepm nedcuerdcaiucieqeysayaIsIN0od
xel'a[dues¢soop-nedestodedioqorgsCua Leayod o1y Supeg nedrowepUIoqsYsaHA LIS

uresf apdwes¢soop-

nd_mﬂmaﬁoovLuwaAmuamaaA._go_nan.mm._.mmmom wolxy wEumSm

ned¢siededqaeqeiys¢ALEANO o1 Fupysiuld
weid-sdwes¢sdop-riedsreded(1eqRi sy I IEINOI Ol BunImig

HLYA'e3pHanuoqeIIsGCHALETYGS
ned-owop] gENeUUCIBYBIYSCYELITLOI
ned-apdwescijed¢ds|i10qeigs¢ I LSO
renarerd oidares yI1vd-10 Furpeo nied-puierdenedcdsiiciaqelysGua LEIYOI
Eigpsjdwes¢saop-nedcsiaded (zaqaiq sy 1 STU0
nedeidutes¢sdop-red¢sieded(eqeIqsCNILSINO

.m::a: ol1d

R e e P e e e

A P P P Py PP P

gjRlipouen)

asieg

suag IO puaixy 1visu] Heyqy
SOIIV N se[ny BZJPNIFUL peoy (111

Hivd-"10

84

L 2anbTg

LT T tHISA-10 J3031Yyg [[9:98:E 390 L& 0]

*3J1yg-dadng ao ‘asdng *1314ys-232 ‘219 ‘1JiUS-[04IU0TG ‘|OU3u0] .qum s524d ‘SpUBWIWLIOD JBY30 885 O]
NUD 1Y-DSNoK (Tl JEUIELD HiYd B SE B]1) SIY) PERIY IH-BSROM
rouopIDEIIITY 1S “L9 i (2} 1y Fpaddon payaprQuduy

s1ajeweied Avtdsip efuvy)
v Avrdsig £ derdsiq

T derdsig 1 &vidsiqg [:pvewe giva o

HEVd zumBo numa._nﬁono_nx YILSAYOI

. nedromepaun{uciaqegsC YT LSIHOI
YLV ewepAin[ciucieqoys¢ I 1S40
led-dwmejue{cnuieqeIqsCY I LIIYOS

nedrowep, quelaieqajys¢yIISIYOL

Ited sMore-1Y BI-RYD-7- Y1 M-S WRIT N UCI9qel s CY I LSTYO
nedeweIINUaqe UG LS INOS
ned-owepIuCIaqeIsEUTLSTHO

ULV oBpHQMuIsqsigs YT LETHO

njed-ottop, gENeINCILQLIYsCYTLSTHO
ned-odwescied(ds)cieqoiys¢yTIITROS
sedpureiBened¢ds)KieqelqsCYILSIYOI
wepardures¢saop-ried¢sraded¢rage sy LSTHOL
ned-ejdues¢soop-ned¢sradedcioqpqsCYILSFIOI

xoperdures¢soop-ned¢sieded¢reqergs¢ g L3O o1 Fuigsiury
ainjes) B 8q o1 xne Bupaoep Apyopjdwy :Bujurem

‘gInies] B aq 0 ¥s¢ Bupmpoep Anpoydm; :Bujurep
xo'e(dwes¢saop-nedestededesaqeiqs I LSO o1t Fujiaig
urelB-erdmes¢saop-nedestodedciaqeigscy I L eaNOI ol Buigsiuld
uresf-prdures¢soop-nedesiededeloqorgecyILeTUOL o1 Funreig

rurwers ojdmeg YLvd-10 Fupeoy

o aros

I oo ey o P F A AP e e P o YA ad s B

d-ajdwes¢ssop-njedesiededcreqoiusya LSI YO woly Suyprey Bapsir end

(o019 Lewnyl

S[RUIWUIID PIR[HUBA O] JUBM 0] SWEAS NONI0ID
S[RUJEIID BIR[UOA €} SURA 1318%I0I5

$qqn L PoIR[jiuea 118%20ID

$awing)18qo50ID

04 wetl weqg

ajeiauen wayg SPIOM puaixgy 11eIsug Ry
[JICX| $013TY tony AZIePU peey $aI1d

Hivd-10

85

g 2anbtg

anduy I8 1338011 JOG9US [EpIJEIE 300 42 0y
=B384 ‘11{Y5~{0J3u0) *[0JIU0] *34{US 552Jd *SPUBLILLOD JBL]0 895 O]

slelIWesy 221)B13{U) Y- *1-05N0p
oo IoaIna] s iRt (o) 1wFjaddos peysniqndun

raadng 40 ‘34

s1soweIved Aeids|p aBuwyn
¢ Aeds)a ¢ Lerdsiqa
§ sveewmes yrva 12

T Avidsiq 1 Aerdejq

B o O RO A T A LU A B A PO e AT ORI (AN 20 RO ONN s
—rme

HLvd aoefqo-nednuceqssCHALEANOA
nedrowspounfaiuieqesCYIISANOA
HIVJgomepAinfQiudiaqorys¢:ya1sauoa
sed-dmelmelciucieqoys¢ AL IUOI

ned-owaps gUE[CHUCIBGOIYs¢:YTISTHOL
:mn.m.ﬂo.ﬁa-uam—ulumnu..ﬂ..ﬁ__.up..nEﬁwﬁ._ﬂﬁonm“nnn"mmkmmmo.m
ned-gweIfU¢IeqoIIGYTLSAUOI
hedowepu¢isqRYsEHALIINOL

YLV J'eFplqu¢ieqe|esCy I LsIUO

nedrowap gEneqiudioqsIqsG I LS IO |
ned-eidmescned(dsiiqieqelgsE I ISINO

ned-yare1d cnedcds|cIeqoqsCYILSAYOL
wiep-ajdares¢soop-rud ¢stadvd craqorgs¢d I 1SINOL
ned-ejdures¢soop-nedesioded¢loqoyse: I Leauo |l

xarejdues¢soop-ned¢sioded(toqetgscua T eTUOI ol Bujgsiurd
‘01med) ® 8q 0} xne Bupre[aep Anpojdwy Bwjumemy

‘ainies) B oq o Bs¢ Suprepdep Appoyidug Bujurey
zorordures¢soop-ned¢siededraqeys¢ia LeanNod e[l 3unieig
weid sidures¢soop-ned¢sieded cloqe|UsCHILETUOI o) Jujgsiuiy
weid-sjdures¢soop-ned¢sreded CloqoIi YT LETNOI oll) Sunrag

mmwe1n ojdureg ¥IVd-'10 Fajpeo

o R e T P A M e T AV T PRl .

d-ejdmes¢soop-Iied¢siededciaqorus I ILSTHOA wol) Bujpesy Bunsir et

SRR N AR ARV B

e e oL]

(hioya01)] Leung,))

SRUJWID BIB[ITSA ¢ UM &) $TIODS 11840010
SRUMIID PIR{IUBA &) MTRM }1OYD0ID

sqqn [, PolR[HULA 1eY20ID

$9TIN) 1OYI0ID

O T e O YTV P T e

T A R R R oS

mepajdmes¢ssop-ned¢sraded c1oqoigs S I LSTHOI WOIJ wieg]

TS ENEY S sma g SPIOM
atmg S0IITIY saqny

H1vd-T10

[BLE L) ¢ LELL W]
Peay fagfd

86

6 2anbtg

Jndut J3ER 1335013 J3q24ys [EREEZE 390 2 301)

~30dNG 40 *13{YS-BID) *3JIUS-1043007 '[oJd3u0T “13|YG S50l “SPURILLLIOD JBYI0 BBS O
"NUDj :Y-BENOK 2DUBIUAS S|i) BSIBJ IH-BSNOR

1ouerIDarea] 185 FLe st (o) 1qFpzhdo) pegs)rqrdun)

sroauwIvg Aerdsp adueqgy
p Aepdsiq ¢ Leds1q J :pvewwe grvd T
T Aadsia I Leidsiq IeUUIRTCY BZJ{E]I[U] PUewaed TLVA T

HLva sowzo fedNUCIsqeITsCH I LIAUOI
fed-omppaunicnucieqoysCUILISTHOI
HLvdomepAinfanucioqaiys¢uaLeTUOd
ned-dwejwelKnucioqes¢ A LSTLOI
ned-omap,uefcnuciaqoiys¢YIISTUOI
ned-smolle-yBi-req-7-qla-cweidnucioqeiyscE NI Isa0S
ned-gureifaIucIaqegs YA LSIHOS
nedrowepiuciaqeigsEYILSINOI

‘pinjes] € eq &) xne Fuprepoep Anjopdwm
*pImes] e oq o F3¢ Bupreioep Anjojdwy :Bupurem
xoreidmes¢soop-ned¢sindedioqelysCuALITUO o1 Bupmig

weaFo(dures¢soop-sed¢sodedIoqoIqsci T LU0 ollF Supusiuld YLV4eEpjIqnudioqeiysGYILEINOS
merFejdmes¢eoop-ned¢siodedcioqeysGy I L9aN 0T o1l Supmyg sjed-owapy gEneUCIBYBIUSENTISINOS
ned-o|durescnedds)[¢10qo1ys¢YILETYOL

rewmeln e[dureg Yrvd-10 Fupeo ned-pureiBcnededs]CoqoIgsC YISO

wepajdwes¢saop-avd (sraded (1agatys¢UF 1S3 U0
ned-eduwes¢ssop-ned¢siodedeioqoys I LeAHOT

O P e AT P Ao W &

d- o_aEmXSou-hmmAﬁmmaaﬁgoﬁuomm._.mmmom wol) Sajpeay Funsyy ond

(meyroil fawmny,l)

S[RUTIITID HIREIIURA O) JURM ¢ $WEbE }OYIOID
s elejnusa oy spues eyoor

$qqn I pPeie[uBas neyde1d

8IN] NORIOID

T A A St W

O e P A WA oA Py Fovovs W

mepejdurs¢saop-nedesrodedieqeye sy Lsa O woay vie|s

a)yeIeuUan fwing FpIOM puexy LRy | LELL M)
orIug soraep sofny oZj[erIul peay sapid

Hivd-70

™~
o<

£I0)8WRIv]
v depdsig
T depdsig

Aedstp o3uvyn
¢ dvpdsyqg

0T 92anbta

anduy JSsn Y8012 J49g914g [ZEHEIE 390 42 3n)
*IJIYS-BIDY *IJIHS-]0LJUOT *JOJJUOD "J4IYS S50Ud *SpPUBLILIOD JOYI0 8BS O]
"NUdl Y-95Nol "abpo 1Jeys Siy3 puedx] 1p-2SNOK

togopinaaiay (a5 ‘L9 ST (2] 19Rpkded prosjqudun

“dadng Jo

IPrRwme XIVd 1D
eururels) BIZ[RNIU] MrEmE X1V IO

1 depdsia

A S NN A A TN AR A A A A A A A PR P DS TR AR T DR s B!

e R R T Pl A P e R e 2]

¢--- SRTEpD -—o)
<--- O[NTBA -
=== 01 ===
C-=- NTRA =)
<-== NeXI0ID -=->

%
SERUIWIS BIRINULA O STUBM 116X0ID / « JA [ERINFUEIAN « § ~~<0Y

[€19€11°] -pesde(e emp uny
grcoRs’ spesdee smy) eay

(W <R o e

LBRUIHILID 6]B][JURGA O} EJURA 1184001D, JoJ esIej|H

aywIeuan

esivg

nuelg SPIOM pueIxy s 1weyD
SOX0T sy QZYIWIIU] pvey sa[rd

HIVvd-"IO

a8

1T @anbta

nduy J3en 183EN-"1 J303LYs {BGIEEIE 390 42 Ing
. *48dng 10 "131{YS-BIB *1JI1UG-]0LIU0T *|OJAIU0D "IJIUS SSDIU 'SPUBLLILIOD JIHIO 288 Of
¢ ‘nusl :y-esnop {-a6pa 1LY S1Y3 puBdx] H-2SNo}
1poo) ol rray [R5 Sep sl (20 wwkprkden prenrendug

£19)0WTITg fepds)p afueyy
p depdsig ¢ &eidsig
T dvpdsiq 1 dvpdsig § sovvwwe give 1

O A T PO T P P AP e eIt W,

1E19€Ti') pesdeie ewp uny

: m
W <S[H

W (- S[RUJUI[ID —==3 <IN

w (--- BIE[|IUBA —=-) &> m

w s 0} —==3 L4A) M

' === HUBA -=u3 M

:«EE_._ulruB_&mZVmb W (=== NeYD01D =-=3 £0> W

PIR[IU BN A di m R m
dA I H

o———A—dA W S[EUII[ID BIE[ATRA 0] MWes Hexde1D / » JA [cremBupsldy « 8 —-¢o> |}

Bl UBA— A dA i m

m :

| :

neyoerr—{creniugs]q grcovs s ‘pesdere swf [eoy
LERUIWLID SIB[[IUSA O] BJURM J18XD0INH, J0] BOI} BgIad i8]0 UTW]ID 81B[JIWGA O3 BjUBM 11030010, JoJ dsied|H
BITIBNED) g TPIOM pumxyg oSy gD
BsIvg S0IDREY se[oy CEATLT L pevey se|ld

Hivd-10

89

21 eanbra

ndur J3FN 2Y¥380-13 Jagatyg [BETAFIE 130 42 30i]
*33dng 40 *3131US-BIBN '|047U0) *3JI4S §53ad "SPUBLULIOD .IBLI0 BI5 Of
-Aejds|p sued-snoy pue sued s(yj uesmiaq 8|860) N-a5n0)
troopIpatnGr ES *Le6T (2) 1WFiThden pagsptqeday

s1e)aweIed Lerdep aSuvyy
¢ Lerdsig ¢ Lepdsig

7 Avidsig t Avdsig pvwmes YIVA I

Iz 116.@
IR jIUINE "BULnuuum- tsuRJdy
LenfAIUL UL IUJD3]=x91 IpeaY
dh 131@oa] ip

[[[)=%Tx :suesq] :peay
dH t1e2]=3Zx Tx133[Qng:
t {J=sEx :xF3UIUI|dUQ]JaY30x]
mqdeaf peydeliq

<§>-- 7 S[ERUMEID BiEfRuRA 7 . [[In|d]aN dA ¢ A --<6 TTITA
E9=- 7o/ dh» dA ~dA --<T> PopUMRF
:0Bpe ey jo sedinog

{s1upmejdmod)iainy BIny

e e

C)~- / SIBUFUILID BIB[UGA 01 / « JA JA « dA <> o8pF

B R R OB AV 1]

<>
¢--- SRR ~-=) <>
¢==- DIEIUOS --- <6

¢=== 0} ===} @

i
m
i
H
i
: ¢--- TR -3 qH
mﬁn_srl_ﬂimumzvn; W - NBYDOIY ---> @ m
3 H
efelnues A A an o : aseyD i
H &
o A—dA V W 1RUM[I> HIEI[IUBA ©) SITEA 11OY201D / » dA [creInfuis]dN « § --¢0d> W
PP H
sue A dA i 1€19¢11°1 -pesdeje emp uny m
neyoory-—{creniurs]d ¢ greoes'L perdele eun eoy |
LE[BUIMIIID 81B[[1UOA D] 8JURA 130ND0X0, JOJ BBX] B8IRJ m :, BEUWTID DBIIUSA 0] S1URA 31942040, 10} 08Iu|
|jeIauan uag spIOM puaxg Latid 1weqd
;117 S0I0VIN sony ozjepu] pvey se]id

HIvd-10

90

tlajemwied
¥ Aepdsgy
T dvldsiq

Avpdsp aSueyn
¢ &vidsiq
1 fepdsiq

€T °anbra

3nduy I35 1938019

J3qaiyg [25:Abig 390 42 30}
“3}iUg-Jadng Jo 'Jadng ‘15G-BIBN ‘33I4S-10JIUCYH "|043U0] ‘I151HS SSa3ad ‘SPUBLILIOD 433D 893S O]
"NUB tH=BSNOY 2iNd S|yl 244988 :{~-BENOH
feaopTwsrin] RS Zpat (2) vaRaadeD pavariqadug)

[[[2E2 3834
[{() 3834
2y 13044 3] :aqeoqgns
ﬁun 123 1HNR
£G2 iSURJ]
23Ul juoy tudoy] ipeay
df $3@3]=3pz 38J}4] ia@ed
123 38Jd}4] :qeaqns
193 ipeay
dh £993] 1
[[2Es 3834
128 36J}J] i3woqQne
[[SLoU}WsI $ZBuR
: 1Tt Bue
31332 | puang (pIJd]=31Gz ISURLY
LRAFIFULJUL iWJO]=29s IpESY
dn :3e?] :pg
[[[]=2Tr :suRJ3] :peay
dl $992]=222 :1393[qQngs:
{)=2E3 sSauaWa|duogJaayIgs]
qdesd pejoerig

<§y-- ¢ SEUpWiD ple[pusa / « [EIRA]AN dA + A --¢6> miln
== / %/ dA+dA « dA --<D> [PPPURIEY
:oipe oY} Jo se2IN0g

Ey== [S[RUWIHD O1B[TIUSA 03 / « JA dA + dA ~~<TD> 98p3

ajwisuan)
sy

fualg
FLEE TN

spiop pusixd 1wsag weyy
sany azj[e] peay 213

HIivd-13

81

¢TI 2aInbta

siajowreled Serdsyp aduvyy
p deldsiq ¢ Lepd#iaq
T Leydsig § Aegdsig § spuvmumen Frva 1o

MOpULN @ 385043 $§38N-10 J49Qa148 [4TEILIE 300 JE AN

andino 4o} 3] 9s00y> 03 cued B uo asnow ayj) ¥od})
1DTOHDUINUY (X5 s (2} ixdpriden prosprqndun

AR A AR N P WA 00 B SO ANTORA ISR, B

weidrardwes¢srop-nedesiodedeaeqeysGYILETHOI ol Eunmg
rewmen sdureg YIvd-T0 Fuipee

M d- m_nEmRmoovnbmamﬁmamqﬁcaoEnA HALSAHOS wor) mn_vmaz

ned-owep,g¥neqiuciaqsqsGYILeTNOL
ned-ardures¢ned(dsi[¢1eqeIqs YL
ned-pureifcred(ds{¢10qoiqsCYALEINOL
nepejdures¢soop-ned¢siaded craqaus Y1 STHOA
nedrejdures¢soop-1ed¢siodedciaqeigscydreanod

Huney erya|d

A_rzwxuouo_ Lemny,i}

S[eUfmID BIR][ILea 0 YR O] $UIbEs 11OYI0ID
SEUJWD BIR[ULA O] FUBM POYIOID

$qqNL PAIR[jIUGA 1OYO0ID

$8UIN] NOHD0ID

eEpT a—nEanAnuovLamnAEommnﬁcpoEnA WALSHUOI wol] eyucy

R P e P R T LT W

R AR W

(§o== [S[EUIWND BiE(pULA / :ﬂ:__&mz dA ¢ dA <> s
Eo== 101/ dA s dA + dA -~(T)> Pepusixy
:a8pe oy Jo se2inog

{siusmejdwmoo}:eny @Iny

£y~ / SIBUTUIIID 878[jIusA 01 / « JA dA « A --<T> o8py

nexror—gremnusly

1 S[EUJUID 8IR[[JUBA OF SJUBA 11030010, JOJ 981} osIeg

S[EUMID BIRINUBA Of SYTRM 116X0IY / » JA [cremBups]dN + § --¢0)

1€19€i1't pesde(e sump uny
Bre0as 1 petdule pwp Eey

W AR

L S[EUWIID BBI[jUBA O} SjUEM J10X20JD), J0J esied(H

@)eIousr) ey SpIOg
asred 0120 so|ny

puorxy s ueq]
LE | B 1A peey g

Hivd-70

&

™
[#)]

GT 2anbtyg

anduy Jasn &mmnu.._u J2g314g [4T:2biE 320 28 @]
~19dng 40 '3JIYS-BIOW *33|4S-|0JU0) ‘|013u0F *35IuS Ssoad ‘SpuRLwIoD Jay30 a3s oy
~Aejds[qg abuey) :y- *1-8snop

slajewereg ¥ 1000 IDTINGT TYS LP S (0] 1qTpakdoD prysjtqadun
p Lerdsiq m
T &nydsig - Prrmes TLVA TOH
Hive sowso-zx_encwﬁ_nx HILITHOI
Ned omepalnlcUCIoq e s HESIHOS
YL vgowepAnfcnucieqeys¢IaLsIY0a
hed-dueyue[hudioqeYsCYALETYOD
xerejdues¢saop-ned¢sreded¢ieqe|Ys¢HILSINOS g Fupysjull hied-omepygue[qiuioqelsGuEISTUOL
*simen] © 6q o} xne Bupreioep Apjojdumy sBupuem Iedssmolre- 1B .10y - -G im-g ure1B N uiog ol s A8 INO
pinjes] v 8q oy S5¢ Buprepoep Apajidwy 1ujuresy nedcweiFQIUIeqofYSCYILSINO
xoj-erduescioop-ned¢srodedcreqeiys¢yg LsIUOS olf Fupmeig|| ned'owapIuIBqeIYsG Y LAY
urer¥-o(dores¢szop-ned¢tiadedcieqe1qsyILSIUOA o1 Bujysiura YLV&eBplqenudieqeisGIaLeaned
weif-spdmes¢soop-ned¢sioded¢io Qo sGUILSIROI ollf Buning|j ned-owap/gdnecudiaqelysGUTISTHOL
] ned-ardwesciedcdsyicioqelus¢GyILsINOL
remweln ojdweg y1Lvd-10 Fupeo|d ned-yuresdedcdsicioqeiys¢y I LeTHOd

wiepajdwes¢saop-nedcsradedCraqa sy LSTIOS
ned-ajdures¢soop-nedesioded¢iogergsGYIIsIHOL

d- oEEmnGuovlbunAm._anmmA._ch»A HALSTHOS woil Sujpeey Hupiey o1

tydeJd pagoadg

(o uemsdwonioyio,
Lwelqng,)
T = quaqns juemdTga>
((,nuewmedwon18q10,
x>
1o8fqng,)
= (1B2qMs PIYAT4AD
(mexoo1]| LounLl) (PTIY2"aA
$[RUIHI}ID BIU[[IUBA 0) JURM 0} SWUEBs N6YI0ID yuered g4)prey
S[BUITIFLD BIR[PTOA 0} SITEM 1040010 HUTRISTOD
$qqny perRjiuss 18RI
SN NeYo0Ly (z uequwnu eny) X PIIYO g « juered gy 500y
myeprordues¢adop-1jedesioded (Ioqe e S LSO mol) Bvle({syuemejdmon}iamy
sjplbuBn) susg SPIOM pueixyg [Lvisul Weyn
eslvg SOI20 PN semy BZ|[eIful Peod s3g
HIvVd-13

93

gT @anbtg

anduy JSIEn 2HISN-"13 J3gsiyg {Ee:2pig 300 42 L)
S=Biop *1JIUS=|04U07) "|odjue) ‘15i4g ssadd ‘SPUBLLILOD J8Yj0o 893S O
b Arjdsig - *1-0snol

IDROPIPEINILT 148 “2pSL (8) AqFpIELeD prynyzqdun

fIajeweIe g Aedsip aBuvy)

WPEWE ALYSL 'L
Aetdsyqg oFupyy tpuwwrwes X1vd T

AT ATAAAR AU R KRR AR Dk B

1Tt 8%
339 1INy pIad]=gGs (8URJI]Y
LenAPI U UL tuJDg]=29% IpRIY
dn :3e9] g
[[[}=3Tx :EUQJ]] :peay
dH :3wa]=3Zx 11329(qnSx
{}=3Ex :3S3UaWI | duUDIIYIDs]
wyder? perosng

<§y-- / sleujmiyas exelpues 7 o [[eIn(d]dN dA + dA ~=¢C) A
E5-- /917 dA = dA « A --¢T) ‘popuULIXT
dpe ey Jo teainog

{stuewmeiduies)iayny Biny

$y-- / S[RUIWID O1B[NIUBA 03 / = dA dA « dA --<2> o8p3

B SO N AR O T B A ATV ALK AR M DT AR A A AR RSN DAL

¢eun S{RUFUILED ---)
¢uen OIRIIIUBA —--)

[]
m
m
| gm0 =m-)
i (== HURM -y
:«q_ﬂzl_s:“&mzvn; W - NOY201) ~--)
oI ues A dn an i |
§
o A—d&A V HiE stemjmpaz erepijuea of simeat 2n6y201) 7 « JA [crenfujs]an « § --<0p
SYuRE——p
o m 1€19€I11 pesdete ewp uny
neysos—{¢reiniupsly W grc0gs'] posdeje smp {esy

LSIBUINILID 8IB[JIUGA 01 BIUBA JOAI0LT, JOF 801} oared

8)w10ues ey spIog puayxg s 1egD
asIwd [TIEIT se[ny azpepM| peey (LK

HIvVd-10

94

LT 2anbtg

nduy J3sn F338N-"10 JIgILYs [ESigbif 390 42 In)

*1Ug=Jadng 40 ‘gadng ‘331jus-ei9l *33IYS-{OITUO] *JOJIU0Y F3|Y4S SE52Jd ‘SPUBLILIOD SBL10 285 O]
‘AUDH IH=BSNOp f-xX0314oA SiY) puedxy p-esnoy

1peO IDUIPIG] 1385 LR6t (o) 1wwEpakdo) t.q:.zuanm

sIajawe Iy Aepdstp of8uwyy
v derds|a ¢ Avjdsiq
7 Aerds)a

3

J puvmnier 21vS 10
y Aejdsp tpuvwue 11vd 10

T A R D O A A e A B R BN O RO TARSPONORN T

[C[sEx i3s3
[[() :3saa
2Zx 13@J4pg] :q@ogne
[99e) ixne
15 TEURJ3
23U Uy tuaa)] fpway
df nnnuuunru uun._r_u N

2% 38444] 3IROQNR

t9s pRIYy
dn :399] it

[[sEx 239534
123 S3EJ4}J] 3eoqns
[[=leviupas 12640
s :T6Je
1290 j3UIng ipIud]=gGz IEURJY

LenL3pUpJul (W10))=$9s ipERIY

dn 193] :@
[L[]=:Ts :sued3] :peay
dH $992]=122 is323fQngy
{)=1£2 aF3UAURdUD]JTYI0L]
mdexd paideljq

<§y-- ¢ s[eOpmyId eR|piUes / .« [EIn(d]dN dA + dA -a R
o= /0 / dA » dA + dA —-<(T> ‘PEpPUIZY
0fpo oYy Jo sedINOg
{niwewmerdwon}iainy o[ny
Sy~ / S[UWIID BIBIIUGA 01 / « dA dA + A ~--<T> o8p7lH

ajrIeunn ua)g SpIOM puexy treysuy vy
asred SOIORRY samny azyeR peay L

HIVA-T1TO

N
o2

8T @2anbtg

anduy S3zh 1435019

s1ojeuteIeg Avidsip o8uvyn
v depdsig ¢ Avrdsig
7 dvidsiq 1 dwgdsia

SpUTEWe YLV 1D

LJIGDLYG [8G34BIE 300 48 #h)]
*19dng 4o "15IYS-BIa *3J1YG-{0JIU0] *lodjuos ‘344G Ss9ud 'SPUBLILIOD JBYID DI5 O)
*effp3 puaixy 404 siuswnbae os00y] Y-0SNCK ta6p] pusixg Joj syuswnbae peay :-05n0)
POTOpADOaNT] [HS TLpat (20 1yFpakdon pavasednn

Iz 1842
3939 [IuIng pIId] =gy ISUGJY
LenLIPURJUL tUJOy] =29 tpeay
dn :3@o}

(== / @RIAUBA / - A+ dA

[[[1=21x isusJ3] :pway
dH :3@9]z323 :x303[qngs
()=#E% Sa23UIUR[dUO]IaY30s]
qderd peyrel|g

- /017 dAdA«dA
&y~ 14 XdA-+dA
- 17 Aevdh
€= 17 dAdAN -+ §
M (§y-- / s[eUpw(Id> ele(ues / . [eIn{d]dN dA « dA --¢E) MM
== 704 dA s dA v dA ~=(T) POPUSIXT
88pe a8l Jo $82In0g

{siuswejdwod}erny e1ny

$)— / S[RUIHWLID 018[J1UsA 01 \ = dA dA + dA ——<T> o¥p3

<Gy / SRUIWIID BjR|]UsA / :sz&nz dA + dA =«

¢§y-- / sreujupe siefhusa / - [fIn(d]dN dA + dA -6
iseasted Fopoding

~~CE>
-={E>
-~
-=LE)
$eal12® Zojwoou)

ofe|uea (eajmIs) Fupmo[[ol
(b iXeleA 1XBN

KE> TOUBA

=0

O T e T P AWy P PP R

(=== S[EGIWIS --=)

(&M

{==~ BIRIUGA ---} £
{uan O ~=u3 L4
(=== SIURM =) (49
seujurps— rernd]q {==n NBYIOLD ---> <0
di
ajelues A dn V 21 o)
dA
oA —dA V S[EUIW{ID MR[JITGA O} SIURM 1NON20I] / » dA [¢IenfupB]dN « & =<0
nURAT——4 dA 1€19¢111 pesde(s awy} uny
nesdor—{greinBuls]y C0US1 Posdela swp [eoy
LB[BUILILID 01B[IIUBA O BJUBM 110YD0I, JOJ 001} dEIRg LARUEILID BRITIUOA 0] BJUEM 118Yd0ID, 10] an.am .

ayvIondn e}y SpIOM Puax 3] I{wsu] ueyn
asIvg SOIDVIY foIny ezjenu] peay salrq

HQIivd-10

o
o

s1mewmeIvg
v &e1dsig
7 Aetdsia

D O 0 P T e S P S Y S S R R SRR R B

61 =2anbta

. Induy JEsfy
*JANG U0 *3J|US-BIBW *IHG-[04IU0D *{0JIU0Y *IIU5 SSoL

Ae(dsip eSuvyn
¢ Aelds1q
| &epdsiq

Jagsius [BEI8PIE 320 &2 =n))

1438010
*SPUBLLIIGYD 12Y30 235 O]

“NUIY tY-oSnoOp “-wm—uu ISBYD S8 ﬂcm&xw H R el P
1PeofIpatdia] TS LR sL [2) wwEpakden v-«-fqno.qm

([<ey-- 7 @ 7 dA » dA « dA --<I> Vineep] efpe papse) :elpg pusixy
punwRted XIVS 1)

R T Ay]

§r—

13539 jquanz

(Gy-- / STRUJWID Bie|Uss /
{Eym~
/ s[eujmyId o1m||1ueA o} /

tTt :16am
uvu.._a“_u-mn IEURJ)
LEAIFURJUL U] =598 IpRAY
dh 33e2] i
[[[]=¢Tz :su=J3] :peay
dH $3%92]=222 :3323qQn5s
()=e£x :1283uaWa|duo]Iayigs]
:qdes® pejoeaiQg

[end]dN dA « dA --¢6) s

/0 / dA«dA«dAa <> POPUBRX]
:afpe oY) Jo sBOIneg

{siuemejdmon}s[ny :BjnYy

= dA dA « dA -=<T> ofpT

B A e A AN A B A AV DDAV KOO OSSR AN

speupmpo—{reanid]q

<§y-- 7 sEUWID oyeqnusa / . [TRIn(d]dN dA « dA -=<E>
<Py-- / SIE[NUBA / « A ¢ dA --{E>

<§y-- ¢ sfeupmps se(puea /o [[ein(d]dN da « dA -6
sspapssed Fupoding

3

E»—- 1/ XdA»«dA =<2
== £ 7 A-edA -8
== /7 dAdN +» « § =D

seapoe Srjwoou]
BIEj1UBA :[eTjwis) Bujmolied

> oA 128N

e A T PO A 2 WML

HEY IDNIOA

A T B T T R O OO N DN DRSO

BIBJ[IUB A A

L — - 1

S

m

|

—
V&, |
" NW
:

%>
¢--- S[eUImnD - >
{--- BIB[[iUBA —---} (£

¢-=- O =) <@
(== SVIRM -a-) U
¢-== NOYD0ID ---> w3
AIBYD

IEUIMIID BIBJILRA O SjueA NBY01D / + dA [CBuB]aN « § --<0>

e e]

owiausn
osIN g

? A Ic19¢t 1" pesde(s surp uny
neyoo1y—{¢remiulsld 2peogs'T posders oun ey
LSTEUTHELD BIE[IINGA 0] SJURA 110901D, 103 0611 osid|df LE[EUIEId 8JB[j1UsA 0] FIUBA 10632010, l0] enieg H
we)g paog pusxg oSy 1D
SOIATY to|ny ezjep U pway £aTfd

HLVA-T1O

[~
=2

0z 2xnbta

NAUT JISN ¢ §350-7] 430243 [€G:BFIE 320 L2 I0L

spueur 03 ouy) do) 1BIY K12 O3 BAOH IPPIW HWO310q 03 13397-3)1ys) do3 03 Bu|j pa.IEK 1349

[T S—— ferdsyp sBueyy rouopIDUrKINY XS YipsE (o) 1Y Fpadde) pryarendun
v derdsig ¢ derdsig ([¢Ly-- 7 SRUIMpD SIB[TIUGA O} YIRA ¢+ dA dA + dA ~-<C) 1Inejep] efpo oapssed)
T hﬂq_EE I %_&E (E)-= L O1 7 dA s dA «dA -~(2) .&.um puGIXg

x1x :1Bue
30| uany pauad]=3Gx isuQJy
L@ALI UL U} JUID4]=292 fpURY
dn $3ed] @

<$y-- ¢ IETIWUD BB[TBA / :s;_&mz dA « dA -~
(=~ 7 OIE[NUBA / o A« dA -<E>

<§>-- / srempmpd evthaea /.« [(In[A]dN dA « dA -
iseapssed Fupeding

&Er- /0 / dA-dAh+da <D
€= /7 XdA-+dA <22
Ex== /4 Aredh <>

£E)== /7 dAdN + +§ =<0
ioapoe Bujmodn)

[C[I=%Te :i8ueJ43] :pe3y
dH fav2]=xZs :1303[qngy
()=sEx ?zE3UWR | dUOTI3Y430r]
iqdea? peoerig

¢§y-- ¢ speuImpI> ejerpues / - [einld]aN dA « dA -~¢D
€)= /O dA « dA + dA ~-(T> PePUBIXY
:e8pe oqy Jo sedINOg

aje[iuea eujwin Tumolieg

{syueweldmod}ielny teny <b) iXBIIRA 1XON

R e o e e T T

R T T]

-/ S[BUNNLID BIB[JIUBA 03 / « JA dA « dA ||Aﬂv o8pa KEY TOIBA

¢--- SRUMWHD -3
¢--- BIBI[\UBA —--)
€= 0 ===y
(- HURM, ===y
¢=== 1BYD0ID ===

spenpwr—{retnid]g
zV&.,

3EA 0T N dA

dA
oA —dA
fues—f dA
neyooro—{gmenduplg

L_S[RUTMIID BIR]JJUDPA O] SIUEM 110Y2017), I0J 601} 8sisd|d

[RUIHIID BIR[[1T0A OF BITRA NOYI0ID 7 » JA [CrnBup]dN « § --¢0>

1E19¢T1°T spesdele owp uny
8r£096°1 pesdeje o [eoy

H
3
{
H
g
i
t
H
H
H
N
H
H
H
N
i
i
i

LE[RUNIIID BlRIPIUBA O} FIUEM 103D01D. 0] osrej|H

owiousn g spIOM puaixy nvisul e
asied 1012V [Y sa[ny LEJ L L | peey w{d

HIVH-13

98

1z 2anbtg

Andut JIER tHH5N-"12 ~2q9LYyS [6618PIE 320 42 0]

*4addng 4o *3JIYS-BIB| ‘141UG=10U0) F|02U0] “351UG 550.d 'SPURIIULIGD 410 885 O]
"nuDd) Y-2SNO| :°06po JueyD S|Y3 pPuRdX] I|~-0SNO

1O IDUINILT BRS CL8E (2} 1WEjIkdD paysienduy

s1ajameIRg Avidsip a3uwy)
v Avpdsiq ¢ Lerdsyq
T Lepdsi I Lerdsiq

([¢Ly=~ ¢ SPUEID BIRIRTUSA O} TURA / o« dA dA « dA --<C) ynejep] efpa eayssed)
()= L O1} dA « dA « JA --¢Z) 108p3F puULIXZ

tTx :76a0
¥210 | |auans (paad]=ggs iSURJY
LeAL3pULJUL 2UED]=39s RPERY
dn :ae3] ip

[C[]=%Tx isueuy] :peay
dH 13wal=sZz :2392[qngs
{)=151 re3uIvalduogJusy3ps]
:qder? peidenig

(== / R[IUSA ¢ » BIRIJITEA ¢ A --(fD
(-~ /[PIR[IUGA / « BIR[[IUBA « /4 --(D
- / BIRINEeA / « A+ JA (D>
ke>-—7 sfeupnpo eejpuea 7 . [eIni[IN JA% gA --<od
dd-- / OIRIMMUA 7w A « dA (D>

<§»-- / SIRUPMUD srelnues 7 « [[BIR[AIIN dA « dA --¢D>
ieapsed Fuyofing

{G>-- ¢ sreupmp ejefnues 7« [RIM[d]dN dA « dA ~~CE> TR
E>== £ 01/ dA « dA « dA ~~<T> POPUNIT
:ofpe ey Jo sedinog

{simemeduwoes}e(ny e(ny

O VA N o PO A Y

/ BIBUTUILID 81B[[1UBA 01 / = JA dA « dA --<T> o8pd

AR NIANR AN

m N [

i {mn IETIMILD =-=) |y

¢ {=ee BR[[ITBA ===) 10$]:

m ¢om- O ==m <D [i

i (=== SIUBA -~-) <

seapupI— ﬁ:z&mzv_"; W (== NBY301] ---3 <« i

§ H

sEnusL A AN Ji . m AIBYD m

oA —dA W MRTJIEID B1B[[{UGA 0] NURM {18Y20I0 / » dA [CRINBTp]dN « § ~-(Dd W

Te——pA——— 3 m

" A K m ICI9e11"] spesde(e amp any

neyoor—{¢reinBuplg i 9vc09g'l spesdele emp ey |

H

L E[RUTRIILD HIRI[IUGA 0] BJUBA 11092010, JOJ 021y bsled m LBJOUJMIID IR]JIUOA 0} SIUBA 1305017, JoF esiej|h
yvIauan susng spropm puayxy [ieisuy 1egD
esIed $0I100 Y a[ny ezjmpuy peay LEMAT ¢

qLvd-10

99

s13jawwied Aepdsrp sduwyy
v Aedsiq £ derdsig
T Avidsig §} Aepdsig

ZZ 2anbtJg

anduy ,._uum
*Jadng 4o ‘1JIYS-BIBp [043U07) ‘114G 5524d 'SPUBLULLIOD JBL{I0 8IS O]

&mm:lu_u

J3g2pUg [EGI6RIE 90 JE It

*Aeidsip aued-ano} pue sued S|l usamieq 2660 fi-vsnop
towoniviteray 135 *epet (o} 1u¥pakde) payapiqudeg

sprrEae YLV 10
{G>-~ /7 STRUIWHD &

11

& oEEm»Auuovu.swnAﬁogmaﬁoa&nuh HILSTHO woly Sugprey

DA A RN I DRI AR ERTRTAROAPEANNY B

xol'o(dumssoop-ned¢sioded(iaqeiqs YT ISTHOI 211) Fupgsiurd
*pInies) € 8q o) xne 2upre[osp Apporidwy Bupuiepm

pinjes] e oq o} Bs¢ Bure[osp Apiordwy :Fujutes
xor'a[duressoop-ned¢siadedaqoiay I IETHOS o) Sunmmg
wrerf-ajdures¢soop-Iied (sreded¢ioqejus YA ISIHOT OTIJ FUTYSTULS
we:f-sjdmessoop-nedesiededcingeysCuI IeI 40 21 Supinig

rewweln sldureg YILvd-10 Fupeot

O A P A A P P P R T X B

dLvdssefqo-nedcyucieqeqi¢ 418303
ned-omapsunfaitciageIgsCYIILTLOL

VLY owepAinfciudIodeiysCyILTIHOS

ed dweyue{nucieqeqsCYIISTHOL

fed-owap/ QuelqI¢ioqei{sGYILETHOI
ned-snorre-yqBI-reqo-g-Uia-gwrei I Qe QoS CUALETYOS
Ned cwetIQueqe Y LEANO
Hed'owspoIu¢IeqeIsGHALIAUO

YLV eEplaIueqel s YIS T
nedrowspgBneqiuIeqesCYTLSTUOS
ned-epdumes¢ned(dsi{¢soqorgs I LETUO
ned-purerB¢nedidsit¢ioqapsGUIITHOS
wepajdures¢soop-nvd¢szaded craqapys¢TISTNOL
fhiedepdures¢ssop-nedcsiadedcloqopysCUALSTNOI

A R Ay e s Tl]

Bupsiy e

{mex2013] Lewny,i)
$[RTIWIID ME[[IUSA O (TRA O] $WOHS 110201
STRUJUIfID BIR[NITDA O} 1R 410YI0IT

A o O e A PP

p 1230 |USnx ipIJd]=1Gs IEURMY

28 13BJpJ] favoqQnE

[[elvu}j}aa :ZBIe
xTx :[6u

Lenp3fuLut iuJ0)]=29s $pPEIY
dh 13¥3] @
[[[1=2T1s :suws3y
[ou :BSg] :13uUaURIBR] ipeay
dH $392]=3xzz !1393[qRSs
()=1£z !aEquUaUs | duo)Jayans]
pelre) uopeLjun

$qqnL PeleusA 11840010 <§y-- / SERUMED siepued / . [RINAMAN dA « dA --¢¢) oBpe aalsseq
BNy REY20In Gy £ 97 dA v dA ¢ dA ~-¢T) 08pB DAY
meperdursezrop-Jied¢sroded croqoiqe YA LSTHOS Wo1) vieq(:08po puerxe 0 jdweny
svisusn e g PIOM pusIxg Tesug FELA)
asled 012w sarny CETL puoy (IR

H IV

L]
<
—

Avpdstp eluvygy

£z 2Inbty

andup T30 13380-19 J3091U8 [66:6b5E 390 ¢T 3n)]

*48dng a0 ‘13{Ug-B18p ‘jodjucy) *JJ{USG S59ud ‘SPuBLILLOD JBYJO DDS Of
~Aepdsip sued-inoy pue aued sy udIM3oY 966 0) p-osNON
1DQRHPIINGT TS TLp ST (2] 1T rhded pagsprendun

§:revmmeo IV I

flajemeivg
y Aerdsig € dvidsiq
T Aepdspq } Aerdsiq €Cy== [S[RUpU|D &
CLL() :asau i
[[{) 3894

CCLT :sueay
[ou i68p] :juauaduBe] :pway
dN $3@0] :asd}y] iamwoqns
[@) ixnE
[EL9UlU}aD :ZBuo
[] :184=
3930 jjuang ipaud] :isueJy

331U} Juou
sujebe |
paLiey 7|
ULy tudoy] :peIY
dh 2399]=sp2 13844)] 3834
121 138a})] 1yeagqns
193 PRIy
dn f3ea] It
[[*Ex :3s3d
12 13541)) awoqns

[[SLRujW}JD tzBdw

£Ts :f6um
r 3930 [}judng ipadad]=sGz IcuQUY
(@ALIPULJUL UL]=29% PRIY

dn 193] g

[L[]=»T1 :EuRJ]
[ou tEsg] 3juauaasbe] 1peay
dN $393]=Zx 13303 qngx
{}=1Es tysquauaiduogdayigs]
POlfE] uones|iiug

EI[d]dN dA « dA --¢¢> 08pe eajsseg

¢g>-- / sTenmjmyId eE|nmes / . [
- 701/ dA - dA «dA --(D> 8pe eanoy|f

we¥pe puesjxe 031 1dweny

ejviauan nuayg SpIOg puaxy Tsug 1eyg
asImg LI ELT sa[ny azjRITU] peay a1
EH LV AT

101

vz 2InbTtag

anduf Jssn
"3J14g-Jadng Jo ‘Jacing

SI010WB IV Avidsfp sluvyn
¢ dvidsig € depdsrqg
T depdsig ¥ Avpdsig

* 338M1-") 434343

puvEwe IV IO

STIBGIE 20 42 In]
‘14I4S-BID *|OIU0] *1JIYS S58.4d ‘SPUBILLLOD 42430 385 O]
"NUB Y-BSNOY ‘WJoy (BDI60| S|YT J0) 53IUDIJUDS DIBIDUDD Ip-BSNOK|
1DUCJIDCIMTT [BS “LR6L (2) 1wFIddon payarendan

T MR AN S AR A AL R RS B

85—~ ¢ s[RI ®

zopejdmes¢soop-red¢sieded¢loqe(qsey31eaU0A o1y Supysiulg
‘eInies} B aq o} xne Bupmipep Aptado Bujurey

pruies) & 8q o7 3s¢ Bupmeaep Apandmy Bujures
xepe[dwes¢soop-ned¢siaded¢ieqe(qs¢:yI1IUOI o1l Suping
wreiB ajdues¢ssop-ned¢sieded (taqelqstyILTILOL 611 Fujysiagd
urerd-s[dures¢soop-ned¢sieded¢leqeqs¢yIIeIHOI 81 Sunieg

Tauturersy ajdures yLyd-1o Fapeo|f

d-ejdwmes¢srop-tied¢srodedaoqoiqe ST LISTHOS woly Suipeoey

Y1V nivelqo-nedarucieqeqsGUILSAYO
ned-owepsunfnu¢ieqa{sGYIISTUOI

YIvd owepAnfQiucIoqaj s CHILIFYOA
ned-dwsitefmucieqeiisCYALIIN0L

Hedromeps gue{quuctoqolEsCYALSANOS

ned-smoir-y B -y~ i M- WeIB U QRS C Y T LS N0
ned'gwelBuceqe UG HILEANO

ned omepqiuiaqeqe I LSIYOI
YLYaeIpuqaiudieqaiysEyILEaN0
ned'omepzgineqiucieqeqsGYALSTYOL
ned-p|dmes¢red¢dsi{¢reqe qsc Y ISTUOS
ned-purerf¢ed¢dsji¢ieqeiqs¢Y ALSIYOS
wiep'ajduwssoop-nwd(sroded (zaqeiysya L5340
ned-ejdwes¢soop-ned¢sieded¢ieqergs¢yIIeTUOL

Bupzr orrd

O T R OB A TP P OB PP

_|

S[EU[UIID BIRHUBA &) TUER O] SUIBBS 31BYD0ID
$TeTjTID BlR{fiTRA 0) SITRA 11BYD0ID)
$qqn], pewinasa naysoi[HE ¢co--
$eTNy 1ONI01Y

muepejdwes¢soop-Ind¢stoded¢Ieqeys LU 1SN0 woay weg

sZx 1Q5243] t3eaqns
[[sL1RuU}ju}J4a 1zBr@
11z i1{Ble
§399| jIudag ipasd]=afs isuwry
LSAPABURJU} iuIDd]=291 ipRIY
dh :1ea] :g
[LL]=sTs isuedy
[ou :Bsp] :quauaalBe] ipeay
dH $3e2]=12: 11329[qngs
()=30%x [eS3USUI[LUOIIIYANE]
‘Pal[e] Topes|uf

/ spupmils eemuea / o« [Rid]gy A « dA --¢€> o8pe oafised
- /0 / dA«dA+ dA --(D> ieSpe panOY

»8pe puejte oy jduwenly

e)visuan nuag PIOM
esrmy S0IVIY se[ny

puarxy (Lt | ey)
azpenng peey L L ES

HIvd-T1O

102

Avydsip eBuwysy
£ Lerdsiq
1 &epdsiq

b Ae[ds|q
T depds|a

gz 2aInbTg

andur Jasn

*uadng J0 '3uG-B38| '1J145-1043007) '|odjuog ‘3)yg ssaud fspueunuod JBYIo 9IS O]

:4330-10 J3gILyg [5:1G:E 390 42 In)

‘sadIDWEsES H- *)-0SNON
1oue IR 135 “LPEE (o] WFakdoD pavsprandun

peTTwe 41Lvd 1D

PELY

neyoor—{crnBuis]ly

5, PRUIR] 311835010, JOJ 88J) e2Ied

N dA

O T B e O A A A A AV £ FP T PP Ao W

(py== 7 BIEIUBA / . BRITIUGA « A -=(D

(py== 7 BIEINUAA / o BIRITIUBA & A ==(D

E>== 7 GIRINUBA 7 o A « JA =={5>

(§)=- / seUpmpD ee|puea / o [[EIn[d]dN dA + dA --<E>
KP>-- / BWEINUBA / = A« JA (5>

{§y-- / speupmp2 oefhusa /7 « [RIn[d]dN A + A =<5
oajssed Bujoding

:mEE:ol_”EB&mzv
orejIues A dA ax
oA —dA
sjues——p

d

d

neyserp—{¢memiupslg

L S[RUIWIID BIB[JIUGA 0] SIUBA 192010, IOJ 0013 osiegd

&
P
A

O A T o e P R ST ¥ s T PP

<0
nreqn
<0>-- / poung ueyoe1d / .« dp [gRINBUB)IN ¢ § -~(B>

§051692°0 posde[e emp uny
6ELP1°T posdee ewmpy [eslyf

g e e Rl]

(31030010 LoUN],) WOIJ WO BISUED)

CILIEL T suta1g
asivy sozaupy

SPIoH
sany

puBIxy tesut Yy
azjepu| pray safrd

HIvVd-10

103

sigjeweIed
v Lepdrig
z Lepds|qg

Audsip eBuwyn

gz =2anbtg

3ndul Jasp 'Y 38M1-10 J20344g [{p:2GE 320 22 3n]
*42dng J0 "3J1US-BI9 ‘31J1yg Ssadd 'SPUBLILIOD JBYl0 B35 O]

‘RUBJ| IY~ISNOK 122OYD S{Y3 32905 -SSNOK
todo) Pt UY 38 SL9SL (2) 1ulpakdoD paysirqoden

$10101IEIE] IpNYEES) HLIVA T2

N e T Sy AR AN s]

auoq) .ton._c.

(Y5948 1wauoz)doy :6upquild aaug asded o uop3@IUILIG
2INpad yyg 43|43 uwyituob|e Buisaed

"g raydeuS pAVAJP JOJ |IAF[qUED unupRgy

O 23} IUQIR|[RISUL ILLJ HiHd FIVY

DY £3) igauly 3FIed U £2}35}3R9R daa)N

oy s34 19lihg S3aEpa jo Jagunu Uo SILIELIRYE daay

O E3L 3Jeyd 03 SIEPI JO UL LPPR 30U

oy &3} !PpUate Sulsued O3 UDEIIPPR 2IWLY

O £ (SudY} wpuabe Jo Gulesadodd RIwd|

O S3) uopqRJAURB unop-doy U} BULHORJIHIRG Jaud]

of £3) tuoljesauaB unop-do3 Ujp £32|0yd FTwJ)
JALIIEIINUT UOPURY PRJIPJ) 1IPOU ID}OYD J03RJAUIE unop-do)
*@Z yidap uopjedaual unupxey [

SIaaWweivd WalsAgS H1vVd-1D

speujmpo—eimnidlg

DIRTIU A A

T

A —dA

AuUBK—p

d

d

iy

N
e

neyeor—{cre(nius]q

ILEJRUTIID B1B{{jUGA 0} SIULM 138¥001D, J0] 201y 08le]
e

(41
Rl
<0y-- ¢ PoWn} NBY201D 4 . JA [crenBupldN « & --<0>

S0SI6RL'0 peidela emp wny
6ELt1°T pesde[s sty [voy

AP a0

(11030010 ownj,) WOIy UOHBIBUGN)

@jvlatan
asavg

swag
50130

pIoM
so[oy

puaix3 MG | ey
8z pju] pvey fald

Hivd-10

<
<
—

{7 2anbtg

Jnduy Jasq ' ¥350-13 JEQRIUS [2p3iZ2GIE 330 42 @n)]

asddng 10 *111Y5-BIdp *I4IYS 5524d *SPUBRLLILIOD U330 205 O

*31%3 son|ey 1deday Y- ! -8sno

siajawvrvd Autdsyp oBavyn jresproaasiay [Hs *LR8T (57 1Bpakden pepatondun
y Aeldsiq ¢ dvrdsig
T &vidsia 1 Aerds|g

B AL 10 A AR O KN TN

$1610UINIed (puvWWeY H1VdA 1D

F0NpRJFIIFYG AR|Je] uyjpIoble Buisdadg

g reydeds pa3otdlp Joj @A JulJd unupxey

Gy S3) JUDLIR]|eIEUL ALLJ HlHd 9]

Oy €3} iE3U}] 25J49d uUS EI[IFLINIE dIIY

o S9& 13LNq £3Bp@ JO JIQUNU UD LILIELIRIE dIIy
od 23 11Jya 03 $3EpP2 JO UD|IIPPe ITRJ)

o &2y twpulbe Guisued O3 UG LPPE IDPJIY

Oy S22} FUIy| wpuabe Jo Bupseadoud Idwdy

oy §3) UD}3WJAUIB unop-dol ujp BUNORJINIRO BOEG)
o £ :uo}3RJIUIB unop-dog U} EITJOYD 30J]
FALIOVIIW] WOPURY PIURP.UD 1IPOM ITJOYD J03RJSUIB unop-doj
*p2 iyadap uepiwsauab unupwe[]

g19l3WBINd WIISAS HIVY-T1D

1 ' 1991943 [R3UOT}U0H iBujgujad 3203 Isaed JO UDLRIUSID

,aﬁszl_ssaumzvg o m

eenues & dA Vmb " armeyy w

A —dA V i <O>-- / PO} NeXo01D / + A [cInduplan « 8 <> |3

SR p dA S051694°0 pesders omp uny A

neyooro—{¢rernduis]a BELYL"Z Posdee o)y reoy [

H

L E[RUNWID OBR[{IUBA ©) $IUBMA }I6YDI0ID, 10] e0X) BSIB] (e 901n Hwny,) WOIl UONIRIBUGLEY m
8yvIauany sule}g pIoy pueixy Teisuy ey
asieg SOIORIN sotny eZjIepm] peay $0114

HLVYA-T10

105

87 =2anbta

andur Jesn 2 ¥38N-13 JIgRiyg [6TTHGIE 300 42 @nl])

~a9dng J0 ‘31JNYG-BIDY ‘J1S-101300] ‘[0J4IU0Y F3314G S584d ‘SPUBLILIGD JB1I0 D35 O
*SpJoM 3811 Y- "1~8SNOJY

FEUOLIDUINRY IRS L0t (2) tySpadden pagsttoudan

siotemvIng Aejdsrp a%uvygn
¥ Aerdejq € Avds1g
7 Avidsig 1 derdsiq

B R NN

pTRwER) Y1V LD

N A R A T AT M N B AN ST VNI AN AR TANARS &

FRBAARAR AL A AN A M T e A O e PO TR O R AN MM A BANASRAR

nepoIn

{creinSupslan

pawmn} i di
neysor—i n.aEwE&mZVm

Lpoumy 138300JD, I0J 861] B%I8J

I D T A T 0 A A R R S M P e A AN RO T Oeoaccen. 8

g

O e T T b e e S O O A A F P emtver B

Lpomng 31942010, J0J 0ol eyre]

N2 LA T R R A T KX TV TN WA OTEANODT RS

0>

srenjur—{ eingdld
”V&.,

LY A d dA aA
O A—dA V
SR f d A

noxosor—{¢mmBurs]g

LE[BUMIID 81B[IIUSA O} S]UDA 11842010, JO] B0l baled

. areys

<O>-- / poUIN) NOND0ID / « JA [crRMIUW]AN « & --<0>

co0sI69L'0 posdele etip uny
6417 posdeo sty eoy

T A T))

(1180017 LeWnY,) WOI) UG[IBISUBD

|plauan mayg puaxy TI=isu] ey
esIed FLTE T3 safny eze{IuL peay sallg

HiLvd-10

106

6z 2anbta
3Adul S9EN 1 ¥4330-12 ._Buzw [B2:65%E 320 4 "5:
o 0 e T O O O O o) & o) o
o H~o O 0 > a (] oEN0
fIajewuivg ferdsyp aSuvyy 1DWYIPAIIT THS FLPSE (2) su¥riden prysirqndan
p fepdsiy ¢ Aerds|g
T fepdsi 1 Aerdsig

HLVdaoefqo- :&aaew%zx YALSTYO _
ned-owepsunfcnucieqsrys¢ I ISIHOAR
YIVd owepAInfaiucieqeiqsCIISFYOL|f;
ned-dute)yTe[ayuioqoIsCY I LSTHOA N
nedoweps gUElUCILqRYSGHALEFYO
nedsmorreqyiz-rego-g-qsa-gweid uteqe s ¢ NI L eTHO
ned-gureifiuceqeIEsC Y3 LIN0S
ned-owopLuCIeqesGILIIUO
HIVAepHaNuteqeiqs¢uTIITNOA

ned-owep/ gRnen¢IaqelgsCYILITUOS
sied-edweschededsiicioqaiqsCYILSINOI
ned-preiBonedcdsi<oqeiqsGYIISTUO
wieprajduesssaop-nedcsiadedCraqaysE LSAHOS
ned-ajdmes¢soop-nedesiadedroqosyI LETN0OL

zsadures¢soop-ned¢sioded¢ioqpqseyILEINOS O Furgsiurg
*‘aInjen] v aq o3 xne Fuprepsop Anyjonydwuy sFujures

‘bInies] & bq o} Big Fuprejoep Antonduy Fujurex
xopojdwesgoop-sed¢siodedIpqoigs GHITIINO o}l Supeig
wei¥eidmes¢saop-ried¢sioded gdoqe) s GCHILSILOI e11) Bupysjuia|f
weife[dwes¢ssop-ned¢siededloqeiysGuaLeANOI 211 Fapnmwmg

mmuwern ojdures YIVI-10 Beipeon

Bansy ewg

wﬁnl_nEumAmuo_utbmaAEanmmABnaEuA HHISTHOI wmoky mEuaax ;

{swees}proy {pomnj}piom

{prrues)piom {o1)prog Mosavﬂ_oa
{1mem}prom {s1}:plom suIN) 1pIopm

{imeafprom {peienuealprop {somng}prom

{nues}piopyy [peleipued}ploy {seurmupd}piom

{poweas}proyy {pie|husaliproy {sesposieplplop
{wees}prop {eE|pmea)l:propm

{weeslpioy {sere|puealpiop

(meyooin Leutag]
1 SRUTUI[D BIR[[ITOA O] 1URM 0] $UIDBS {18YJ0ID
S[RUIWIS DIRIIIULA O 5iTRM 110YD0ID

$qqnl peleifuea NeYIoI1D

semt) PReNIeID

A A A P TSN AR AN P

mepeidues¢soop-nedesiodedcIaqoysC YT LETHOS wWol] viedd

2)vIauan swayg Splog puayxy =g 1eqs
asreg s0190 4 sajny az[epul peay L

Hivd-10

107

0¢ =2anbtg

ndur Jasn

sIajemvivd
v Leidsig
T Lepdsia

Avidsip eBueq)
£ Aupdsjqg
1 Avds1q

~19dng 40 *3j1yS-21a)] '|0diuo) ‘331Ys SSaUd 'SPUBLHLOD JBYJC 895 O
*Aejds|p sued-anoy pue aued s|y3 ussmiaq a|660] p-2snoy

$¥3s0-19 J3QR1US [E5:GGIE 390 42 In)

toueIpaIna [us ‘Lesl (2) 1y¥jakde) payspendun

[puvwrwes wrva .ﬁ.—

I A A 300 P AN AT ON N NN TN

0 Eo O A DO AN SO

A A P V0 A AN AN A AL N N DR RSN DR B

xzo]'e[dwes¢soop-ned¢sioded(ieqe ey I LEIUOI o1l Fupqsiull
*ainjes] & 0q o) Xne Jujre|oep Apjopdmy Bujurey

*alnqee) & 0q o) 3s¢ Fupepaep Apfopdmy :Bujurey
zoy'o[duresssop-ned¢sreded(Ioqorqsyg Ieguod ol Fupimg
wrei8 e[dues¢ssop-ned¢sioded(ieqeqscy I LeTYOI o1l Fupgsparg
wreifa(dures¢ssop-ned¢sioded¢IoqoqsE I LSTYOI ol Bupimg

rewmein ejdomes YIvd-To Supeer

B e T A At A AN T A A 75, W

.o_aanAmoovnbm._eﬁamsnﬁg252 HILSTUO:S wmory Suppuey

YELVd'sioefqo-nedcuciaqa s I IS0
ned-owapeun{nuIeqals¢YIILAN0S

ULV omepAtn{GiacioqoI s SYILEIUO
ned-dmeine[nudieqeIgs¢ I LS TYOL

ned owspgURKNUCIAQOIYSCUTLSTUO

Tjed tmo1re- B {I- ey~ - Ui M- Wl CNUCIOQOI s S TLETNOI
nhed'cuwreIBudioqa|gsCua LSO

ned owWepNUIoqolgsEYILIeTHOS
YIvdefpiauciaqegsEydLsduod
ned-omapygBneqiuciegasGYILSIUOL
ned-erdwescnedcdsiictoqes¢GaaISTICS
ned-pueid¢nedcdscioqeysGYILSTIOS
Sau.ﬂan_uuA-uou..u«unnn.-enuno.wﬂuﬁuﬁmmhmmﬁcm
ned-eldues¢ssop-ned¢stodedloqoysG I LeTNOI

O Y T O R TV Y Py P AT e,

Bupsy eHg

s

T BT A PR oOerre W

[*Tx puoOn
t [133%2000=8Tz SuURJY
[saA4 :Gsg
SUlLNosed JIpURbB
<unBUps 1Jaquou

B “:ONLUQH “uc_ur_uu.gmou_ ipeay
dH :382]
sqdesd peroesg
(meyoerp| Lewnyp
S[EUTW[I> BIE[[IUBA O] JUEA O] SWEOS }1942010 unopjtedorq
s{eujmis SiE[IUGA O} SIURA }OYD0ID seep
$qQqNT PRIB[RIUBA 118YD0ID NONUIOIN = (Plom Y
sewnj 1632040 sjupnsuon
mjepapduescgdop-ayed¢ssedad creqoiys G U LSRN0 wol) vyeqy il sfneysoankprom
ajwIauen swelg Spacy pueixg nmng Yy
asmg sOIavpy sa[ny ez][enug puoy $311d

HLvd-T10

Chapter 11

Other Enhanced Interfaces

11.1 Extensions for the Macintosh

The Macintosh version of cL-PATR written for Allegro CoMMON Lisp adds functionality to the bare
command interface by adding keystroke equivalents for certain of the special commands. The Macintosh
interface runs in a window titled “Portable Interface” which is created upon loading the CL-PATR system.
This window works exactly like a Fred window (the EMACS-like editor windows available under Allegro
CL) except that certain keys are rebound to make interaction with the interface easier. Among the
capabilities of Fred windows that the interface window inherits are scrolling, searching for strings, and
saving of the buffer contents in a file.

11.1.1 Macintosh Keystroke Equivalents

Typically, the rebound keys, when pressed while the insertion cursor is anywhere on a labeled line,
execute a special command taking as its argument the label of that line. The command thus invoked is
also printed after the prompt at the end of the buffer, so that the interaction appears as if the command
had actually been typed in. Finally, the typed command includes a comment (after the semicolon) that
indicates the contents of the labeled line where the key was pressed.

Display equivalents <enter>, <return>: The <enter> and <return> keys, when pressed on a labeled
line, execute the Display command taking as its argument the label of that line. When pressed on a line
with a prompt but no label (i.e., one with a command that has been previously entered) the command is
reinvoked. Thus, the user can reexecute a command merely by scrolling back to that command, placing
the cursor anywhere on the line and hitting return.

Help equivalent <help>: The <help> key, when pressed anywhere, regardless of whether the line has
a prompt, a label, or peither, causes execution of the Help command.

108

Other Enhanced Interfaces 109

Read equivalent <c-m-r>: When pressed on a labeled line (which should contain a string or a path-
name) executes the Read command with the label as its argument.

Install equivalent <c-m-i>: When pressed on a labeled line (which should contain a string or a
pathname) executes the Install command with the label as its argument.

Generate equivalent <c~m-g>: When pressed on a labeled line (which should contain an s-expression)
executes the Generate command with the label as its argument.

Parse equivalent <c-m-p>: When pressed on a labeled line (which should contain a string or edge)
executes the Parse command with the label as its argument.

Tree equivalent <c-m-t> : When pressed on a labeled line (which should contain an edge) executes
the Tree command with the label as its argument.

11.1.2 Alternative Grammar Updating

The Macintosh implementation makes available an alternative method for updating the grammar beyond
the Update command in the normal interface. The keystroke <c-m—u> used within any Fred window
updates the grammar according to the selected material in the buffer.

11.1.3 Intended Usage of the Macintosh Interface

The Macintosh interface was intended to be used primarily by moving the insertion cursor around the
buffer with the mouse, and using keystroke equivalents to replace explicit typing of commands. In this
way, the user can interact with the system with a minimum of typing. Although not as convenient
as a true window/menu-based graphical interface, this style of interaction provides many of the same
advantages while retaining portability.

At the same time, the grammar being used can be opened in separate Fred windows. As changes
are made to the grammar, the changed rules can be selected and <c-m-u> can be used to immediately
incorporate the changes without rereading the files.

11.2 Extensions for Running Under GNU Emacs

A similar system of extensions have been developed for running the system on UNIX systems in which
GNU EMACS is available. Again, functionality is added by allowing for keystroke equivalents for certain
of the special commands. The GNU EMACS interface runs in an inferior Li1sP buffer which is created with
the command H-x run-patr. This buffer works exactly like a normal edit buffer except that certain keys
are rebound to make interaction with the interface easier. Among the capabilities of EMACS windows
that the interface window inherits are scrolling, searching for strings, and saving of the buffer contents
in a file.

110 CL-PATR Reference Manual

11.2.1 GNU EMACS Keystroke Equivalents

Typically, the rebound keys, when pressed while the insertion cursor is anywhere on a labeled line,
execute a special command taking as its argument the label of that line. The command thus invoked is
also printed after the prompt at the end of the buffer, so that the interaction appears as if the command
had actually been typed in. Finally, the typed command includes a comment (after the semicolon) that
indicates the contents of the labeled line where the key was pressed.

Display equivalents <line feed>, <return»; The <line feed> and <return> keys, when pressed
on a labeled line, execute the Display command taking as its argument the label of that line. When
pressed on a line with a prompt but no label (i.e., one with a command that has been previously entered)
the command is reinvoked. Thus, the user can reexecute a command merely by scrolling back to that
command, placing the cursor anywhere on the line and hitting return.

Read equivalent <c-m-r>: When pressed on a labeled line (which should contain a string or a path-
name) executes the Read command with the label as its argument.

Install equivalent <c-m~i>: When pressed on a labeled line (which should contain a string ot a
pathname) executes the Install command with the label as its argument.

Generate equivalent <c-m~g>: When pressed on a labeled line (which should contain an s-expression)
executes the Generate command with the label as its argument.

Parse equivalent <c-m-p>: When pressed on a labeled line (which should contain a string or edge)
executes the Parse command with the label as its argument.

Tree equivalent <c-m-t>: When pressed on a labeled line (which should contain an edge) executes
the Tree command with the label as its argument.

11.2.2 Alternative Grammar Updating

The GNU EMACS implementation makes available an alternative method for updating the grammar
beyond the Update command in the normal interface. The keystroke <c-m—u> updates the grammar
according to the selected material in the buffer. :

Known Bug: Grammar Updating Not Implemented.. The alternative grammar
updating is not yet implemented.

11.2.3 Intended Usage of the GNU EMACS Interface

The GNU EMACS interface was intended to be used primarily by moving the insertion cursor around
the buffer with EMACS cursor control commands or the mouse (if running directly on the Sun console
rather than a terminal), and using keystroke equivalents to replace explicit typing of commands. In
this way, the user can interact with the system with a minimum of typing. Although not as convenient

Other Enhanced Interfaces 111

as a true window/menu-based graphical interface, this style of interaction provides many of the same
advantages while retaining portability.

At the same time, the grammar being used can be viewed in separate GNU EMACS buffers. As
changes are made to the grammar, the changed rules can be selected and <c-m-u> can be used to
immediately incorporate the changes without rereading the files.

Chapter 12

The CL-PATR Architecture

This chapler is a reprint of the SRI Technical Note 437, “A Uniform Archileciure for Parsing and
Generation”. The research was supported in parl by ¢ contract with the Nippon Telephone and Telegraph
Corporation.

12.1 Introduction

" The use of a single grammar for both parsing and generation is an idea with a certain elegance, the
desirability of which several researchers have noted. Of course, judging the correctness of such a system
requires a characterization of the meaning of grammars that is independent of their use by a particular
processing mechanism—that is, the formalism in which the grammars are expressed must have an abstract
semantics. As a paradigm example of such a formalism, we might take any of the various logic- or
unification-based grammar formalisms.

As described by Pereira and Warren [11], the parsing of strings according to the specifications of
a grammar with an independent logical semantics can be thought of as the constructive proving of the
string’s grammaticality: parsing can be viewed as logical deduction. But, given a deductive framework
that can represent the semantics of the formalism abstractly enough to be independent of processing, the
generation of strings matching some criteria can equally well be thought of as a deductive process, namely,
a process of constructive proof of the existence of a string that matches the criteria. The difference rests
in which information is given as premises and what the goal is to be proved. This observation opens up
the following possibility: not only can a single grammar be used by different processes engaged in various
“directions” of processing, but one and the same language-processing architecture can be employed for
processing the grammar in the various modes. In particular, parsing and generation can be viewed as
two processes engaged in by a single parameterized theorem prover for the logical interpretation of the
formalism.

We will discuss our current implementation of such an architecture, which is parameterized in such
a way that it can be used either for parsing or generation with respect to grammars written in a particular
grammar formalism which has a logical semantics, the PATR formalism. Furthermore, the architecture
allows fine tuning to reflect different processing strategies, including parsing models intended to mimic

112

The CL-PATR Architecture 113

psycholinguistic phenomena. This tuning allows the parsing system to operate within the same realm
of efficiency as previous architectures for parsing alone, but with much greater flexibility for engaging in
other processing regimes.

12.2 Language Processing as Deduction

Viewed intuitively, natural-language-utterance generation is a nondeterministic top-down process of
building a phrase that conforms to certain given criteria, e.g., that the phrase be a sentence and that it
convey a particular meaning. Parsing, on the other hand, is usually thought of as proceeding bottom-up
in an effort to determine what properties hold of a given expression. As we have mentioned, however,
both of these processes can be seen as variants of a single method for extracting certain geal theorems
from the deductive closure of some given premises under the rules or constraints of the grammar. The
various processes differ as to what the premises are and which goal theorems are of interest. In gen-
eration, for instance, the premises are the lexical items of the language and goal theorems are of the
form “expression « is a sentence with meaning M™ for some given M. In parsing, the premises are the
words « of the sentence to be parsed and goal theorems are of the form “expression « is a sentence (with
properties P)”. In this case, « is given a priori.

This deductive view of language processing clearly presupposes an axiomatic approach to language
description. Fortunately, most current linguistic theory approaches the problem of linguistic description
axiomatically, and many current formalisms in use in natural-language processing, especially the logic
grammar and unification-based formalisms follow this approach as well. Consequently, the results pre-
sented here will, for the most part, be applicable to any of these formalisms. We will, however, describe
the system schematically—without relying on any of the particular formalisms, but using notation that
schematizes an augmented context-free formalism like definite-clause grammars or PATR. We merely as-
sume that grammars classify phrases under a possibly infinite set of structured objects, as is common in
the unification-based formalisms. These structures—terms in definite-clause grammars, directed graphs
in PATR, and so forth—will be referred to generically as nonterminals, since they play the role in the
augmented context-free formalisms that the atomic nonterminal symbols fulfill in standard context-free
grammars. We will assume that the notion of a unifier of such objects and most general snifier (mgu)
are well defined; the symbol # will be used for unifiers. ‘

Following Pereira and Watren, the lemmas we will be proving from a grammar and a set of premises
will include the same kind of conditional information encoded by the ilems of Earley’s parsing algorithm.
In Earley’s algorithm, the existence of an item (or dotied rule) of the form

[N_*W"'Vm—l°vm"‘vn:£]

in state set § > i makes a claim that, for some string position & > j, the substring between ¢ and k
can be classified as an N if the substring between j and k can be decomposed into a sequence of strings
classified, respectively, under V;,,..., Va. We will use a notation reminiscent of Pereira and Warren’s!
to emphasize the conditional siature of the claim and its independence from Vy,..., Via—1, namely,

[::N ‘_Vm"'Vn;j]

1Later, in the sections containing examples of the architecture’s operation, we will reintroduce V,...,Vin—1 and the
dot marker to aid readability.

114 CL-PATR Reference Manual

12.2.1 Terminology

We digress here to introduce some terminology. If n = 0, then we will leave ofl the arrow; [¢, N, j] then
expresses the fact that a constituent admitted as a nonterminal N occurs between positions ¢ and j.
Such items will be referred to as nonconditional items; if n > 0, the item will be considered conditional.
In the grammars we are interested in, rules will include either all nonterminals on the right-hand side
or all terminals. We can think of the former as grammar rules proper, the latter as lexical entries.
Nonconditional items formed by immediate inference from a lexical entry will be called lericalitems. For
instance, if there is a grammar rule N P — sonny, then the item [0, N P, 1}is a lexical item. A prediction
item (or, simply, a prediction) is an item with identical start and end positions.

12.2.2 Rules of Inference

The two basic deduction steps or rules of inference we will use are—following Earley’s terminology—
prediction and completion.?
The inference rule of prediction is as follows:

{i,A— BC;---Cp,3j] B —Dy---D, ¢ = mgu(B, B')
. B0 — D10---Do0,]]

"This rule corresponds to the logically valid inference consisting of instantiating a rule of the grammar as
a conditional statement.®
The inference rule of completion is as follows:

[irA‘_BC]"'Cm:j] U:B’:k] 0=mgu(Br-B’)
[, A8 — C10---Cmb, k]

This rule corresponds to the logically valid inference consisting of linear resolution of the conditional
expression with respect to the nonconditional (unit) lemma.

12.3 Parameterizing a Theorem-Proving Architecture

This characterization of parsing as deduction should be familiar from the work of Pereira and Warren.
As they have demonstrated, such a view of parsing is applicable beyond the context-free grammars by
regarding the variables in the inference rules as logical variables and using unification of B and B’ to
solve for the most general unifier. Thus, this approach is applicable to most, if not all, of the logic
grammar or unification-based formalisms.

2Pereira and Warren use the terms instantialion and reduction for their analogs to these rules.

3 As noted previously {14], this rule of inference can lead to arbitrary numbers of consequents through repeated application
when used with a grammar formalism with an infinite [structured) nonterminal domain. The solution proposed in that
paper is to restrict the information passed from the predicting to the predicted item, corresponding to the rule

fi,A— BCy.--Cp, 1] B'—= Dy+++Dn § = mgu(BMb, BY)
[5,B'8 «— D18 .- Dntb, 5]

where BMD is a nonterminal with a bounded subset of the information of B. This inference rule is the one actually used
in the implemented system. The reader is directed to the carlier paper for further discussion.

The CL-PATR. Architecture 115

In particular, Pereira and Warren construct a parsing algorithm using a deduction strategy which
mimics Earley’s algorithm. We would like to generalize the approach, so that the deduction strategy
{or at least portions of it} are parameters of the deduction system. The parameterization should have
sufficient generality that parsers and generators with various control strategies, including Pereira and
Warren’s Earley deduction parser, are instances of the general architecture.

We start the development of such an architecture by considering the unrestricted use of these two
basic inference rules to form the deductive closure of the premises and the goals. The exhaustive use of
prediction and completion as basic inference rules does provide a complete algorithm for proving lemmas
of the sort described. However, several problems immediately present themselves.

First, proofs using these inference rules can be redundant. Various combinations of proof steps will
lead to the same lemmas, and combinatorial havoc may result. The traditional solution to this problem
is to store lemmas in a table, i.e., the well-formed-substring table or chart in tabular parsing algorithms.
In extending tabular parsing to non-context-free formalisms, the use of subsumption rather than identity
in testing for redundancy of lemmas becomes necessary, and has been described elsewhere [10].

Second, deduction is a nondeterministic process and the order of searching the various paths in the
proof space is critical and differs among processing tasks. We therefore parameterize the theorem-proving
process by a priority function that assigns to each lemma a priority. Lemmas are then added to the table
in order of their priority. As they are added, further lemmas that are consequences of the new lemma
and existing ones in the table may be deduced. These are themselves assigned priorities, and so forth.
The technique chosen for implementing this facet of the process is the use of an agenda structured as a
priority queue to store the lemmas that have not yet been added to the table.

Finally, depending on the kind of language processing we are interested in, the premises of the
problem and the types of goal lemmas we are searching for will be quite different. Therefore, we param-
eterize the theorem prover by an initial set of axioms to be added to the agenda and by a predicate on
lemmas that determines which are to be regarded as satisfying the goal conditions on lemmas.

The structure of the architecture, then, is as follows. The processor is an agenda-based tabular
theorem prover over lemmas of the sort defined above. It is parameterized by

¢ The initial conditions,
e A priority function on lemmas, and
» A predicate expressing the concept of a successful proof.

By varying these parameters, the processor can be used to implement language parsers and generators
embodying a wide variety of control strategies.

12.4 TInstances of the Architecture
We now define some examples of the use of the architecture to process with grammars.

12.4.1 Parser Instances

Consider a processor to parse a given string built by using this architecture under the following param-
eterization:

116 CL-PATR Reference Manual

s The initialization of the agenda includes axioms for each word in the string (e.g., [0, sonny, 1] and
[1, lefi, 2] for the sentence ‘Sonny left’) and an initial prediction for each rule whose left-hand side
matches the start symbol of the grammar (e.g., [0, S +— NP VP,(]).2

o The priorily funclion orders lemmas inversely by their end position, and for lemmas with the same
end position, in accordance with their addition to the agenda in a first-in-first-out manner.

o The suceess crilerion is that the lemma be nonconditional, that its start and end positions be
the first and last positions in the string, respectively, and that the nonterminal be the start
nonterminal.®

Under this parameterization, the architecture mimics Earley’s algorithm parsing the sentence in question,
and considers successful those lemmas that represent proofs of the string’s grammaticality with respect
to the grammar.®

Alternatively, by changing the priority function, we can engender different parsing behavior. Tor
instance, if we just order lemmas in a last-in-first-out manner (treating the agenda as a stack) we have
a “greedy” parsing algorithm, which pursues parsing possibilities depth-first and backtracks when dead-
ends occur.

An interesting possibility involves ordering lemmas as follows:

1. Highest priority are prediction items, then lexical items, then other conditional items, then other
nonconditional items.

2. If (1) does not order items, iterns ending farther to the right have higher priority.

3. If (1) and (2) do not order items, items constructed from the instantiation of longer rules have
higher priority.

This complex ordering implements a quite simple parsing strategy. The first condition guarantees that
no nonconditional items will be added until conditional items have been computed. Thus, items cor-
responding to the closure (in the sense of LR parsing) of the nonconditional items are always added
to the table. Unlike LR parsing, however, the closure here is computed at run time rather than being
precompiled. The last two conditions correspond to disambiguation of shift /reduce and reduce/reduce
conflicts in LR parsing respectively. The former requires that shifts be preferred to reductions, the latter
that longer reductions receive preference.

In sum, this ordering strategy implements a sentence-disambiguation parsing method that has
previously been argued [13] to model certain psy<holinguistic phenomena-—for instance, right association
and minimal attachment [3]. However, unlike the earlier characterization in terms of LR disambiguation,
this mechanism can be used for arbitrary logic or unification-based grammars, not just context-free
grammars. Furthermore, the architecture allows for fine tuning of the disambiguation strategy beyond

1For formalisms with complex structured nonterminals, the start “symbol” need only be unifiable with the left-hand-
side nonterminal. That is, if S is the start nonterminal and 5! — Cy -+ Ch, is a rule and § = mgu($, 5'), then [0,5'¢ +~
C18---Cn8,0] is an initial prediction.

5Again, for formalisms with complex structured nonterminals, the start symbol need only subsume the item's
nonterminal.

8 Assuming that the prediction inference rule uses the restriction mechanism, the architecture actually mimics the variant
of Earley’s algorithm previously described in [14)-

The CL-PATR. Architecture 117

that described in earlier work. Finally, the strategy is complete, allowing “backtracking” if earlier proof
paths lead to a dead end.”

12.4.2 A Parsing Example

As a demonstration of the architecture used as a parser, we consider the Earley and backtracking-LR
instances in parsing the ambiguous sentence:

Castillo said Sonny was shot yesterday.

Since the operation of the architecture as a parser is quite similar to that of previous parsers for
unification-based formalisms, we will only highlight a few crucial steps in the process.

The Earley parser assigns higher pricrity to items ending earlier in the sentence. The highest-
priority initialization items are added first.®

{0,5— .NPVP,D) . ©
[0, NP — castillo., 1] ‘Castillo’

By Completion, the item
[0, — NP.VP,1] “Castillo’
is generated, which in turn predicts
[1,VP = VP X,1] o
[1,VP— .V,1] o
(1,VP — .VP AdvP,1] o
The highest-priority item remaining on the agenda is the initial item
[1,V — said.,2] ‘said’
Processing progresses in this manner, performing all operations at a string position before moving on

to the next position until the final position is reached, at which point the final initial item corresponding
to the word ‘yesterday’ is added. The following flurry of items is generated by completion.?

"Modeling of an incomplete version of the shift-reduce technique is also possible. The simplest method, however, involves
eliminating the chart completing, and mimicking closure, shift, and reduction operations as operations on LR states (sets
of items} directly. Though this method is not a straightforward instantiation of the architecture of Section 12.3 (since the
chart is replaced by separate state sets), we have implemented a parser using much of the same technology described here
and have successfully modeled the garden path phenomena that rely on the incompleteness of the shift-reduce technigue.

8The format used in displaying these items reverts to one similar to Earley's algorithm, with a dot marking the position
in the rule covered by the string generated so far, 50 as to describe more clearly the portion of each grammar rule used. In
addition, the string actually parsed or generated is given in single quotes after the jtem for convenience.

9The four instances of ‘said Sonny was shot yesterday® arise because of lexical ambiguity in the verb ‘said’ and adverbial-
attachment ambiguity. Only the finite version of ‘said’ is used in forming the final sentence.

118 CL-PATR Reference Manual

[5, Adv.P — yesterday+,6) ‘yesterday’

(2) [1,VP - VP AdvP., 6] ‘said Sonny was shot yesterday’
(3) [3B,VP - VP AdvP., 6 ‘was shot yesterday’
[4,VP — VP AdvP.,6] ‘shot yesterday’
[1,VP — VP.AdvP,6) ‘said Sonny was shot yesterday’
(4) [0,S—=NPVP,,6] ‘Castillo said Sonny was shot yesterday’
3, VP— VP.AdvP, 6] ‘was shot yesterday’
(3) [2,8—=NPVP., 6 ‘Sonny was shot yesterday’
[4, VP — VP.AdvF,6] ‘shot yesterday’
(&) [LVP—-VPS.,6 ‘said Sonny was shot yesterday’
[1,VP — VP.AdvP,6] ‘said Sonny was shot yesterday’
{7} [0,S—NPVP., 6 ‘Castillo said Sonny was shot yesterday’

Note that the first full parse found (4) is derived from the high attachment of the word ‘yesterday’ (2)
(which is composed from (1) directly), the second (7) from the low attachment (6) (derived from (5),
which is derived in turn from (3)).

By comparison, the shift-reduce parser generates exactly the same items as the Earley parser, but
in a different order. The crucial ordering difference occurs in the following generated items:

(1) [5, AdvP — yesterday.,6] .‘yesterday’

(3) [3,VP - VP AdvP.,6) ‘yas shot yesterday’
(3, VP - VP, AdvP,6] ‘was shot yesterday’
(5) [2,S—=NPVP., 0 ‘Sonny was shot yesterday’
(6) [ILVP—=VPS.,6) ‘said Sonny was shot yesterday’
[1,VP — VP.AdvP,6) ‘said Sonny was shot yesterday’
(") [0,5— NPVP.,q ‘Castillo said Sonny was shot yesterday’
(8) [2,S— NPVP.,5)] ‘Sonny was shat’
[1LVP— VP S., 5 ‘said Sonny was shot’
[1,VP — VP.AdvP,3) ‘said Sonny was shot’
(2) [I,VP—VP AdvP., 6] ‘said Sonny was shot yesterday’
[1,VP— VP.AdvP,6] ‘said Sonny was shot yesterday’
(4) [0,5—+NPVP., 6 ‘Castillo said Sonny was shot yesterday’

Note that the reading of the sentence (7) with the low attachment of the adverb—the so-called “right
association” reading—is generated before the reading with the higher attachment (4), in accordance with
certain psycholinguistic results [3]. This is because ifem (3) has higher priority than item (8), since (3)
corresponds to the shifting of the word ‘yesterday’ and (8) to the reduction of an NP and VP to S. The
second clause of the priority definition orders such shifts before reductions. In summary, this instance of
the architecture develops parses in right-association/minimal-attachment preference order.

12.4.3 Generator Instances

As a final example of the use of this architecture, we consider using it for generation by changing the
initialization condition as follows:

The CL-PATR Architecture 119

s The initialization of the agenda includes axioms for each word in the lexicon at each position
(e.g., [0, sonny,1] and {0, left, 1] and [1, left, 2], and so on) and an initial prediction for each rule
whose left-hand side is the start symbol of the grammar (e.g., [0,S — N¥P VP,0]). In the case of a
grammar formalism with more complex information structures as nonterminals, e.g., definite-clause
grammars, the “start symbol” might include information about, say, the meaning of the sentence
to be generated. We will refer to this as the goal meaning.

o The success criterion is that the nonterminal be subsumed by the start nonterminal (and therefore
have the appropriate meaning).

Under this parameterization, the architecture serves as a generator for the grammar, generating
sentences with the intended meaning. By changing the priority function, the order in which possibili-
ties are pursued in generation can be controlled, thereby modeling depth-first strategies, breadth-first
strategies, and so forth.)

Of course, as described, this approach to generation is sorely inadequate for several reasons. First,
it requires that we initially insert the entire lexicon intc the agenda at arbitrary numbers of string
positions. Not only is it infeasible to insert the lexicon so many times (indeed, even once is too much)
but it also leads to massive redundancy in generation. The same phrase may be generated starting at
many different positions. For parsing, keeping track of which positions phrases occur at is advantageous;
for generation, once a phrase is generated, we want to be able to use it in a variety of places.

A simple solution to this problem is to ignore the string positions in the generation process. This
can be done by positioning all lemmas at a single position. Thus we need insert the lexicon only once,
each word being inserted at the single position, e.g., [0, sonny, 0].

Although this simplifies the set of initial items, by eliminating indexirng based on string position we
remove the feature of tabular parsing methods such as Earley’s algorithm that makes parsing reasonably
efficient. The generation behavior exhibited is therefore not goal-directed; once the lexicon is inserted
many phrases might be built that could not contribute in any way to a sentence with the appropriate
meaning. In order to direct the behavior of the generator towards a goal meaning, we can modify the
priority function so that it is partial; not every item will be assigned a priority and those that are not
will never be added to the table (or agenda) at all. The filter we have been using assigns priorities only
to items that might contribute semantically to the goal meaning. In particular, the meaning associated
with the ilem must subsume some portion of the goal meaning.'® This technique, a sort of indexing on
meaning, replaces the indexing on string position that is more appropriate for parsing than generation.

As a rule, filtering the items by making the priority function partial can lead to incompleteness of
‘the parsing or generation process.!! However, the subsumption filter described here for use in generation
does not yield incompleteness of the generation algorithm under one assumption about the grammar,
which we might call semantic monefonicily. A grammar is semantically monotonic if, for every phrase
admitted by the grammar, the semantic structure of each immediate subphrase subsumes some portion
of the semantic structure of the entire phrase. Under this condition, items which do not subsume part of
the goal meaning can be safely ignored, since any phrase built from them will also not subsume part of

10g5ince the success criterion requires that a successful item be subsumed by the start nonterminal and the priority filter
requires that a successful item’s semantics subsume the start nonterminal’s semantics, it follows that successful items match
the start symbol exactly in semantic information; overgeneration in this sense is not & problem.

11Indeed, we might want such incompleteness for certain cases of psycholinguistically motivated parsing models such as
the simulated LR model described above.

120 CL-PATR Reference Manual

the goal meaning and thus will fail to satisfy the success criterion. Thus the question of completeness of
the algorithm depends on an easily detectable property of the grammar. Semantic monotonicity is, by
intention, a property of the particular grammar we have been using.

12.4.4 A Generation Example

As an example of the generation process, we consider the generation of a sentence with a goal logical
form

passionately(love(sonny, kait))

The example was run using a toy grammar that placed subcategorization information in the lexicon,
as in the style of analysis of head-driven phrase-structure grammar (HPSG). The grammar ignored tense
and aspect information, so that, for instance, auxiliary verbs merely identified their own semantics with
that of their postverbal complement.!?

The initial items included the following:

(1) [0,NP — sonny.,0] ‘Sonny’
(2) [0,NP — kait.,0] “Kait’

[0,V —t0.,0] ‘to’

[0,V — was.,0] ‘was’

[0,V — were., 0] ‘were’

[0,V — loves., 0] ‘loves’

[0,V — love.,D] 1ove’

[0,V — loved.,0] ‘loved’

iD, AduP — passionately.,0] ‘passionately’
(3) [0,S— .NPVP,0 o

Note that auxiliary verbs were included, as the semantic structure of an auxiliary is merely a variable
{coiindexed with the semantic structure of its postverbal complement), which subsumes some part (in
fact, every part) of the goal logical form.!3 Similarly, the noun phrases ‘Sonny’ and ‘Kait’ (with semantics
sonny and kait, respectively) are added, as these logical forms each subsume the respective innermost
arguments of the goal logical form. Several forms of the verb ‘love’ are considered, again because the
semantics in this grammar makes no tense/aspect distinctions. But no other proper nouns or verbs are
considered (although the lexicon that was used contained them) as they do not pass the semantic filter.

The noun phrase ‘Sonny’ can be used as the subject of the sentence by combining items (1) and
(3) yielding

{4) [0,5— NP.VP0] ‘Sonny’

(The corresponding item with the subject ‘Kait’ will be generated later.) Prediction yields the following
chain of items.

12 For reference, the grammar is similar in spirit to the third sample grammar in [15].

131t holds in general that closed-class lexical items—case-marking prepositions, function verbs, etc.—are uniformly con-
sidered initial items for purposes of generation because of their vestigial semantics, This is as desired, and follows from the
operation of semantic filtering, rather than from any ad hoc techniques.

The CL-PATR Architecture 121

[0,VP — .VP AduvP,0] e
[0,VP = .V,0] o

The various verbs, including the forms of ‘love’, can complete this latter item.

[0,VP—V.,0] ‘4o’
[0,VP —V.,0] s
[0,VP —V.,0] ‘was’
[0, VP —V.,0] ‘were’

{5) [0,VP—V.,0] ‘loves’
[0,VP —V.,0] ‘love’
[0,VP—=V.,0] ‘love’
[0,VP=V.,0] Joved’

The passive form of the verb ‘loved’ might be combined with the adverb.
[0,VP = VP.AdvP,0] Toved’
[0,VP— VP AdvP.,0] ‘loved passionately’

The latter item might be used in a sentence ‘Kait was loved passionately.’ This sentence will eventually
be generated but will fail the success criterion because its semantics is insufficiently instantiated.
Prediction from item (4) also yields the rule for adding complements to a verb phrase.

[0,VP — VP X,0] o

Eventually, this item is completed with items (5) and (2).

[0,VP—-VP.NPI ‘loves’
0,VP—VPNP,., 0] ‘loves Kait’

The remaining items generated are

[0,VP = VP.AdvP 0] ‘loves Kait’
[0,VP — VP AduP.,0] ‘loves Kait passionately’
[0, = NPVP., 0 ‘Sonny ioves Kait passionately’

This final item matches the success criterion, and is the only such item. Therefore, the sentence ‘Sonny
loves Kait passionately’ is generated for the logical form passionately(love(sonny, kait)).

Looking over the generation process, the set of phrases actively explored by the generator included
‘Kate is loved’, ‘Kate is loved passionately’, ‘were loved passionately’ and similar passive constructions,
‘Sonny loves Kait’, and various subphrases of these, However, other phrases composed of the same words,
such as ‘Kait loves Kait’, ‘Sonny is loved’, and so forth, are eliminated by the semantics filter. Thus, the
the generation process is, on the whole, quite goal-directed; the subphrases considered in the generation
process are “reasonable”.

122 CL-PATR Reference Manual

12.5 The Implementation

The architecture described above has been implemented for the PATR grammar formalism in a man-
ner reminiscent of object-oriented programming. Instances of the architecture are built as follows. A
general-purpose processor-building function, taking a priority function and success criterion function as
arguments, returns an object that corresponds to the architecture instance. The object can be sent
initialization items as arbitrary lemmas of the usual form. Whenever a successful lemma is constructed
(according to the success criterion) it is returned, along with a continuation function that can be called
if further solutions are needed. No processing is done after a successful lemma has been proved unless
further solutions are requested.

Using this implementation, we have built instances of the architecture for Earley parsing and the
other parsing variants described in this paper, including the shift/reduce simulator. In addition, a
generator was built that is complete for semantically monotonic grammars. It is interesting to note that
the generator is more than an order of magnitude faster than our original PATR generator, which worked
purely by top-down depth-first backtracking search, that is, following the Prolog search strategy.

The implementation is in Common Lisp and runs on Symbolics 3600, Sun, and Macintosh com-
puters. It is used (in conjunction with a more extensive grammar) as the generation component of the
GENESYS system for utterance planning and production.

12.6 Precursors

Perhaps the clearest espousal of the notion of grammar reversability was made by Kay [9], whose research
into functional grammar has been motivated by the desire to “make it possible to generate and analyze
sentences with the same grammar.” Other researchers have also put such ideas into effect. Jacobs’s
PHRED system [6] “operates from a declarative knowledge base of linguistic knowledge, common to that
used by PHRAN?”, an analyzer for so-called phrasal grammars. Jacobs notes that other systems have
shared at least part of the linguistic information for parsing and generation; for instance, the HAM-ANS
[17] and VIE-LANG [16] systems utilize the same lexical information for both tasks. Kasper has used a
system for parsing grammars in a unification-based formalism (SRI’s Z-PATR system) to parse sentences
with respect to the large ISI NIGEL grammar, which had been previously used for generation alone.
Nonetheless, all of these systems rely on often radically different architectures for the two processes.
Precedent for using a single architecture for both tasks is much more difficult to find., The germ of the
idea can be found in the General Syntactic Processor (GSP) designed for the MIND system at Rand.
Kaplan and Kay proposed use of the GSP for parsing with respect to augmented transition networks and
generation by transformational grammars (7). However, detailed implementation was apparently never
carried out. In any case, although the proposal involved using the same architecture, different formalisms
(and hence gramiars) were presupposed for the two tasks. Running a definite-clause grammar (DCG)
“backwards” has been proposed previously, although the normal Prolog execution mechanism renders
such a technique unusable in practice. However, alternative execution models might make the practice
feasible. As mentioned above, the technique described here is just such an execution model, and is
directly related to the Earley deduction model of Pereira and Warren [11]. Hasida and Isizaki {5] present
another method for generating and analyzing using a DCG-like formalism, which they call dependency
propagation. The technique seems to entail using dataflow dependencies implicit in the grammar to

The CL-PATR Architecture 123

control processing in a coroutining manner. The implementation status of their method and its practical
utility are as yet unclear.

The use of an agenda and scheduling schemes to allow varying the control structure of a parser
also finds precedent in the work of Kaplan [7] and Kay [8]. Kay’s “powerful parser” and the GSP both.
employed an agenda mechanism to control additions to the chart. However, the “tasks” placed on the
agenda were at the same time more powerful (corresponding to unconstrained rewrite rules) and more
procedural (allowing register operations and other procedural constructs). This work merely applies the
notion in the context of the simple declarative formalisms presupposed, and provides it with a logical
foundation on which a proof of correctness can be developed.!? Because the formalisms are simpler, the
agenda need only keep track of one type of task: addition of a chart item.

12.7 Further Research

Perhaps the most immediate problem raised by the methodology for generation introduced in this pa-
per is the strong requirement of semantic monotonicity, which serves as yet another instance of the
straitjacket of compositionality. The semantic-monotonicity constraint allows the goal logical form to be
systematically decomposed so that a dynamic-programming generation process can be indexed by the
parts of the decomposition (the subformulas), just as the constraint of string concatenation in context-
free grammars allows a goal sentence to be systematically decomposed so that a dynamic-programming
parsing process can be indexed by the subparts of that decomposition (the substrings). And just as the
concatenation restriction of context-free grammars can be problematic, so can the restriction of semantic
monotonicity. Finding a weaker constraint on grammars that still allows efficient processing is thus an
important research objective.

Even with the semantic-monotonicity constraint, the process of indexing by the highly structured
logical forms is not nearly so efficient as indexing by simple integer string positions. Partial match
retrieval or similar techniques from the Prolog literature might be useful here.

Nothing has been said about the important problem of guaranteeing that the syntactic and semantic
goal properties will actually be realized in the sentence generated, The success criterion for generation
described here would require that the logical form for the sentence generated be identical to the goal
logical form. However, there is no guarantee that the other properties of the sentence include those of
the goal; only compatibility is guaranteed. Researchers at the University of Stuttgart have proposed.
solutions to this problem based on the type of existential constraint found in lexical-functional grammar.
We expect that their methods might be applicable within the presented architecture.

Finally, on a more pessimistic note, we turn to a widespread problem in all systems for automatic
generation of natural language, which Appelt [2] has discussed under the rubric “the problem of logical-
form equivalence”. The mapping from logical forms to natural-language expressions is in general many-
to-one. For instance, the logical forms red(z) A ball(z) and ball(z) A red(z) might both be realized as
the nominal ‘red ball’. However, most systems for describing the string-LF relation declaratively do so
by assigning a minimal set of-logical forms to each string, with each logical form standing proxy for all
its logical equivalents. The situation is represented graphically as Figure 1.

The problem is complicated further in that, strictly speaking, the class of equivalent logical forms
from the standpoint of generation is not really closed under logical equivalence. Instead, what is actually

145uch a proof is currently in preparation.

124 CL-PATR Reference Manual

canonical intentionally
logical equivalent

forms LFs
LF la
LF 1 < LF 1b
LF 1c
| LF2a
NL expression LF2 < LF 2b
LF2c
LF3a
LF3 < LF 3b
I I LF 3c

grammar
defines | |
intentional equivalence
defines

Figure 12.1: Canonical Logical Forms

The CL-PATR Architecture 125

required is a finer-grained notion of intentional equivalence, under which, for instance, p and pA (gV —q)
would not necessarily be intentionally equivalent; they might correspond to different utterances, one
about p only, the other about both p and ¢.

In such a system, merely using the grammar per se to drive generation (as we do here) allows for
the generation of strings from only a subset of the logical-form expressions that have natural-language
relata, that is, LF1, LF2, and LF3 in the figure. We might call these the canenical logical forms. Even if |
the grammar is reversible, the problem remains, because logical equivalence is in general not computable.
And even in restricted cases in which it is computable, for instance a logic with a confluence property
under which all logically equivalent expressions do have a canonical form, the problem is not solved unless
the notion of canonical form implicit in the logic corresponds exactly to that of the natural-language
- grammar.

it should be noted that this kind of problem is quite deep. Any system that represents meanings in
some way (not necessarily with logical expressions) must face a correlate of this problem. Furthermore,
although the issue impinges on syntax because it arises in the realm of grammar, it is primarily a semantic
problem, as we will shortly see.

There are two apparent possible approaches to a resolution of this problem. We might use a logic
in which logical equivalence classes of expressions are all trivial, that is, any two distinct expressions
mean something different. In such a logic, there are no artifactual syntactic remnants in the syntax
of the logical language. Furthermore, expressions of the logic must be relatable to expressions of the
natural language with a reversible grammar. Alternatively, we could use a logic for which canonical
forms, corresponding exactly to the natural language grammar’s logical forms, do exist.

The difference between the two approaches is only an apparent one, for in the latter case the
equivalence classes of logical forms can be identified as logical forms of a new logical language with no
artifactual distinctions. Thus, the second case reduces to the first. The central problem in either case,
then, is discovery of a logical language which exactly and uniquely represents all the meaning distinctions
of natural language utterances and no others. This holy grail, of course, is just the goal of knowledge
representation for natural language in general; we are unlikely to be able to rely on a full solution soon.

However, by looking at approximations of this goal, suitably adapted to the particular problems of
generation, we can hope to achieve some progress. In the case of approximations, it does not hold that
the two methodologies reduce one to another; in this case, we feel that the second approach—designing a
logical language that approximates in its canonical forms those needed for grammatical applications—is
more likely to yield good incremental results.

Chapter. 13

Sample Symbolics 3600 System
Files

'

Symbolics system software requires that certain files reside in the sys:site; directory before performing
any operations on a user-defined system, such as restoring it from a distribution tape or loading it. Thus,
the following four files (two each for the cL-PATR and ParEn systems) must be set up in this directory
before the Symbolics 3600 distribution tape is restored.

sys:site;cl-patr.system
sys:site;cl-patr.translations
sys:site;paren.system
sys:site;paren.translations

Below, we give sample contents for these four files.

13.1 Contents of sys:site;cl-patr.system

$3+ —*— Mode: LISP; Package: USER -*-
(fs:make-logical-pathname-host "¢l-patr")

(sct:set-system-source-file "cl-patr"
“cl-patr:patr;patr-system—-3600.1isp")

13.2 Contents of sys:site;cl-patr.translations

i3; —*— Mode: LISP; Package: USER -#-

126

Sample Symbolics 3600 System Files 127

(fs:set~logical-pathname-host "cl-patr"
iphysical-host "hostname"
itranslations
P((Mamy" H5cl-patr>ee>n)))

13.3 Contents of sys:site;paren.systen

;33 —»- Mode: LISP; Package: USER -*-
(f3:make-logical-pathname-host “paren")

(sct:set-system-source-file "paren"
"paren:paren;lr-system-3600")

13.4 Contents of sys:site;paren.translations

333 —»= Mede: LISP; Package: USER -»-

(fs:set-logical-pathname-host "paren"
:physical-host "hostname"
stranslations
*(("paren;s»;" ">cl-patr>paren>##3>"}))

Bibliography

[1] James Allen. Naiural Language Undersianding. Benjamin/Cummings, Menlo Park, California,
1987.

[2] Douglas E. Appelt. Bidirectional grammars and the design of natural language generation systems.
In Theoretical Issues in Nalural Language Processing—3, pages 185-191, Las Cruces, New Mexico,
7-9 January 1987. New Mexico State University.

(3] Lyn Frazier and Janet Dean Fodor. The sausage machine: a new two-stage parsing model. Cognition,
6:291-325, 1978.

[4] Jr. Guy L. Steele. CoMMoN Lisp: The Language. Digital Press, 1984.

[6] Koiti Hasida and Syun Isizaki. Dependency propagation: a unified theory of sentence comprehension
and generation. In Proceedings of AAAI-87, pages 664-670, Seattle, Washington, 13-17 July 1987.

[6] Paul S. Jacobs. PHRED: a generator for natural language interfaces. Computational Linguistics,
11(4):219-242, October—December 1985.

[7] Ronald M. Kaplan. A general syntactic processor. In Randall Rustin, editor, Nature! Language
Processing, pages 193-241. Algorithmics Press, New York, 1973.

[8] Martin I(ay. Experiments with a powerful parser. In Proceedings of the Second International Con-
ference on Computational Linguistics, August 1967.

[9] Martin Kay. Syntactic processing and functional sentence perspective. In Theoretical Issues in Nat-
ural Language Processing—Supplement to the Proceedings, pages 12-15, Cambridge, Massachusetts,
10-13 June 1975.

[10] Fernando C. N. Pereira and Stuart M. Shieber. Prolog and Natural-Langusge Analysis, volume 10 of
CSLI Lecture Note Series. Center for the Study of Language and Information, Stanford, California,
1987.

[11] Fernando C. N. Pereira and David H. D. Warren. Parsing as deduction. In Proceedings of the

2ist Annual Meeling of the Association for Computational Linguistics, pages 137-144, Cambridge,
Massachusetts, 15-17 June 1983. Massachusetts Institute of Technology.

128

(12]

[13]

[14]

(15]

(16]

[17)

f18)

Bibliography 129

Stanley J. Rosenschein and Stuart M. Shieber. Translating English into logical form. In Proceedings
of the 20th Annual Meeting of the Associalion for Compulational Linguislics, pages 1-8, Toronto,
Ontario, Canada, 16-18 June 1982. University of ‘Toronto.

Stuart M. Shieber. Sentence disambigunation by a shift-reduce parsing technique. In Proceedings
of the 21st Annual Meeting of the Association for Computational Linguisiics, pages 113-118, Cam-
bridge, Massachusetts, 15-17 June 1983. Massachusetts Institute of Technology.

Stuart M. Shieber. Using restriction to extend parsing algorithms for complex-feature-based for-
malisms. In Proceedings of the 23rd Annual Meeling of the Assoctation for Computational Linguis-
tics, pages 145-152, Chicago, Illinois, 8-12 July 1985. University of Chicago.

Stuart M. Shieber. An Introduciion to Unification-Based Approaches o Grammar, volume 4 of
CSLI Lecture Note Series. Center for the Study of Language and Information, Stanford, California,
1986.

Ingeborg Steinacker and Ernst Buchberger. Relating syntax and semantics: the syntactico-semantic
lexicon of the system VIE-LANG. In Proceedings of the First Conference of the European Chapler
of the Association for Compuiational Linguistics, pages 96-100, Pisa, Italy, 1-2 September 1983.

Wolfgang Wahlster, Heinz Marburger, Anthony Jameson, and Stephan Busemann. Overanswer-
ing yes-no questions: Extended responses in a natural language interface to a vision system. In
Proceedings of the Eighth International Joint Conference on Artificial Intelligence, pages 643-646,
Karlsruhe, West Germany, 8-12 August 1983..

Terry Winograd. Language as a Cognilive Process— Volume I: Syntaz. Addison-Wesley, Reading,
Massachusetts, 1983.

