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Abstract

SRI’s KNIFE image analysis system can be used for tracking objects and
material classes from one image to another. Variations on this theme are
the initial acquisition of target instances from database signatures and the
subsequent acquisition of additional instances in an image once a few objects
have been labeled. Classification-based tracking is facilitated by improved color
and texture-energy transforms. KNIFE’s labeling and partitioning methods
can be used with complex targets, and are relatively unaffected by occlusions
and changes in object appearance during tracking,.
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1 Introduction

The KNIFE digital-image analysis system is a software assistant for extracting, la-
beling, and editing such regions of an image as houses and vegetation in aerial imagery.
This report describes tools for tracking scene objects automatically through a sequence of
images. The examples emphasize tracking of roads and roadside objects through images
acquired from an autonomous land vehicle.

Systems that track objects can exploit their shape, brightness, color, texture, range, or
trajectory. I have found the generalized Hough transform {Sloan 80; Ballard 81; Laws 82]
to be an effective approach to 2-D-shape tracking, especially when targets may be partially
occluded by other objects. Correlative matching, particularly hierarchical or coarse-fine
matching [Moravec 80; Hannah 84, 85, is another useful technique for tracking the shape
and distinctive markings of an object, especially if combined with a robust methed for
rejecting false matches [Bolles 81; Fischler 81].

In some applications, shape alone is not sufficiently informative. Road tracking is
one since the road orientation and cross section can change significantly between succes-

“sive images. Shapes of roadside objects are also affected by perspective, occlusion, and

shadow effects. New objects or vegetational patches entering the field of view must also
be identified; this requires reasoning about material classes as well as regional shape.

A type of material can often be identified by its brightness, color, or texture, although
sometimes high-level reasoning about shape and context is necessary. My KNIFE program
uses local pixel or neighborhood properties to extract regions that can be passed on to other
analytical systems [Fua 85ab, 86, 87ab]. It can either extract homogeneous regions and
then label them or label pixels and then extract connected regions. All such partitioning
operations are integrated with noise-filtering techniques that prevent textured regions -
from being split too finely. Segmentation and labeling are usually done autonomously,
although the program can be used interactively and may someday be controlled directly
by a sophisticated reasoning system [Wesley 83, 84, 86; Fischler 88; Strat 88].

2 Knowledge Representation

The heart of the KNIFE program is its region representation. Most recursive seg-
menters build a tree to describe how large regions have been divided into smaller ones,
as well as to keep track of hypothesized subregions during partitioning. The problem
that arises with a tree, or with any technique based on strict spatial hierarchy, is that it

does not permit arbitrary merging and attachment. The merging of neighboring regions

from different parts of the tree will produce new regions of uncertain parentage. It also

. destroys the rectilinear alignment used in quadtree representations, forcing abandonment

of the homogeneous tree representation if further partitioning is contemplated. Trees

pose additional difficulties as cognitive representations supporting the user interface: they

sometimes necessitate unintuitive inclusion telationships (such as grouping a mountain’s

- snowcapped peak with sky and cloud regions) and, after merging, do not show how regions

were extracted or how they differ from siblings and neighbors.
KNIFE uses a directed acyclic region graph, permitting any region record to be attached
to any other in a parent/child relationship.! It also has a region map for determining re-

1The only exception is the whole-image region, which has no parent, and a pseudoregion representing



gional statistics and spatial relationships. The graph serves as a semantic net, recording
spectral or semantic relationships among regions (rather than the partitioning history).
Disconnected composite regions—i.e., regions containing nonadjacent subregions—are per-
mitted and are particularly useful for representing material types, occluded objects, and
collections of similar or related objects. A road obscured by telephone poles, for instance,
could be represented in two ways: as one set of subregions linked to a common “road”
composite, and as another set linked to a “telephone pole” composite. A region can belong
to more than one such set without there being an imposed spatial or semantic hierarchy.

Region records contain both simple descriptors (e.g., area) and pointers to histograms
and other knowledge-base objects. Most fields, including numeric descriptors, can contain
a “null” or “unknown” code marking information that is to be computed when needed.
Subroutines that access these fields know how to obtain such values from the region
map or graph, and will attach the result to the region record so that it will not have
to be recomputed if it is needed again. (They also null descriptors that have become
incorrect because of editing operations on the region graph.) This “lazy evaluation” saves
considerable computation and storage, although it does cause certain analysis-and-display
operations to consume varying amounts of time, depending on what has been stored.

From one standpoint, the entire KNIFE system is only a coordinated tool kit of sub-
routines {for manipulating region graphs and maps. Just as a mail-handling program allows
a sequence of messages to be read and manipulated, KNIFE offers the capability to dis-
play and manipulate partitioned images. Its library of subroutines forms a language for
implementing the pseudo-English commands available to the user. A great deal of care
~has gone into making this a convenient and efficient language, although much remains to
be done. The following sections describe some of the algorithms that make KNIFE an
effective tool for extracting, identifying, and tracking scene objects.

3 Preprocessing Algorithms

- Local properties are any measurements or estimates that can be made about the scene
content at a particular pixel location. Intrinsic scene properties, such as surface albedo
and orientation, are generally not measurable, so empirical properties such as local image
brightness and gradient must be used. Useful properties are those that are characteristic
of particular material types or that change very slowly (spatially and temporally) for any
particular object. Different local properties may be useful for different objects or parts
thereof.

Tracking systems may use radar, range, thermal infrared, or other imagery with special
characteristics that dictate particular methods of analysis. Ishall assume that the imagery
to be analyzed here is typical monochrome or color/multispectral imagery, or can be
treated as such. My goal is to extract as much useful information as possible without
requiring task-specific or target-specific knowledge. Semantic target-recognition criteria,
such as shape, context, and trajectory dynamics, could be added. -

Monochrome imagery may be adequate for simple tracking tasks like following a plane

“against the sky, or for simple object extraction tasks like identifying suburban houses by
their bright roofs. Changing imaging conditions across a scene or among scenes make it

the scene area just outside the image.



difficult to distinguish more than a few materials, but distinctive classes, such as cement,
asphalt, and soil, can often be separated by brightness alone.

In complex scenes, color or multispectral data may be useful enough to justify the extra
cost of collection, transmission, storage, and processing. When color is not available,
it can often be replaced by texture bands computed from monochrome data—at least
for identifying pixels far from region borders. The KNIFE program currently treats all
data bands alike and will perform an analysis with as few or as many data bands as are
available. It performs most efficiently, however, when each band encodes information that
is not readily available from the others.

3.1 Color Representation

Digital color imagery is typically gathered in red-green-blue (RGB) form, with 256
possible luminance levels per pixel in each band. Often the bands are uncalibrated and
individually stretched or scaled, making it difficult to identify material classes by using a
database of reference signatures. Fortunately, this has little effect on tracking of object
instances from one image to another (or to another portion of the same image). I shall
assume that the RGB cube is a vector space with origin at (0,0,0), and shall develop
methods of histogram-based analysis that are insensitive to consequent hue instabilities.

RGB bands of natural scenes tend to be highly correlated and hence redundant. I
have found intensity-hue-saturation (IHS) representations more useful for partitioning and
tracking operations. The exact transform employed makes little difference, but results are
best if computed saturation is near zero for all colors near the achromatic axis. (The
chromaticity saturation formula most commonly used in computer vision [Tenenbaum 74;
Ohlander 75, 78; Kender 76, 77; Price 76],

min( R, G, B) )
R+G+B 7’

assigns low saturation values to all colors near white and high, unstable values to most
colors near black. Saturation thus correlates negatively with brightness.) The National
Television Systems Committee YIQ system,

Y = 0.509R + 1.000G + 0.1948
I = 1.000R — 0.460G — 0.540B
() = 0.403R — 1.000G 4 0.597B ,

S:Smax'(l"'g

is awkward to represent digitally and less useful than THS for segmentation [Laws 85],
perhaps because the ) band contains very little energy or information for natural scenes.
Ohta’s approximate Karhunen-Loeve color transform [Ohta 80],

L=R+G+B
Iz =R-—-B ..
L=2R-(G+B),

is easier to- encode but performs much like the YIQ system
I use the following vivdness-hue-saturation (VHS) system.? The bands are sufﬁmently
decoupled and informative, and my methods of analysis sufficiently matched to them, that

2No relation to the VHS videotape format.



I have not -had to retain additional redundant color bands as other researchers have done
[Ohlander 75, 78; Price 76].

Vividness (V) is a measure of intensity or brightness, defined to be the length of a
color vector expressed as a fraction of the maximum length it could have within the RGB
color cube. (In other words, we divide the distance from the origin to a color point by
the distance to the intersection of this ray with a cube surface. An equivalent formula is
given below.) Thus, pure spectral colors—magenta, red, yellow, green, cyan, blue, and all
of the intermediate colors along the edges of the color cube—have the same vividness as
white. Maximally bright desaturated colors, such as shocking pink, are also fully vivid.

Shifted hue ( H) is the customary zero-to-2x angular measure, but with the scale’s zero
rotated from pure red by #/3 to place the discontinuity at magenta. This permits the
circular nature of the hue scale to be ignored, since very few objects in natural imagery
are magenta.® My classification methods do not require Gaussian histogram peaks, so the
effect of splitting a histogram peak between the two ends of the color scale is minimal.
(Analysis methods that are suitable for circular features could be incorporated if needed.)
A special code is used to mark colors on the achromatic axis, for which hue is meaningless.

Cylindrical saturation {S) is the distance of a color point from the achromatic axis,
expressed as a {raction of the maximum possible distance for any vivid color. The nature of
the RGB cube constrains all colors near the black or white corners to have low saturation.
Primary colors and their complements have the maximum saturation, while other pure
spectral colors within the RGB cube are slightly below the maximum.

Formulas for converting RGB sensor coordinates to VHS coordinates are as follows:

V = max(R,G, B)

%—i—arctana:‘é%%}g% R>B,G>BHB

4{+arctanw@3—~_§)— G>R

BRIGZR
7= 2ﬁ+arctan7{—‘f—5é———}m% B>@G
g R>B
. ACHROMATIC otherwise

_  [(R=BYP+(R-GP+(B-GF
5= \/( -GIH(E=C)

=+VR(R- G~ B)+G(G- B} + B*

- where each condition on H is tested in turn. H is also taken modulo 27, so that amount
- is subtracted if H exceeds 2x. (This can occur only in the third line of the formula,
- which computes hue for the bluish-red third of the chromaticity triangle.} V and S can be
normalized to be between 0 and 1, although the indicated formulas are more convenient if

- integer results comparable to the original RGB coordinates are desired. I typically scale
H to lie in the range {0,179] with ACHROMATIC = 2551

3Exceptions may occur in images of distant mountains.
*A code of 0 for the achromatic axis might be preferable for many uses, but is misleading because the
achromatic colors should be considered equally close to or far from all other hues,



This color space can be viewed as a cone of height V5, having black as the point at
the bottom, white as the center of the top end, and the pure spectral colors distributed
around the top circle at distance Sy, from the achromatic axis. The cone may also be
envisioned as embedded in a cylinder of radius Sp,,x, with black at the bottom center, or
(0, ACHROMATIC, 0) position, but colors outside the central cone are also outside the
range achievable by most digital (or RGB) sensors and displays.

Whether terms such as “vividness” and “saturation” are psychophysically realistic
-~depends partly on the imaging and display systems employed. I would not expect pure
blue and green to be as “vivid” as white and yellow, although they are so treated by my
VHS system. Suffice it to say that partitioning and labeling performance is not dependent
on precise psychophysical modeling.

3.2 Texture Representation

Local texture properties are more difficult to characterize. Different textures exhibit
their distinctive variations at different spatial scales, The texture elements themselves
(e.g., gravel, blades of grass, plant stems, tree leaves, roof tiles) are often below the resolv-
ing power of our imaging systems, forcing us to characterize texture patterns statistically.
One approach is to determine the typical element size or coarseness for any texture patch;
another is to determine characteristics that are constant across all scales of measurement
[Pentland 84]. My own efforts have concentrated on a class of modified “texture energy”
operators [Laws 79, 80ab] that respond to the density and contrast of different spatial

“patterns in much the same way that simple edge detectors respond to image gradients.

Although I shall explain my approach in some detail, there are many image textures
for which brightness and local variance (especially the log of local Gaussian-weighted
variance [Laws 88b], as discussed below) are the most useful descriptors. It is rare in
natural imagery for adjacent texture patches to have the same brightness and variance (or
color and variance), yet differ in directionality or higher-order properties. Sophisticated
statistical measures of texture are thus unneccesary for image partitioning, nor are they
often of much additional help in material labeling.

I derive a texture measure in two steps. (These are computed during 2 single pass
through the image, but are easier to understand as two separate passes.) First, I convolve
the image with a small center-weighted matrix or mask such as the 3 x 3 masks in Figure 1.
Next, I apply a Gaussian-weighted local variance operator to the filtered image and report
the log of the variance as a local texture descriptor. In other words, I compute log variance
of the filtered image in a square window, giving more weight to pixels near the window
center.

My original texture energy measures used unweighted windows, which caused blocky

- artifacts in the outputted image around bright or dark points in the input. Standard

deviation within the window was approximated by a sum of absolute values—for zero-
- mean filter outputs—but variance has better theoretical properties and is almost as easy

to compute. Logarithmic output helps match human textural perception and, moreover,
- can be stretched to make good use of an 8-bit output scale. {Log variance also avoids
any square-root operation and differs from log standard deviation only by a factor of
two.) I have not conducted rigorous experiments, but the subjective improvement in
my texture energy measures seems worth the small computational cost of the Gaussian-

<t
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Figure 1: Orthogonal 3 x 3 Texture Masks

weighted variance operation.

A vector of texture energy descriptors can be generated for each pixel by using different
texture energy masks or different sizes of variance window; that vector can then be used
for material classification or image partitioning. Energy-gathering windows of no more
than two or three times the width of the filter mask are recommended; larger sizes give
better classification accuracy when applied to large texture patches, but lack the resolution
needed for analysis of typical imagery.

In some cases I have used 3 X 3 or even 1 x 1 variance windows (i.e., with no vari-
ance computation), since my histogram-based classification and segmentation methods do
not depend on the inherent smoothing of larger windows [Laws 88ab]. (This raises inter-
esting questions about the nature of optimal or human texture perception. The “most
~ local” frequency or joint-probability texture measures are typically the most powerful in
natural imagery, a fact that was not appreciated when early comparative studies were
done [Dyer 76; Weszka 76]. I have yet to investigate the full power of gradient/curvature
representations and local histograms or information-theoretic statistics for texture char-
acterization.)

I tend to work with 3 x 3 pattern masks in 3 x 3 or @ X 9 variance windows (depending
on the task), although most other workers have chosen the larger set of 5 X 5 masks in
15 X 15 or 31 x 31 unweighted windows that I originally proposed. (Note that my new
measures are even more local than these numbers would imply, since Gaussian weighting of
the variance window reduces the effect of all pixels near the window edges.) An alternative
to varying the mask and window sizes is to compute identical texture energy measures at
“ each level in a pyramid of image resolutions [Larkin 83]. Small texture operators tend to
mimic edge detectors; to exploit texture in natural images, however, local measures must

somehow be incorporated.
I have developed a particularly simple class of basis vectors, the lattice aperture wave-
form sets [Laws 79, 80ab), derived by repeatedly convolving the vectors { 1, 1] and [~1, 1]



(or any of the resultant vectors) to obtain basis vectors of any desired length and sequency.®
Horizontal and vertical pairs (possibly from sets of different order) can be convolved to
form separable rectangular masks, such as those in Figure 1, each giving rise to a different
texture energy measure. The vectors can also be convolved directly with an image to
achieve the same effect as convolving with the rectangular mask, usually with a significant
computational saving. Third-order and fifth-order basis-vector sets are

[1 4 6 4 1
[1 2 1] -1 -2 0o 2 1
1 0 1] -1 0 2 0 -~
-1 2 —1] [1 -2 0 2 -1
[1 -4 6 -4 1]

(I have negated—or, equivalently, reversed—the originally published form of the fourth
fifth-order vector to maintain consistent sinusoidal phase. Antisymmetric vectors should
have a negative term just before the central position.)

Joint classification accuracies of the original texture energy measures are listed in
Tables 4-2 and 7-5 of {Laws 80a). The 3 x 3 measures in 15 X 15 windows. were about
85% accurate in a difficult eight-class linear-discriminant problem; the 5 x 5 measures were
about 87% accurate; and accuracy of the 7 x 7 measures was about 88%. Performance
remained at 88% when all 83 of these measures were combined. A particular set of 32
co-ocurrence measures was only 71% accurate on the same problem. (I am unaware of
any studies using quadratic or nearest-neighbor classification.)

] seldom use more than one or two of the eight zero-mean 3 x 3 filter masks. While
individual texture-energy measures are less powerful than full sets {as detailed in my
dissertation), the following quotation [Pietikdinen 82, 83] is reassuring:

The best [3 x 3 and 5x 5] Laws features correctly classify 25 out of 28 samples,
or nearly 90%, a remarkable result for a one-feature, seven-class task.

Corresponding statistics for co-occurrence and “edge per unit area” measures were 71%
and 68%. Their own modifications of texture energy achieved 86%, or 93% when a par-
ticular nonmaximal-suppression step was added. (The nonmaximal-suppression result
is interesting and warrants further study, as does a rank transformation used elsewhere
[Harwood 83]. 1 disagree, however, with Pietikdinen’s conclusion that the power of texture
energy measures “depends on the general forms of the masks (edge-like, spot-like, etc.),
rather than on the specific numerical values ...” While this is true to some degree, Chap-
ter 6 of my dissertation shows that pattern detectors of the same general type can vary
~ greatly in individual classificatory power, and that few approach the power—documented
in Figure 7-3—of the texture energy measures.)

For the record, the seventh- through eleventh-order bas:s vector sets are shown in
_ Figure 2. I use the zero-sequency vectors for the Gaussian window weighting mentioned
‘previously. Two-dimensional integer convolution with such vectors can be accomplished in
32-bit registers (with minimal truncation error) if care is taken in scaling the intermediate

5Sequency is the number of interior zero crossings and is related to frequency. Convolving two basis
vectors from any of these sets produces another vector with sequency equal to the sum of the original
sequencies.
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results. These vectors differ only slightly from the “bandpass binomial windows of even
order” or the difference-of-binomial vectors investigated by Nicholson [80], a particularly
simple basis set to implement as real-time digital filters. Rectangular masks {formed from
any of these vector sets resemble sampled 2-D Gabor-filter masks [Daugman 84, 85], said
16 resemble the spatial response of certain neurens in the human visual system. Many
other derivations of such filters have been reported [Danielsson 80, 85; Hashimoto 83;
Knutsson 83; Tanimoto 78], including an interesting hexagonal form {Nicholson 80].

Gabor filters, used in 1-D detection theory, are Gaussian-weighted sinusoids with sine
and cosine phase. Paired waveforms are combined to determine target position and fre-
quency, with minimum joint uncertainty in the two measurements. Each Gabor measure-
ment is essentially a local 2-D Fourier coefficient measured at one pixel position. Ratios of
these coeflicients for different frequencies can be used to estimate local fractal dimension
[David Heeger, unpublished), since true fractals have a 1/f relationship between energy
and spatial frequency.

The theory of separable 2-D Gabor filters leads to an easy way of constructing rect-
angular masks with any orientational sensitivity. Rectangular masks that approximate
oriented 2-D Gabor filters with an integral number of pixels per cycle along the horizontal
and vertical axes can be constructed by multiplying corresponding terms of two vectors

-with appropriate frequencies:

S(z,y) = 5(z)C(y) + C(z)S(y)
Clz,y) = C(z)C(y) ~ S(=)5(y),

where z is the horizontal position, y is the vertical position, S{z) and C(z) are vectors
with sine {antisymmetric, or odd) and cosine (symmetric, or even) phase, and 5(z,y) and
C(z,y) are the two masks for the orientation determined by the arctangent of the relative
cycle lengths along the two axes [Heeger, unpublished]. If equal horizontal and vertical
cyele lengths are used, the following masks with 45-degree orientation are generated:®

2 2 0 o 2 2 2 -2 0 0 2 -2
2 4 2 -2 0 2 -2 4 -2 -2 0 2
0 2 2 -2 =2 0 0 -2 2 2 -2 0

Reversing {or negating) one of the sine vectors rotates the direction of maximal response
by 90 degrees. Although these diagonal masks are linear combinations of the masks in
Figure 1, and corresponding filtered images are linear combinations of the original filtered
-images, their local-variance or texture energy measures need not be derivable from the
horizontal and vertical texture energies.

The Gabor-filter approach differs from texture-energy filtering in that a sum of squared
sine and cosine responses is used. (An arctangent of the ratio may also be computed
to obtain a phase or target-position estimate.} Although provably optimal in certain
- detection problems, this is not suitable as the filtering step in texture energy computation.
Gabor filters of a given frequency are invariant to positional (or phase) shift in that
frequency, making them insensitive to some rather drastic deformations in spatial target
signatures. Gabor filters also tends to “lock onto” to strong image structures as they are
scanned across the image, thus blurring the estimate of texture element location. The

SThese can obviously be scaled down by a factor of 2.




single-mask outputs used in texture energy computation are keyed more to edges and
spots than to individual {requencies, and are more closely tied to the mask position.

Although the extra directional freedom of Gabor masks may be of use in a full vision
system (as it exists in humans), I have not found the extra texture erergy measurements
derived from them to be obviously useful in road tracking. I have also not found fractal
texture measures {computed as ratios of Gabor-filter outputs) to be useful, primarily
because the low-frequency masks are much larger than typical texture elements in this
imagery.

My experience is that one should generally use the lowest-sequency zero-sum texture-
energy vectors or, equivalently, the smallest filter size for a given cycle length. High-
sequency filters gain frequency resolution at the expense of spatial position; therefore,
they perform badly in cluttered images, although they may be useful when textures are
inherently repetitive (e.g., roof tiles or row crops in high-resolution aerial imagery). In
some cases, it is desirable to sum the log variance outputs for matched horizontal and
vertical masks (e.g., the two Sobel gradient masks) so as to decrease rotational sensitivity.
One might also compute ratios of texture energy outputs to reduce sensitivity to contrast
and illumination changes—although sensitivity to certain other texture characteristics
may also be reduced. Such normalizations are still a black art.

With the possible exception of fractal measures, none of these operators are stable
across different image scales; they are thus difficult to use in low-angle perspective imagery.
They also tend to be too coarse, even for 3 x 3 texture energy masks in 5 X 5 variance
windows, to measure the vegetation textures that are important for autonomous vehicle
navigation and aerial cartography. Finally, all such texture operators respond very strongly
to object borders, producing meaningless results for small or thin regions. Texture areas
found with these discriminant features must therefore be “grown” out to their borders with
other regions, whereupon small patches may be missed (or misclassified) entirely. These
are among the reasons for my avoiding elaborate texture measures whenever possible.

It seems necessary to segment an image before really meaningful texture measures can
be computed. Fortunately, this can usually be done by using pixel brightness and color
‘alone. It is rare (in these applications) to find two adjacent regions that differ only in
texture and not in local brightness or color. Segmentation can sometimes be improved even
more by including local log variance {of the unfiltered image) as an additional descriptor

- band, although this measure does respond to region borders.

Unfortunately, prior segmentation is not the whole answer even when it is feasible. No
one has yet developed a good way to compute texture energy measures over nonrectangular
regions. (It would be necessary to estimate the probable contribution of missing data in
the filter window under the assumption that it came from the same unknown texture as
the available data.) Other texture measures, such as the less powerful co-occurrence or
joint probability measures [Haralick 73, 79], are easier to compute over irregularly shaped
regions even though they are less powerful and less plausible as models of human visual

processing. An intriguing idea, which I have yet to develop, is to use similarities and
‘differences of local histograms as textures measures. This is related to the classification
technique described below (also in [Laws 85, 88b]) for extracting and identifying scene
materials by using only single-band histograms.

10



4 Target Acquisition

The initial step in tracking an object or material type is to find it in the first image.
In some applications the position and shape of the prototype are known or can be traced
by the user; in others the prototype must be identified by means of spectral signatures or
other knowledge. An intermediate method is to let the computer select likely prototypes
and have the user indicate which are correct. I shall confine my discussion fo autonomous
target acquisition, although the KNIFE system does permit specification by tracing.

One approach is to segment the initial image, then classify, group, and further split
regions until a target can be identified. My system partitions the image into homoge-
neous regions, absorbing small fragments while keeping larger regions. Large, distinct
regions, such as sky and road, are found first, after which smaller details are extracted.
(Identification becomes easier as background regions are labeled and removed from con-
sideration. Spatial and spectral knowledge obtained from other scene objects could also
aid recognition.) '

This scene parsing approach is a major goal of current research on segmentation and
scene-analysis. In limited domains, however, it may be very easy to find a particular target
class. In road following, for instance, we may be able to assume that the lower half of the
initial image is mostly road surface (possibly shadowed by the vehicle or other objects).
All regions that are given the road or shadowed-road label can be merged, and any holes
can be absorbed or passed to a reasoning system for analysis. Signatures extracted from
these initial regions can be employed in a classification step to recognize additional parts
of the road.

Another approach is to label pixels with stored signatures (or histograms), then extract
connected regions that have been assigned the target label [Laws 88b]. While this is faster,
it is often less reliable than a full parse. The approach works if the stored signatures are
representative, which may require that they come from the same imagery or that they
* be adjusted for variations in illumination or target range. This is essentially the tracking
approach; it will be described in more detail in the next section.

A third approach is to use likelihood maps to label initial regions. It may be that
we know approximate or hypothesized object positions in the image and that we can
estimate an a priori probability of any particular pixel position’s belonging to the target.
We can then segment the image and look {or overlap between the image segments and the
hypothesized label positions. This seems to work well even when the “likelihood map”
.is just a binary mask derived from a synthetic region map—i.e., when we are “tracking”
from a hypothesized scene instead of from a previous image. This type of initial labeling is
trivial if the synthetic objects overlap their true image regions by at least 50%; otherwise
much more elaborate constraint-satisfaction techniques must be employed.

The KNIFE analysis system can be used for any of these approaches, since they
- all require similar techniques for region representation, threshold analysis, connected-
component extraction, and noise cleaning. The acquisition method illustrated in this
paper is to start with a reliable seed region and grow it to obtain a larger prototype
‘region with an image-specific signature. The following section documents my method of
" tracking regions or material types once a partial scene parse is available. I assume that
signatures are known or can be extracted for all major scene entities. Just “target” and
“background” signatures may be sufficient, but better partitioning is often possible when
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all visual classes are independently represented in the training set.

5 Classification Tracking

The tracking problem is to start with one instance of an object {or with an object
signature stored in a database) and then find a matching instance in a new image. It
may alsc be desirable to find additional instances of an object or material class in the
new image, should they be present. We may even want to use characteristics of the newly
identified instances to better extract the original objects—a joint-estimation problem.

The tracking task is complicated by the fact that regions in a second image may cor-
respond poorly to those in the first. The original objects may have moved, of course, or
their images may have been broken into smaller regions or left combined with neighboring
objects. This is generally an insoluble problem, so I shall assume that the scene is suffi-
ciently stable and the partitioning and labeling system sufficiently good that we can easily
determine region correspondences. Relaxation labeling algorithms have been developed
for establishing correspondences in more difficult cases [Price 76, 81, 82; Faugeras 81,
82; Kitchen 80, 84]; these are related to search algorithms for labeling region clusters
~ as known objects [Duda 70; Freuder 72, 73, 76, 77; Barrow 76; Tennenbaum 76, 77;
Khan 84ab; Wesley 83, 84, 86).

The road-tracking task is simplified because imaging conditions guarantee significant
region overlap among images (almost always). In fact, most of the lower portion of the
image can be assumed to be road if the vehicle is operating normally. Tracking trees
and other roadside objects (to permit map generation, for example) is considerably more
“difficult. Some of this work must be left to higher-level reasoning processes, but the road
tracking itself can almost always be done with low-level classification and partitioning
techniques.

The principal output from a road tracker is the boundary of the navigable road in
each image. This can be augmented by identifying the center stripe or divider, wheel
ruts, potholes, shadows, material changes, and other minor markings. The boundary
of distant road sections may be somewhat uncertain as long as the vehicle has time to
gather and analyze additional imagery before making navigational decisions. The tracker
or associated reasoning system should also detect intersections, forks, dead ends, and such
~major obstacles as vehicles, gates, shell holes, and missing bridges. It must also distinguish
* these obstructions from curves, dips, overhanging branches, telephone poles, traffic signs,
and other objects that do not impede travel.

Image regions, even when perfectly extracted and labeled, do not correspond directly
to such outputs. A telephone pole, for instance, may block our view of a curving road
- in such a way that the road is split into two pieces. The best that a low-level, task-
independent vision system can do is to indicate the visible portions of the road, hypothesize
a connection between them, and note the presence and characteristics of the occluding

- object. Establishing correspondence between the current regions and those in past images

may also help to classify them.

A region graph shows how regions have split or joined to form other regions during
image partitioning. A similar region graph, which 1 call a propagation graph, can be built
to show how regions in one image have split or joined to form regions in the other.

Pixel classification is at the heart of material identification. Either pixels must be
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classified and then grouped into regions or regions must be extracted and then classified.
Since materials can exhibit an infinite variety of shapes, region classification is again done
mainly by classifying the pixels and selecting a consensus label. When objects are tracked
from image to image, such parameters as size, shape, position, and context can be used
© to facilitate region labeling.

Many target classes are composed of more than one material or surface appearance.
The sides and roof of a house, for instance, may appear very different—and even the sides
may differ because of detail and illumination. It is often convenient to treat such an object
as a unit, rather than mode] the individual parts. This can reduce classificatory power
if only point properties (e.g., brightness and color) are used, but the inclusion of texture
measures may prevent a highly textured region from being mistaken for a configuration
of homogeneous regions. Because KNII'E uses histograms as signatures, such composite
objects can easily be represented. (Representation of mixed material classes by Gaussian
parameters—mean, standard deviation, and perhaps higher moments—would be almost
meaningless.)

6 Example

The KNIFE program has only recently heen adapted to road tracking, and I have
yet to develop an adequate control algorithm. The following example hints at the power
of KNIFE’s classification-based tracking, but it is not yet a fully developed application.
‘Sophisticated monitoring processes will be needed to detect overmerging (or undermerging,
loss of track, etc.) and to reacquire a target.

Figure 3(a) shows frame number 500 in a sequence of images taken from FMC’s
autonomous-vehicle prototype. Only the VHS image’s vividness band is shown, although
all three bands are used for tracking. The lower portion of the image has been selected
(interactively and arbitrarily) as a training region for the road material type. Figure 3(b)
shows the result of KNIFE’s multiband region growing with seglevel set to 1 [Laws 88a).
The results are not perfect (because of KNIFE’s linear model rather than its being curved
. or polynomial), of multidimensional surfaces, but are adequate and perhaps even typical
of road regions extracted without semantic guidance.

I need to track this region into the next available image in the series, Frame 519.
First 1 update my knowledge of road signatures (i.e., multiband histograms), but without
forgetting the initial training signature. XNIFE lets me do this by storing both the original
and new road signatures as two exemplars of road appearance. I also store the nonroad,
or “other” signature so that I can assign pixels in the next image to the more similar of
the two semantic categories.

Figure 4(a) shows the result of this classification-based tracking. The central portion
of the road is labeled “other” and the mountain face is labeled “road,” but, on the whole,

~the tracking has been successful. The extracted regions are suitable for processing by a

higher-level reasoning system.

Since KNIFE is domain-independent, I have provided the higher-level control by issuing
a region-growing command for the largest road region. This yielded the clean extraction
in Figure 4(b), although there are certainly scenes for which simple region growing would
be inadequate.

Next, without worrying about the misclassified mountain face, I propagated the new
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(a) Training Region ( V Band) (b) Grown Region

Figure 3: Track Initiation in the ALV500 Image

{a) Two-Category Classification (b} Grown Rodd Region

Figure 4: Tracking Results for the ALV519 Image
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“road” and “other” signatures {along with the ones gathered previously) into Frame 525.
The result is shown in Figure 5(a). The central portion of the road has been misclassified
here too, but the bulk is correct. I ordered region growing on the largest road region,
obtaining the results depicted in Figure 5(b). It is not obvious whether the program is
correct or incorrect in assigning the two distant, dark patches to the road class.

Figure 6 illustrates the same process applied to Frame 533 in the sequence. This time
the jump is too large or the two-class model too impoverished. KNIFE does a good job
of finding unshadowed road, but lacks knowledge of shadowed road and so assigns it the
“other” label. Attempts at growing either of the large road regions result in overmerging
and loss of track, as shown in Figure 6(b).

I confess that I had less success with this simple classify/grow cycle on a different
sequence of images. I had to use a four-class model—road, sky, trees, and grass—and
even then lost track when the road touched a very similar portion of sky. Because of
tracking in natural imagery is difficult, knowledge-based control techniques are essential.
On the whole, though, KNIFE's histogram-based classification tracking works well and is
fast enough to be considered for real-time implementation.

7 Summary

The KNIFE system is a testbed for partitioning and labeling techniques. Just as a
mail program permits editing and manipulation of messages, KNIFE permits editing and
manipulation of image regions. It can be viewed as a stand-alone program, as part of a
larger system, or as an environment in which to build other capabilities.

This paper has described the use of pixel and region classification to track objects
or material types from one image to another. Minimal use was made of task-specific or
target-specific knowledge so as to facilitate modular construction of more complex systems.
Desired targets are described declaratively by their multiband signatures (or histograms),
rather than procedurally, thereby simplifying database and interface requirements. These
signatures can be extracted automatically from known instances in previous imagery.

A large portion of this paper was devoted to the subject of color and texture measure-
ment. Although no ultimate solution is available for characterizing such pixel properties,
I have specified particular techniques that work well and are easy to compute. These
provide a baseline for further advances in texture classification and segmentation.

Once signatures are available, histogram-based techniques can be used to label pixels
or regions in new images {or new parts of an initial image). Multiband histograms for these
regions can be used to update the stored material-class signatures so that specific objects
can be tracked into future images. This approach is fairly invulnerable to occlusions and
slow changes in object appearance. '
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(a) Two-Category Classification (b) Grown Road Region

Figure 5: Tracking Results for the ALV525 Image

(a) Two-Category Classification (b) Grown Road Region

Figure 6: Tracking Results for the ALV533 Image
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