Intermationsl

A UNIFORM ARCHITECTURE FOR
PARSING AND GENERATION

Technical Note 437

May 2, 1988

By: Stuart M. Shieber
Computer Scientist

Artificial Intelligence Center
Computer and Information Sciences Division

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED

This research was supported in part by a contract with the Nippon Telegraph
and Telephone Corporation.

333 Ravenswood Ave. ¢ Menlo Park, CA 94025
14151 326-6200 » TWX: 910-373-2046 o Telex: 334-486

| A Unifofm Architecture for
Parsing and Generation

Stuart M. Shieber

- Artificial Intelligence Center
' SRI International
Menlo Park, California*

Abstract

- The use of a single grammar for both parsing and generation is
~an idea with a certain elegance, the desirability of which several re-
- searchers have noted. In this paper, we discuss a more radical possi-

- - bility: not only can a single grammar be used by different processes
engaged in various “directions” of processing, but one and the same
" language-processing architecture can be used for processing the gram-
mar in the various modes. In particular, parsing and generation can be
viewed as two processes engaged in by a single parameterized theorem
prover for the logical interpretation of the formalism. We discuss our
" current implementation of such an architecture, which is parameter-
ized in such a way that it can be used for either purpose with gram-
mars written in the PATR formalism. Furthermore, the architecture
allows fine tuning to reflect different processing strategies, including
parsing models intended to mimic psycholinguistic phenomena. This
. tuning allows the parsing system to operate within the same realm of
efficiency as previous architectures for parsing alone, but with much
.greater flexibility for engaging in other processing regimes.

1 Introduction

‘The use of & single grammar for both parsing and géneration is an idea with a
certain elegance, the desirability of which several researchers have noted.- Of

"This research was sponsored by the Nippon Teiegrapﬁ and Tél.e:].:iﬁone'Co'rpo.ratidn- o
-under a contract with SR] International. :

" course, judging the correctness of such a system requires a characterization
of the meaning of grammars that is independent of their use by a particular
processing mechanism—that is, the formalism in which the grammars are
~ expressed must have an abstract semantics. ‘As a paradigm example of such
a formalism, we might take any of the various logic- or unification-based
grammar formalisms.-
As described by Pereira and Warren [1983], the parsing of strings accord-
* ing to the specifications of a grammar with an independent logical semantics
can be thought of as the constructive proving of the string’s grammaticality:
parsing can be viewed as logical deduction. But, given a deductive frame-
work that can represent the semantics of the formalism abstractly enough to
be independent of processing, the generation of strings matching some crite-
ria can equally well be thought of as a deductive process, namely, a process
of constructive proof of the existence of a string that matches the criteria.
The difference rests in which information is given as premises and what the
goal is to be proved. This observation opens up the following possibility: not
‘only can a single grammar be used by different processes engaged in various
“directions” of processing, but one and the same language-processing archi-

*“fecture can be employed for processing the grammar in the various modes.

In particular, parsing and generation can be viewed as two processes engaged
- in by a single parameterized theorem prover for the logical interpretation of
the formalism. ‘

We will discuss our current implementation of such an architecture,
- which is parameterized in such a way that it can be used either for parsing
.- or generation with respect to grammars written in a particular grammar for-
- malism which has a logical semantics, the PATR formalism. Furthermore,
- the architecture allows fine tuning to reflect different processing strategies,

-including parsing models intended to mimic psycholinguistic phenomena.
" This tuning allows the parsing system to operate within the same realm of
~ efficiency as previous architectures for parsing alone, but with much greater

' -ﬁexibility for enga.ging in other processing regimes.

2 Language Processmg as Deductlon
Vxewed mtultlveiy, natural—la.nguage—utterance genera,txon is'a nondetenmn— s

_istic top- down process of building ‘a phrase that conforms to certa.m given -
‘ 'cntena., e. g., that the phrase be a senténce and that it convey a particular

- ‘meaning. Parsing, on the other hand, is usually thought of as proceedmg

bottom-up in an effort to determine what properties hold of a given ex-
pression. As we have mentioned, however, both of these processes can be
seen as variants of a single method for extracting certain goal theorems from
the deductive closure of some given premises under the rules or constraints
of the grammar. The various processes differ as to what the premises are
“and which goal theorems are of interest. In generation, for instance, the
premises are the lexical items of the language and goal theorems are of the
form “expression o is a sentence with meaning M” for some given M. In
parsing, the premises are the words @ of the sentence io be parsed and goal
theorems are of the form “expression « is a sentence (with properties P)”.
In this case, o is given a priori.

This deductive view of language processing clearly presupposes an ax-
iomatic approach to language description. Fortunately, most current lin-
guistic theory approaches the problem of linguistic description axiomati-
cally, and many current formalisms in use in natural-language processing,
especially the logic grammar and unification-based formalisms follow this
approach as well. Consequently, the results presented here will, for the
most part, be applicable to any of these formalisms. We will, however, de-

- scribe the system schematically—without relying on any of the particular

formalisms, but using notation that schematizes an augmented context-free
formalism like definite-clause grammars or PATR. We merely assume that
grammars classify phrases under a possibly infinite set of structured objects,
as is common in the unification-based formalisms. These structures—terms
in definite-clause grammars, directed graphs in PATR, and so forth—will be
_referred to generically as nonterminals, since they play the role in the aug-
mented context-free formalisms that the atomic nonterminal symbols fulfill
in standard context-free grammars. We will assume that the notion of a
unifier of such objects and most general unifier (mgu) are well defined; the
symbol # will be used for unifiers.

Following Pereira and Warren, the lemmas we will be proving from a
grammar and a set of premises will include the same kind of conditional
information encoded by the items of Earley’s parsing algorithm. In Earley’s
algorithm, the existence of an item (or dotted rule) of the form

[-N = Vi Vi1 Vi o Vo,
‘in state set '§ > i makes a claim that, for some stﬁng: pos'ition"k' 2 7,
~ the substring between 7 and k can be classified as an N if the substring -
- between j and k can be decomposed into a sequence of strings classified,

respectively, under Vi, .., V;,. We will use a notation reminiscent of Pereira

.. and Warren’s! to emphasize the conditional nature of the claim and its

* independence from V3,..., V.1, namely, .

[, N «Vn n.:J]

2.1 Terminology _

We digress here to introduce some terminology. If » = 0, then we will leave
off the arrow; [¢, N, 7] then expresses the fact that a constituent admitted
~ as a nonterminal N occurs between positions i and j. Such items will be
- referred to as nonconditional items; if n > 0, the item will be considered
‘conditional. In the grammars we are interested in, rules will include either
all nonterminals on the right-hand side or all terminals. We can think of the
former as grammar rules proper, the latter as lexical entries. Nonconditional
* items formed by immediate inference from a lexical entry will be called lexical
-items. For instance, if there is a grammar rule NP — sonny, then the item
[0, N P,1] is a lexical item. A prediction item (or, simply, a prediction) is an
“item with identical start and end positions.- :

2.2, Rules of Inference _
The two basic deduction steps or rules of inference we will use are—following
- Earley’s terminology—prediction and completion.?
The inference rule of prediction is as follows:
[i,A— BCy---Cp,j] B'—=Dy---D, 8 = mgu(B, B")
. [j,B’g‘_'Dlg"'-Dne’j]
This rule corresponds to the logically valid inference consisting of instanti-

* ating a rule of the grammar as a conditional statement.’
'The inference rule of completion is as follows:

A= BCy-+-Crn,il [, B,k . 6=mgu(B,B')
- | A8 — Caf - Crn,]

: 1Lal;er, in the sections conf.a.uung exa.mples of the a.rciutectures operation, we w1ll
-remtroduce Vi,.:.; Vin—1 and the dot marker to aid readability.
©" . ?Pereira-and Wa.n'en use the terms matantmhon a.nd reduct:on for thelr a.na.logs to
thaernl& Ly
2 As noted prewously [Shleber, 1985], tIus rule of mi'ezence can lead to a.rb:tra.ry numbers :

o of consequents through repeated application when used with a grammar formalism with

. an infinite [structured] nonterminal domain. The solution proposed in-that paper is to -
restrict the information passed from the predicting to the predicted item, corresponding

4

~ This rule corresponds to the logically valid inference consisting of linear -
-resolution of the conditional expression with respect to the nonconditional
(unit) lemma. '

3 Parameterizing a Theorem-Proving Architec-
ture

This characterization of parsing as deduction should be familiar from the
work of Pereira and Warren. As they have demonstrated, such a view of
parsing is applicable beyond the context-free grammars by regarding the
variables in the inference rules as logical variables and using unification of
B and B’ to solve for the most general unifier. Thus, this approach is
~applicable to most, if not all, of the logic grammar or unification-based
formalisms.

In particular, Pereira and Warren construct a parsing algorithm using
a deduction strategy which mimics Earley’s algorithm. We would like to
‘generalize the approach, so that the deduction strategy (or at least por-

~tjons of it) are parameters. of the deduction system. The parameterization

should have sufficient generality that parsers and generators with various
control strategies, including Pereira and Warren’s Earley deduction parser,
are instances of the general architecture.

We start the development of such an architecture by considering the
unrestricted use of these two basic inference rules to form the deductive clo-
sure of the premises and the goals. The exhaustive use of prediction and
completion as basic inference rules does provide a complete algorithm for
proving lemmas of the sort described. However, several problems immedi-
ately present themselves.

First, proofs using these inference rules can be redundant. Various com-
binations of proof steps will lead to the same lemmas, and combinatorial
-havoc may result. The traditional solution to this problem is to store lemmas
in a table, i.e., the well-formed-substring table or chart in tabular parsing

to the rule

li,A—BCi---Cm,j] B —Dy---Dn 0=mgu(BM, B
5,58 — D18 --- Dnd, 4]

 where BMB is 2 nonterminal with a bounded subset of the information of B. This inference

rule is the one actually nsed in the implemented system. The reader is directed to the

_earlier paper for further discussion.

jalg'o'rithms.' ~In éxteﬁding tabular parsing to noﬁ-cdniiext-frée-fbfmalisms,
_the use of subsumption rather than identity in festing for redundancy of

lemmas becomes necessa.ry, a.nd has been ‘described elsewhere [Pere:ra and
Shieber, 1987]. -
Second, deductmn isa nondeterm;mstlc process and the order of sea,rch-' '

ing the various paths in the proof space is critical and differs among pro-
cessing tasks. We. therefore parameterize the theorem-proving process by a

priority function that assigns to each lemma a priority. Lemmas are then
added to the table in order of their priority. As they are added, further lem-
mas that are consequences of the new lemma and existing ones in the table
may be deduced. These are themselves assigned priorities, and so forth. The
technique chosen for implementing this facet of the process is the use of an
agenda structured as a priority queue to store the lemmas that have not yet
been added to the table.

. Finally, depending on the kind of langnage processing we are interested
in, the premises of the problem and the types of goal lemmas we are searching
for will be quite different. Therefore, we parameterize the theorem prover

by an initial set of axioms to be added to the agenda and by a predicate
 on lemmas that determines which are to be regarded as satisfying the goal
" conditions on lemmas.

The structure of the architecture, then is as follows. The processor is an
agenda-based tabular theorem prover over lemmas of the sort defined above.

~ It is parameterized by

e The initial conditions,
e A priority function on lemmas, and

© e A predicate expressing the concept of a successful proof.

By varying these parameters, the processor can be used to implement lan-
-guage parsers and generators embodying a wide variety of control strategies.

'.4 Instances of the Archltecture -

o _':'We now deﬁne some exa.mples of the use of the a:ch;tecture to process w:th
- gra.mmars a : R

4.1 Parser Instances
~ Consider a processor to parse a given string built by using this architecture
- under the following parameterization:

- » The initialization of the agenda includes axioms for each word in the
string (e.g., [0,sonny, 1] and [1,left,2] for the sentence ‘Sonny left’)
and an initial prediction for each rule whose left-hand side matches
the start symbol of the grammar (e.g., [0,5 — NP VP,0]).*

- The priority function orders lemmas inversely by their end position,
and for lemmas with the same end position, in accordance with their
addition to the agenda in a first-in-first-out manner.

¢ The success criterion is that the lemma be nonconditional, that its
start and end positions be the first and last positions in the string,
respectively, and that the nonterminal be the start nonterminal.®

‘Under this parameterization, the architecture mimics Earley’s algorithm
- parsing the sentence in question, and considers successful those lemmas that
represent proofs of the string’s grammaiticality with respect to the grammar.®
Alternatively, by changing the priority function, we can engender differ-
ent parsing behavior. For instance, if we just order lemmas in a last-in-first-
out manner (treating the agenda as a stack) we have a “greedy” parsing
algorithm, which pursues parsing possibilities depth-first and backtracks
when dead-ends occur.
An interesting possibility involves ordering lemmas as follows:

1. Highest priority are prediction items, then lexical items, then other
conditional items, then other nonconditional items.

. 2. If (1) does not order items, items ending farther to the right have
higher priority.

*For formalisms with complex structured nonterminals, the start “symbol” need only

. be unifiable with the left~-hand-side nonterminal. That is, if S is the start nonterminal and

5 — Cy---Cy is a rule and 8 = mgu(S,S5’), then [0,50 — C18..-Cy8,0] is an initial
‘prediction. . . _

" 5Again, for formalisms with complex structured nonterminals, the start symbol need

only subsume the item’s nonterminal. _ o L

-~ %Assuming that the prediction inference rule uses the restriction mechanism, the archi-
tecture actually mimics the variant of Earley’s algorithm previously described in [Shieber,
© 1985).

3. I (1) and (2) do not order items, items constructed from the instan-
tiation of longer rules have higher priority.

This complex ordering implements a quite simple parsing strategy. The first
- condition guarantees that no nonconditional items will be added until condi-
. tional items have been computed. Thus, items corresponding to the closure
(in the sense of LR, parsing) of the nonconditional items are always added to
the table. Unlike LR parsing, however, the closure here is computed at run
time rather than being precompiled. The last two conditions correspond to
disambiguation of shift/reduce and reduce/reduce conflicts in LR parsing
respectively. The former requires that shifts be preferred to reductions, the
latter that longer reductions receive preference.

In sum, this ordering strategy implements a sentence-disambiguation
parsing method that has previously been argued [Shieber, 1983] to model
certain psycholinguistic phenomena—for instance, right association and min-
imal attachment [Frazier and Fodor, 1978]. However, unlike the earlier char-
_ acterization in terms of LR disambiguation, this mechanism can be used for
arbitrary logic or unification-based grammars, not just context-free gram-
mars. Furthermore, the architecture allows for fine tuning of the disambigua-
tion strategy beyond that described in earlier work. Finally, the strategy is
complete, allowing “backtracking” if earlier proof paths lead to a dead end.”

4.2 A Parsing Example
As a demonstration of the architecture used as a parser, we consider the
Earley and backtracking-LR instances in parsing the ambiguous sentence:

Castillo said Sonny was shot yesterday.

Since the operation of the architecture as a parser’is quite similar to that
" of previous parsers for unification-based formalisms, we will only highlight
a few crucial steps in the process.

"Modeling of an incomplete version of the shift-reduce technique is also possjble. The
simplest method, however, involves eliminating the chatt ¢ompleting, and mimicking clo-
sure, shift, and reduction operations as operations on LR states (sets of items) directly.

o Though this method is not a straightforward instantiation of the architecture of Section 3

- (since the chart is replaced by separate state sets), we have implemented a parser using -

much of the same technology described here and have sucéessfully modeled the garden PR

path pheromena that reiy on the incompleteness of the shlft-reduce techmque :

The Eailey parser.aSSigns higher priority to items ending earlier in the
- sentence. The highest-priority initialization items are added first.®

[0,S = «NP VP, @

[0, NP — castillos, 1] ‘Castille’
By Completion, the item

[0,S— NP.VP1] *Castillo’
is generated, which in turn predicts

[1,VP— VP X,1] o

[LVP = .V o

[L,VP— VP AdvP 1] @

" The highest-priority item .rema.ining on the agenda is the initial item

1,V — said.,9] ‘said’

Processing progresses in this manner, performing all operations at a
string position before moving on to the next position until the final posi-
tion is reached, at which point the final initial item corresponding to the
- word ‘yesterday’ is added. The following flurry of items is generated by
completion.?

{6, AdvP — yesterday +, 6]
(2) [LLVP— VP AdvP.,6)
(3) BVP— VP AdvP. 6]
[4,VP — VP AdvP..6]
[1,VP — VP .AduP,6]
(4) [0,S—NPVP.,6

[3,VP — VP .AdvP,6]
(5) 2,S—NPVP.,6

‘yesterday’

‘said Sonny was shot yesterday’
‘was shot yesterday’

‘shot yesterday’

‘said Sonny was shot yesterday’

‘Castillo said Sonny was shot
yesterday’
‘was shot yesterday’

‘Sonny was shot yesterday’

8The format used in displaying these items reverts to one similar to Earley’s algorithm,
_'with a dot marking the position in the rule covered by the string generated so far, so as
to describe more clearly the portion of each grammar rule used. In addition, the string

. actually parsed or generated is given in single quotes after the item for convenience.
- PThe four instances of ‘said Sonny was shot yesterday’ arise because of lexical ambiguity’
in the verb ‘said’ and adverbial-attachment ambignity. Only the finite version of ‘said’ is

‘used in forming the final sentence.

[4,VP = VP.AdP,6] ‘shot yesterday’ S
(6) [LLVP-VP S., 6] ‘said Sonny was shot yesterday’

. [LVP—=VP.AdvP,6] . ‘said Sonny was shot yesterday’
(7)) [0,S—=NPVP.,06 " “Castillo said Sonny was shot
yesterday’

* Note that the first full parse found (4) is derived from the high attachment
of the word ‘yesterday’ (2) (which is composed from (1) directly), the second
(7) from the low attachment (6) (derived from (5), which is denved in turn
from (3)).

By comparison, the shift-reduce parser generates exactly the same items
as the Earley parser, but in a different order. The crucial ordering difference
occurs in the following generated items:

(1) [6, AdvP — yesterday.,6] ‘yesterday’

(3) B,VP—VP AdvP., 6 ‘was shot yesterday’

- [B, VP —VP.AdvP,G] ‘was shot yesterday’

(5) ‘'[2,S~+NPVP.,6 ‘Soriny was shot yesterday’

(6) L,VP—-VPS., 6 - ‘said Sonny was shot yesterday’
VP —VP.AdvP 6] * ‘said Sonny was shot yesterday’

(7 0,S—~NPVPF., 06 ‘Castillo said Sonny was shot

. yesterday’

(8) 2,S—=NPVP.,5 ‘Sonny was shot’
L,VP—-VPS.,65 ‘said Sonny was shot’
[1LVP—~VP.AdvP,5] . ‘said Sonny was shot’

(2) I,vP—~VP AdvP.,6) ‘said Sonny was shot yesterday’
1,LVP—-VP.AdvP, 6] ‘said Sonny was shot yesterday’

(4) 0,85—=NPVP.,0 _ ‘Castillo said Sonny was shot
yesterday’

Note that the reading of the sentence (7) with the low attachment of

- the adverb—the so-called “right association” reading—is generated before
* the reading with the higher attachment (4), in accordance with certain psy-
cholinguistic results [Frazier and Fodor, 1978]. This is because item (3)

- has higher priority than item (8), since (3) corresponds to the shifting of
the word ‘yesterday’ and (8) to the reduction of an. NP and VP to .
"The second clause of the priority definition orders such ‘shifts before re-

. “ductions. In $ummary, this instance of the architecture develops parses'in

right-association /mmmal—attachment preference order.

10

4.3 ‘Generator Instances

As a final example of the use of this architecture, we consider using it for
generation by changing the initialization condition as follows:

» The initialization of the agenda includes axioms for each word in the

~ lexicon at each position (e.g., [0, sonny, 1] and [0, left, 1] and [1, left, 2],
and so on) and an initial prediction for each rule whose left-hand side is
the start symbol of the grammar (e.g., [0,5 « NP VP,0]). In the case
of a grammar formalism with more complex information structures
as nonterminals, e.g., definite-clause grammars, the “start symbol”
might include information about, say, the meaning of the sentence to
be generated. We will refer to this as the goal meaning.

-» The success criterion is that the nonterminal be subsumed by the start
~ nonterminal (and therefore have the appropriate meaning).

" - Under this parameterization, the architecture serves as a generator for
~ the grammar, generating sentences with the intended meaning. By changing
the priority function, the order in which possibilities are pursued in genera-
tion can be controlled, thereby modeling depth-first strategies, breadth-first
strategies, and so forth. '

Of course, as described, this approach to generation is sorely inadequate
for several reasons. First, it requires that we initially insert the entire lexicon
into the agenda at arbitrary numbers of string positions. Not only is it
infeasible to insert the lexicon so many times (indeed, even once is too much)
but it also leads to massive redundancy in generation. The same phrase may

'be generated starting at many different positions. For parsing, keeping track
of which positions phrases occur at is advantageous; for generation, once a
phrase is generated, we want to be able to use it in a variety of places.

A simple solution to this problem is to ignore the string positions in
the generation process. This can be done by positioning all lemmas at a
single position. Thus we need insert the lexicon only once, each word being
inserted at the single position, e.g., [0, sonny, 0].

Although this simplifies the set of initial items, by eliminating indexing
~ based on string position we remove the feature of tabular parsing methods
‘such as Earley’s algorithm that makes parsing reasonably efficient. The

generation behavior exhibited is therefore not goal-directed; once the lexicon
- is inserted many phrases might be built that could not contribute in any way
_to a sentence with the appropriate meaning. In order to direct the behavior

11

- of the generator towards a goal meaning, we can modify the priority function
- so that it is partial; not every item will be assigned a priority and those that
are not will never be added to the table {or agenda) at all. The filter we have
‘been using assigns priorities only to itéms that might contribute semantically
to the goal meaning. In particular, the meaning associated with the item
must subsume some portion of the goal meaning.'® This technique, a sort of
indexing on meaning, replaces the indexing on string position that is more
appropriate for parsing than generation.
As a rule, filtering the items by making the priority function partial
can lead to incompleteness of the parsing or generation process.!’ However,
the subsumption filter described here for use in generation does not yield
" incompleteness of the generation algorithm under one assumption about
the grammar, which we might call semantic monotonicity. A grammar is
- .semantically monotonic if, for every phrase admitted by the grammar, the
semantic structure of each immediate subphrase subsumes some portion of
‘the semantic structure of the entire phrase. Under this condition, items
which do not subsume part of the goal meaning can be safely ignored, since
any phrase built from them will also not subsume part of the goal meaning
and thus will fail to satisfy the success criterion. Thus the question of
- completeness of the algorithm depends on an easily detectable property of
the grammar. Semantic monotonicity is, by intention, a property of the
particular grammar we have been using.

. 4.4 A Generation Example
" As an example of the generation process, we consider the genefa,tion of a
sentence with a goal logical form

passionately(love(sonny,kait))

The example was run using a toy grammar that pla.céd s.ub:i:ategoriza-'
tion information in the lexicon, as in the style of analysis of head-driven
phrase-structure grammar (HPSG). The grammar ignored tense and aspect

"Since the success criterion requires that a'successful item be subsumed by the start
nonterminal -and the priority filter requires that a successiul item’s semantics subsume
" thé start nonterminal’s semantics, it follows that successful items match the start symbol
‘exactly in sernantic information; overgeneration in this sense is not a problem. . .
. -MIndeed, we might want such incompleteness for certain cases of psycholinguistically -
.motivated parsing models such as the simulated LR model described above.

12

i information, so that, for instance, auxiliary verbs merely identified their own
* semantics with that of their postverbal complement.!?
The initial items included the following:

(1) [0,NP — sonny.,0] ‘Sonny’
(9) [0, NP — kait., (] Kait’
[0,V —=to.,0] ‘to’
[0,V — was., 0] ‘was’
[0,V — weres,0] ‘were’
[0,V — loves.,0} ‘loves’
[0,V — love.,0] Tove’ .
[0,V — loved., () ‘loved’
[0, AdvP — passionately.,0] ‘passionately’
(3) [0,5— «NP VP,0] o

Note that auxiliary verbs were included, as the semantic structure of an
auxiliary is merely a variable (coiindexed with the semantic structure of its
postverbal complement), which subsumes some part (in fact, every part) of
‘the goal logical form.'® Similarly, the noun phrases ‘Sonny’ and ‘Kait’ {with
- semantics sonny and kait, respectively) are added, as these logical forms
each subsume. the respective innermost arguments of the goal logical form.
Several forms of the verb ‘love’ are considered, again because the semantics
in this grammar makes no tense/aspect distinctions. But no other proper
nouns or verbs are considered (although the lexicon that was used contained
them) as they do not pass the semantic filter. ‘
The noun phrase ‘Sonny’ can be used as the subject of the sentence by
combining items (1) and (3) yielding

4) [0,S—NP.VP,(] ‘Sonny’

(The corresponding item with the subject ‘Kait’ will be generated later.)
~ Prediction yields the following chain of items.

[0,VP — VP AdvP,0] o
[0,VP — .V,0] o

12For reference, the grammar is similar in spirit to the third sample grammar in [Shieber,

1986)]. _ L L

- 231t holds in general that closed-class lexical items—case-marking prepositions, function

" verbs, etc.—are uniformly considered initial items for purposes of generation because of

their vestigial semantics. This is as desired, and follows from the operation of semantic
filtering, rather than from any ad hoc techniques.

13

The various verbs, inéludi’ng the forms of ‘love’, can complete this latter -
item.

OVP—V.0 -~ 4

o, vP V.0 4
0,VP—=V. 0 - ‘was’
o,veP—V. .1 © ‘were’

() [0,VP—V. 0 ‘loves’
0,VP— V.90 ‘love’
[0,VP = V., 0 ‘love’
[0,VP —V..0 oved’

The passive form of the verb ‘loved’ might be combined with the adverb.

[0, VP —VP.AdvP,0] ‘loved’
f0,VP — VP AdvP . 0] ‘loved passionately’

" The latter item might be used in a sentence ‘Kait was loved passionately.’
This sentence will eventually be generated but will fail the success criterion
‘because its semantics is insufficiently instantiated.

Prediction from item (4) also yields the rule for addlng complements to
a verb phrase.

[0,VP — VP X,0] o

Eventually, this item is completed with items (5) and (2).

[0,VP—VP.NPI] ‘loves’
[0,VP—-VP NP.,0] ‘loves Kait’

The remaining items generated are

[0,VP— VP.AdvP,0] ‘loves Kait’

[0,VP— VP AdvP., 0] ‘loves Kait passionately’ :
{0 S—+NPVP.,0] n -‘Sonny ioves Kait passionately’

ThJs ﬁna.l item matches the success cntenon, and is the only such item.

- . Therefore, the sentence ‘Sonsny loves Kait pa.ss:ona.tely is genera.ted for the
- logical form passzonately(love(sonny,kazt))

C Lookmg over the generation process, the set of phrases actlvely explored
by the generator included ‘Kate is loved’, ‘Kate is loved passionately’, ‘were

14

- loved passionately’ and similar passive constructions, ‘Sonny loves Kait’,
“and various subphrases of these. However, other phrases composed of the
same words, such as ‘Kait loves Kait’, ‘Sonny is loved’, and so forth, are
_ eliminated by the semantics filter. Thus, the the generation process is, on
the whole, quite goal-directed; the subphrases considered in the generation
process are “reasonable”.

5 The Implementation

" The architecture described above has been implemented for the PATR gram-
mar formalism in a manner reminiscent of object-oriented programming. In-
stances of the architecture are built as follows. A general-purpose processor-
building function, taking a priority function and success criterion function
as arguments, returns an object that corresponds to the architecture in-
stance. The object can be sent initialization items as arbitrary lemmas of
the usual form. Whenever a successful lemma is constructed (according to
the success criterion) it is returned, along with a continuation function that
© can be called if further solutions are needed. No processing is done after a
successful lemma has been proved unless further solutions are requested.

Using this implementation, we have built instances of the architecture
for Earley parsing and the other parsing variants described in this paper,
including the shift/reduce simulator. In addition, a generator was built
that is complete for semantically monotonic grammars. It is interesting to
note that the generator is more than an order of magnitude faster than
our original PATR generator, which worked purely by top-down depth-first
- backtracking search, that is, following the Prolog search strategy.

The implementation is in Common Lisp and runs on Symbolics 3600,
Sun, and Macintosh computers. It is used (in conjunction with a more
extensive grammar) as the generation component of the GENESYS system

 for utterance planning and production.

6 Precursors

Perhaps the clearest espousal of the notion of grammar reversability was
made by Kay [1975], whose research into functional grammar has been mo-
’ tivated by the desire to “make it possible to generate and analyze sentences
with the same grammar.” Other researchers have also put such ideas into
effect. Jacobs’s PHRED system {Jacobs, 1985] “operates from a declarative

15

 knowledge base of linguistic knowledge, common to that used by PHRAN?,
an analyzer for so-called phrasal grammars. Jacobs notes that other systems
~have shared at least part of the linguistic information for parsing and gen-

_eration; for instance, the HAM-ANS {Wahlster et al., 1983] and VIE-LANG
[Steinacker and Buchberger, 1983] systems utilize the same lexical informa-
tion for both tasks. Kasper has used a system for parsing grammars in a
unification-based formalism (SRI’s Z-PATR system) to parse sentences with
respect to the large ISI NIGEL grammar, which had been previously used
for generation alone.

Nonetheless, all of these systems rely on often radically different architec-
tures for the two processes. Precedent for using a single architecture for both
tasks is much more difficult to find. The germ of the idea can be found in the
General Syntactic Processor { GSP) designed for the MIND system at Rand.
Kaplan and Kay proposed use of the GSP for parsing with respect to aug-
mented transition networks and generation by transformational grammars
[Kaplan, 1973]. However, detailed implementation was apparently never
carried out. In any case, although the proposal involved using the same
architecture, different formalisms {and hence grammars) were presupposed
- for the two tasks. Running a definite-clause grammar (DCG) “backwards”
has been proposed previously, although the normal Prolog execution mech-
anism renders such a technique unusable in practice. However, alternative
execution models might make the practice feasible. As mentioned above,
the technique described here is just such an execution model, and is directly
related to the Earley deduction mode] of Pereira and Warren [1983]. Hasida
and Isizaki [1987] present another method for generating and analyzing us-

- . ing a DCG-like formalism, which they call dependency propagation. The

" technique seems to entail using dataflow dependencies implicit in the gram-
mar to control processing in a coroutining manner. The implementation
status of their method and its practical utility are as yet unclear.

The use of an agenda and scheduling schemes to allow varying the con-
trol structure of a parser also finds precedent in the work of Kaplan [1973]
-and Kay [1967]. Kay’s “powerful parser” and the GSP both employed an

- agenda mechanism to control additions to the chart. However, the “tasks”

- placed on the agenda were at the same time more powerful (correspond-
- ing to unconstrained rewrite rules) and more procedural (allowing register
. operations and other procedural constructs). This work merely applies the -

notion in the context of the simple declarative formalisms presupposed, and -

provides it with a logical foundation on which a proof of correctness can be

16

.__dew,'loped.14 Because the formalisms are simpler, the agenda need only keep
track of one type of task: addition of a chart item.

7 Further Research

Perhaps the most immediate problem raised by the methodology for gener-
ation introduced in this paper is the strong requirement of semantic mono-
tonicity, which serves as yet another instance of the straitjacket of com-
positionality. The semantic-monotonicity constraint allows the. goal logi-
cal form to be systematically decomposed so that a dynamic-programming
generation process can be indexed by the parts of the decomposition (the
subformulas), just as the constraint of string concatenation in context-free
grammars allows a goal sentence to be systematically decomposed so that
a dynamic-programming parsing process can be indexed by the subparts of
that decomposition (the substrings). And just as the concatenation restric-
tion of context-free grammars can be problematic, so can the restriction of

semantic monotonicity. Finding a weaker constraint on grammars that still

allows efficient processing is thus an important research objective.

Even with the semantic-monotonicity constraint, the process of indexing
by the highly structured logical forms is not nearly so efficient as indexing by
simple integer string positions. Partial match retrieval or similar techniques
from the Prolog literature might be useful here.

Nothing has been said about the important problem of guaranteeing
that the syntactic and semantic goal properties will actually be realized in
the sentence generated. The success criterion for generation described here
would require that the logical form for the sentence generated be identical
to the goal logical form. However, there is no guarantee that the other
properties of the sentence include those of the goal; only compatibility is
guaranteed. Researchers at the University of Stuttgart have proposed so-
lutions to this problem based on the type of existential constraint found in
lexical-functional grammar. We expect that their methods might be appli-
cable within the presented architecture.

Finally, on a more pessimistic note, we turn to a widespread problem
in all systems for automatic generation of natural language, which Appelt
[1987] has discussed under the rubric “the problem of logical-form equiva-

~ lence”. The mapping from logical forms to natural-language expressions is
- in general many-to-one. For instance, the logical forms red(z) A ball(z) and

"~ MGuch a proof is currently in preparation.

17

canonical intentionally
logical equivalent

- forms LFs

A LF 1a

LF 1 < LF 1b

LF lc

LF 2a

NL. expression LF2 < LF2b
LF 2¢

LF 3a

LE3 < LF 3b

P I LF 3c

grammar

defines |]

intentional equivalence

defines

-Figure 1: Canonical Logical Forms

ball(z} A red(z) might both be realized as the nominal ‘red ball’. However,
most systems for describing the string-LF relation declaratively do so by as-
signing a minimal set of logical forms to each string, with each logical form
standing proxy for all its logical equivalents. The situation is represented
-graphically as Figure 1.
' The problem is complicated further in that, strictly speaking, the class
of equivalent logical forms from the standpoint of generation is not really
closed under logical equivalénce. Instead, what is actually required is a finer-
- grained niotion of intentional equivalence, under which, for instance, p and
pA{gV —g) would not necessarily be intentionally equivalent; they might

- correspond to different utterances, one about p only, the other about both -

-p and g.

18

"In such a system, merely using the grammar per se to drive genera-
tion (as we do here) allows for the generation of strings from only a subset
~of the logical-form expressions that have natural-language relata, that is,
‘LF1, LF2, and LF3 in the figure. We might call these the canonical logical
forms. Even if the grammar is reversible, the problem remains, because log-
ical equivalence is in general not computable. And even in restricted cases
in which it is computable, for instance a logic with a confluence property

under which all logically equivalent expressions do have a canonical form,
the problem is not solved unless the notion of canonical form implicit in the
logic corresponds exactly to that of the natural-language grammar.
It should be noted that this kind of problem is quite deep. Any system
‘that represents meanings in some way (not necessarily with logical expres-
sions) must face a correlate of this problem. Furthermore, although the issue
impinges on syntax because it arises in the realm of grammar, it is primarily
a semantic problem, as we will shortly see,
There are two apparent possible approaches to a resolution of this prob-
lem. We might use a logic in which logical equivalence classes of expressions
are all trivial, that is, any two distinct expressions mean something different.
In such a logic, there are no artifactual syntactic remnants in the syntax of
the logical language. Furthermore, expressions of the logic must be relatable
to expressions of the natural language with a reversible grammar. Alterna-
tively, we could use a logic for which canonical forms, corresponding exactly
to the natural language gramimar’s logical forms, do exist.
The difference between the two approaches is only an apparent one, for
. in the latter case the equivalence classes of logical forms can be identified as
logical forms of a new logical language with no artifactual distinctions. Thus,
the second case reduces to the first. The central problem in either case, then,
is discovery of a logical language which exacily and uniquely represents all
the meaning distinctions of natural language utterances and no others. This
holy grail, of course, is just the goal of knowledge representation for natural
langnage in general; we are unlikely to be able to rely on a full solution soon.
However, by looking at approximations of this goal, suitably adapted to
‘the particular problems of generation, we can hope to achieve some progress.
. In the case of approximations, it does not hold that the two methodologies
-reduce one to another; in this case, we feel that the second approach—
~ designing a logical language that approximates in its canonical forms those
- needed for grammatical applications——is more likely to yield good incremen-

" tal results.

19

"References - |
 [Appelt, 1987] Douglas E. Appelt. Bidirectional grammars and the design of
natural language generation systems. In Theoretical Issues in Natural

 Language Processing—3, pages 185-191, New Mexico State University,
Las Cruces, New Mexico, 7-9 January 1987.

[Frazier and Fodor, 1978] Lyn Frazier and Janet Dean Fodor. The sausage
machine: a new two-stage parsing model. Cognition, 6:291-325, 1978.

[Hasida and Isizaki, 1987] K6iti Hasida and Syun Isizaki. Dependency
propagation: a unified theory of sentence comprehension and genera-
tion. In Proceedings of AAAI-87, pages 664-670, Seattle, Washington,
13-17 July 1987.

[Jacobs, 1985] Paul S. Jacobs. PHRED: a generator for natural lan-
guage interfaces. Computational Linguistics, 11(4):219-242, October-
December 1985.

[Kaplan, 1973] Ronald M. Kaplan. A general syntactic processor. In Ran-
' dall Rustin, editor, Natural Language Processing, pages 193-241, Algo-
rithmics Press, New York, 1973.)

[Ké,y, 1967] Martin Kay. Experiments with a powerful parser. In Proceed-
ings of the Second International Conference on Computational Linguis-
tics, August 1967.

[Kay, 1975] Martin Xay." Syntactic processing and functional sentence per-
spective. In Theoretical Issues in Nalural Language Processing—
Supplement to the Proceedings, pages 12-15, Cambridge, Mas-
sachusetts, 10-13 June 1975.

[Pereira and Warren, 1983] Fernando C. N. Pereira and David H. D. War-
ren. Parsing as deduction. In Proceedings of the 21st Annual Meeting
. of the Association for Computational Linguistics, pages 137-144, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, 15-17

- .June 1983.

 [Pereira and Shieber; 1987] FernandoC. N. Pereira and Stuart M. Shieber.
- Prolog and Natural-Laniguage Analysis. Volume 10 of CSLI Lecture

Notes, Center for the Study of Language and Information, Stanford,
California, - 1987. .

o0

{Shieber, 1983] Stuart M. Shieber. Sentence disambiguation by a shift-
reduce parsing technique. In Proceedings of the 21st Annual Meeting
of the Association for Computational Linguistics, pages 113-118, Mas-
sachusetts Institute of Technology, Cambridge, Massachusetts, 15-17
June 1983.

[Shieber, 1985] Stuart M. Shieber. Using restriction to extend parsing al-
gorithms for complex-feature-based formalisms. In Proceedings of the.
23rd Annual Meeting of the Association for Computational Linguistics,
pages 145-152, University of Chicago, Chicago, Illinois, 8-12 July 1985.

[Shieber, 1986] Stuart M. Shieber. An Introduction to Unification-Based
Approaches to Grammar. Volume 4 of CSLI Lecture Notes, Center for
the Study of Language and Information, Stanford, California, 1986.

[Steinacker and Buchberger, 1983] Ingeborg Steinacker and Ernst Buch-
berger. Relating syntax and semantics: the syntactico-semantic lexicon
of the system VIE-LANG. In Proceedings of the First Conference of
the Luropean Chapter of the Association for Computational Linguistics,

- pages 96-100, Pisa, Italy, 1-2 September 1983.

[Wahlster et al., 1983] Wolfgang Wahlster, Heinz Marburger, Anthony
Jameson, and Stephan Busemann. Overanswering yes-no questions: ex-
tended responses in a natural language interface to a vision system. In
Proceedings of the Eighth International Joint Conference on Artificial
Intelligence, pages 643-646, Karlsruhe, West Germany, 8-12 August
1983.

21

