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Abstract

One of the most highly touted virtues of knowledge-based expert systems is their abil-
ity to comstruct explanations for their lines of reasoning. However, there is a basic
difficulty in generating explanations in expert systems that reason under uncertainty
using numeric measures. In particular, systems based upon evidential reasoning using
the theory of belief functions have lacked all but the most rudimentary facilities for
explaining their conclusions, In this paper we review the process whereby other expert
system technologies produce explanations, and present a methodology for augmenting
an evidential-reasoning system with a versatile explanation facility. The method, which
is based on sensitivity analysis, has been implemented, and several examples of its use
are described.






Contents

Introduction

Explanation Generation

2.1 Logic programming . . . . . v v v v v v vt i e
2.2 QCertainty factors . . ... .. .. ... . oL,
2.3 Inferencemets . ... ... .. ... .. ...
2.4 Belieffunctions . .. ... ... ... ... .. .. . . .....

Overview of Evidential Reasoning

3.1 Fundamentals .. ............ .. ............
3.2 The analysisof evidence . . . . ... .. ... .........

Generating Explanations Within Evidential Reasoning

4.1 Single hypothesis . . . .. . . .. .. ... ... ...,
4.2 Entirebody of evidence . .. ... ... ... ... .. ...
4.3 Using sensitivity results to generate explanations .. .. ...

Discussion
Conclusions
Acknowledgments

An Exploration of Sensitivity Space

A.1 Northeast Quadrant: Specific and Coherent . . ... ... ..
A.2 Southeast Quadrant: Specific and Divergent . . ... ... ..
A.3 Northwest Quadrant: Vague and Coherent . . . ... .. ...
A.4 Southwest Quadrant: Vague and Divergent . . . . . . .. ...

Detective Example

34
35

38
39
39
40
40

41






1: Introduction

One of the most highly touted virtues of knowledge-based expert systems is their
ability to construct explanations of deduced lines of reasoning. Endowing such
systems with an explanation facility has two major advantages [1]. First, an
explanation facility contributes to the transparency of the program. That is,
it allows the user to observe, and perhaps question, the individual inferences
that contribute to the conclusions that are reached. This ability to examine a
system’s inner workings fosters a sense of confidence in the mind of the user; he
can become satisfied that the system really “knows” what it is doing and has not
just happened upon a plausible conclusion. An explanation capability is thus an
important component of user acceptance of a knowledge-based system. Secondly,
explanations can be a useful tool for the knowledge engineer. Information gained
by questioning the system about its own knowledge base can be valuable for
debugging and refining the stored knowledge. Randall Davis’ TEIRESIAS is a
good example of a system that exploits explanations for the purpose of knowledge
engineering [2}.

The goal of developing knowledge-based systems that can reason with infor-
mation that is uncertain or inexact in one way or another has long been a part of
artificial intelligence research. Several technologies have been proposed for rep-
resenting knowledge and deriving consequences from imperfect data: MYCIN’s
certainty factors [14], Prospector’s inference nets [10], fuzzy sets {18], Bayesian
nets [8], and Dempster-Shafer belief functions [6] are prominent examples. Indi-
vidual differences aside, all of these technologies have one thing in common: a
basic difficulty in constructing explanations of lines of reasoning.

In this paper we review the process whereby expert systems currently gener-
ate explanations, and identify the reasons why explanation generation is difficult
in uncertain-reasoning systems. We then propose an explanation facility for one
class of automated reasoning systems that does incorporate uncertainty: eviden-
tial reasoning. Implementation of this facility results in a knowledge-based system
that has both a well-founded representation of uncertainty and a nontrivial ability
to explain its inference paths.

In Section 2 we review the state of the art of explanation generation for both
Boolean-valued and uncertainty-based expert systems. Section 3 contains an
overview of evidential reasoning, developed at SRI International based on the
Dempster-Shafer theory of belief functions. Section 4 contains our design for
endowing evidential reasoning with an expla.natioﬁ facility based on sensitivity
analysis techniques. We conclude with a discussion of the utility of the approach
and the feasibility of providing such a facility in uncertain-reasoning systems




based on other technologies. The appendix contains a comprehensive example
of the techniques described herein, as implemented in the evidential reasoning
system known as Gister! [7].

lGQister is a trademark of SRI International



2: Explanation Generation

The generation of useful explanations in knowledge-based systems has three main
requirements:

1. An effective explanation must be based upon a recapitulation of actions
taken by a program.

2. The correct level of detail of those actions must be chosen.

3. There must be a shared vocabulary that makes the program’s actions com-
prehensible to the user. ‘

In simple production systems, these requirements are commonly found to be
satisfied without much difficulty. But consider a program that performs inference
using a numerical measure of belief. It is difficult to imagine what explanation
the system could give if it were queried about a computed probability. A simple
recapitulation of all invocations of a combination rule is unlikely to yield an
explanation that resembles a user’s conscious thought. Although such a sequence
may be an effective computational model, there is no easy way to interpret it
in a form that can be intuitively understood. This is not a criticism: of using
belief measures within expert systems; rather it is indicative of the difficulty of
generating explanations within any system that employs a numeric measure of
belief. A better appreciation of this difficulty can be gained by studying the
explanation facilities of several systems based upon various technologies.

2.1 Logic programming

In a logic program, a collection of facts represents known truths about objects,
and rules define relationships among objects. A computation is a deduction of
logical consequences from a logic program. Rules are statements of the form

IF A, and A; and --- and A, THEN B. (2.1)

The law of modus ponens says that from (2.1) and the facts A;, Ag,..., A, one
can deduce B. An existentially qualified goal G is deducible from a program if
there is a rule with an instance of the form

I¥ z; and z, and --- and z, THEN y,

such that y is an instance of G, and the ;s are deducible recursively from the
program. Unification is used to find a rule whose consequent is an instance of the
goal.




For any given goal G that is deducible from the program, one can construct
a proof tree whose root is (G, whose leaves are all instances of facts, and whose
structure represents the invocations of rules in a given deduction of G. A proof
tree is thus a data structure that can be used to answer queries about a compu-
tation. While the proof tree as described is only a conceptual notion, one can
construct a proof tree automatically by making use of a meta-interpreter. For
example, a partial meta-interpreter for constructing proof trees in Prolog [15] is
given in Figure 2.1(a).

Once the proof tree has been constructed, an explanation of a given compu-
tation can be generated in a straightforward fashion. Suitable justifications for
conclusions derived by modus ponens can be produced by reciting the fact (or
collection of facts) that triggered the rule. When additional detail is required,
reiterating the rule may also be of use. Figure 2.1(b) provides a portion of a
Prolog meta-interpreter that generates a complete explanation by traversing the
proof tree. An example of what such an explanation might look like is illustrated
in Figure 2.2,

This is the basic mechanism whereby explanations are produced in systems
based on logic programming, although its implementation may vary greatly from
one system to another.

Mechanisms to control the depth to which the proof tree is explored can be
used to better satisfy the second requirement for useful explanations—choosing
the correct level of detail. Additionally, a more appropriate vocabulary can be
used by augmenting each rule with a descriptive natural language phrase that is
displayed in place of the rule itself—thus addressing the third requirement.

2.2 Certainty factors

The need to represent uncertain or inexact information in some applications has
forced system developers to implement new formalisms. For example, in the
MYCIN system for diagnosis of infectious diseases [14], the standard production
system representation was augmented with certainty factors to account for the
judgmental quality of some rules. On a scale of 1.0 to —1.0, a certainty factor
(CF) measures the degree to which a rule’s consequent does or does not follow
from its premise.

Introducing CF's into a rule-based system can greatly expand the search re-
quired to reach a conclusion. In a Boolean-valued logic, any path from the goal
to known facts is adequate to assert the truth of the goal, but a rule-based system
incorporating uncertainty must invoke all rules that unify with every subgoal in
the search tree. While many systems have been written that successfully cope
with the additional computation this paradigm requires, it presents substantial



solve(Goal, Tree) — Tree is a proof tree for Goal
clause(A, B) — A<-B is a clause in the program
clause(A, true) — A is a fact

solve(true, true).
solve((A, B}, (ProofA, ProofB)} <~ solve(A, ProofA),
solve(B, ProofB).
solve(A, (A <— Proof)) <- clause(d, B},
solve{B, Proof).

(a) Constr{lcting a proof tree.

how(Goal) — Explains how the goal was proved

how(Goal) <- solve(Goal, Proof), interpret(Proof).

interpret ((Proofl, Proof2)}) <- interpret(Proof1),
interpret (Proof2).

interpret(Proof) <- fact(Proof, Fact),

writeln([Fact, ‘is a fact in the data base.’]
interpret(Proof) <- rule(Proof, Head, Body, Proofl),

writeln([Head,  is proved using the rule’]),

writeln(‘IF’), write(Body), writeln([‘THEN’, Head])

interpret{Proof1}. :
fact((Fact<-true),Fact)}.
rule{(Goal<-Proof),Goal,Body,Proof} <~ not_equal{Proof, true),

extract_body(Proof, Body).

extract_body({Goal<-Proof), Goal}.

(b) Generating explanations.

Figure 2.1: A partial meta-interpreter for Prolog.




place_in_oven(Dish, Rack) — Dish should be placed in the oven at
level Rack for baking

place_in_oven(Dish,top) <- pastry(Dish), size(Dish,small).
place_in_oven(Dish,middle)} <- pastry(Dish), size(Dish,big).
place_in_oven{Dish,middle) <- main_meal(Dish).
place_in_oven(Dish,low) <- slow_cooker(Dish).

pastry(Dish) <~ type(Dish,cake}.
pastry(Dish) <- type(Dish,bread).

main_meal(Dish) <- type(Dish,meat).
slow_cooker(Dish) <- type(Dish, milk_pudding).

type(dishi,bread).
type(dish2,meat).

‘gize{dishi,small).
size(dish2,big).

(a) A Prolog program for placing dishes in an oven

how(place_in_oven{dishi, top))?
place_in_oven(dishl, top) is proved using the rule
IF pastry(dishi) and size(dishi, small)

THEN place_in_oven(dishi, top)
pastry(dishi) is proved using the rule
IF type(dishl, bread)

THEN pastry(dishi)

type(dishil, bread) is a fact in the data base.

size(dishi, small) is a fact in the data base.

(b) A sample explanation

Figure 2.2: Explanation generation within Prolog



obstacles to the construction of suitable explanations.

Consider what is required to generate an explanation at any level in the proof
tree. In a Boolean-valued system, a single rule reduces each subgoal. In MYCIN,
several rules may contribute to the CF of a subgoal, and all of those rules must
be displayed to construct a complete explanation from a MYCIN inference.

Another difficulty is illustrated by the following MY CIN excerpt [2]:

The following rules were used in deducing that the identity of
ORGARISM-1 is pseudomonas—aeruginosa
RULE184

Since [1.1] the category of ORGANISM-1 is not known
£1.2] the gram stain of ORGANISH-1 is gramneg
£1.3] the morphology of ORGANISK-1 is rod
[1.4] the aercbicity of ORGANISK-1 is facultative
There is weakly suggestive evidence (0.3} that the identity
of ORGANISM-1 is pseudomonas-aeruginosa

The low CF associated with the rule calls into question whether the rule is
really a reasonable explanation. What if the CF were even lower? What if it were
negative, implying that the premises are a counterindication of the consequent?

The conclusion is that systems that use CFs must find a way to select the
most important rules used in an inference, if they are to satisfy the second re-
quirement of explanation generation. TEIRESIAS incorporated mechanisms to
control the level of detail of explanations generated for MYCIN based upon a
measure of information content, but did not attempt to distinguish among the
relative contributions when more than one rule was applicable to a given subgoal

[2).

2.3 Inference nets

Tracing the arcs of an inference network is the analog of rule backtracing in a
rule-based system. As with systems employing certainty factors, several evidence
nodes may contribute to the belief in a hypothesis node, so an appropriate expla-
nation may consist of several supporting reasons. An example of an explanation
using an inference net from Prospector [10] (Figure 2.3) follows:
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Figure 2.3: An inference network from Prospector.

My certainty in
1. XYZ-type deposit
is now 1.21547

Do you wish to see additionmal information?  YES

I suspect that
1 - (* XYZ-type deposit) (1.21547)

There is one favorable factor:
1: 1. Favorable intrusives in target area 4.99999

There is one positive factor whith neutral effect that, if negative,

could have been significant:
1: 2. You were sure that the prospect is in a volcanic province 5.0

11



There is one uncertain factor whose score may be subject to change:
1: 3. Favorable zones 0.227085

Constructing an explanation in this case is straightforward, because the nodes
in Prospector inference nets represent binary predicates (e.g., whether or not
there are favorable intrusives in the target area). In Hydro, a derivative system
designed for water resource management problems [5], the Prospector model was
extended to allow multivalued predicates, and explanation generation became
more difficult:

On a scale from -5 to 5, my certainty that

6: 1) IKTFW based on soil type and vegetation, corrected for

slope and geology has a value between 0.72 and 1,98 (most likely 1.2825)
(computed by a formula) is now 4.0.

Do you wish to see additional information? YES

There are two favorable factors; in order of importance:
6.1: 1) INTFW based on soil type and vegetation, corrected for slope has
a value between 0.72 and 0.99 (most likely 0.855) (certainty 4£.0)

6.1: 2) Correction factor for geology has a value between 1.0 and 2.0
(most likely 1.5) {certainty 3.0)

This explanation was constructed by walking the inference net and computing
the range of possible values given the evidence collected to that point. While the
numeric values in the Prospector explanation made interpretation a chore, in
Hydro, the explanation can only be understood by someone very familiar with
both the hydrological domain and Hydro's representation of uncertainty. The
explanation is barely comprehensible, contradicting the third requirement.

Prospector and Hydro both possess additional features to produce a more so-
phisticated interpretation of the state of their knowledge bases, such as the ability
to perform a best and worst-case analysis of the possible effect of a missing piece
of evidence. In a later version, a sensitivity analysis was performed by applying
Prospector in batch mode to a test case while systematically modifying the in-
put data [11]. This analysis was used primarily to identify areas of disagreement
between the expert and the system.

2.4 Belief functions

The theory of belief functions, as originally conceived by Dempster [3] and fur-
ther developed by Shafer [12], has received considerable attention as a basis for
representing uncertainty within expert systems. The theory is a generalization of
classical probability theory and provides a representation of degrees of precision

12




as well as degrees of uncertainty. Its ability to express partial ignorance is of
great value in the design of knowledge-based systems for real-world domains.

Currently, one of the most highly developed knowledge-based systems that
incorporates Shafer’s theory of belief functions for a wide range of application
domains is Gister [7]. While Gister performs tasks similar to those of expert
systems based on other technologies, like all systems based upon belief functions,
it has only a rudimentary explanation capability. In the next section, we present
an overview of the evidential-reasoning technology employed by Gister. The
derivation of a method for generating explanations within evidential-reasoning
systems follows that.
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3: Overview of Evidential Reasoning

We now give a brief review of evidential reasoning. The reader is referred to
Lowrance et.al. [7] for a fuller treatment of this technology.

3.1 Fundamentals

The goal of evidential reasoning is to assess the effect of all available pieces of
evidence upon a hypothesis, by making use of domain-specific knowledge. The
first step in applying evidential reasoning to a given problem is to delimit a
propositional space of possible situations. Within the theory of belief functions,
this propositional space is called the frame of discernment. A frame of discern-
ment delimits a set of possible situations, exactly one of which is true at any
one time. Once a frame of discernment has been established, propositional state-
ments can be represented by subsets of elements from the frame corresponding
to those situations for which the statements are true. Bodies of evidence are ex-
pressed as probabilistic opinions about the partial truth or falsity of propositional
staternents relative to a frame. Belief assigned to a nonatomic subset explicitly
represents a lack of information sufficient to enable more precise distribution.
This allows belief to be attributed to statements whose granularity is appropriate
to the available evidence. .

The distribution of a unit of belief over a frame of discernment is called a mass
distribution. A mass distribution, me, is a mapping from subsets of a frame of
discernment, ©, into the unit interval:

mo : 2° - [0,1],

such that -
me(¢)=0 and > me(X)=1.
Xce
Any proposition that has been attributed nonzero mass is called a focal element.
One of the ramifications of this representation of belief is that the probability of
a hypothesis X is constrained to lie within an interval [Spt(X), Pls(X)], where

Spt(X) = YZ% me(Y) and Pls(X)=1- Spt(X). (3.1)

These bounds are commonly referred to as support and plausibility. A body of
evidence (BOE) is represented by a mass distribution together with its frame
of discernment. A BOE that directly represents one of the available pieces of

14




evidence is called primitive; all other BOEs are conclusions or intermediate con-
clusions.

In evidential reasoning, domain-specific knowledge is defined in terms of com-
patibility relations that relate one frame of discernment to another. A compati-
bility relation simply describes which elements from the two frames can simulta-
neously be true. A compatibility relation, © 4,5 between two frames ©4 and Op
is a set of pairs such that ' '

94,8 C B4 x Op,

where every element of ©, and every element of @g is included in at least one
pair.

Evidential reasoning provides a number of formal operations for assessing
evidence, including: '

1. Fusion — to determine a consensus from several bodies of evidence ob-
tained from independent sources. Fusion is accomplished through Demp-
ster’s rule of combination:

1

my(An) = =%, ;_A mg(A,-)m;’,(A,-), (3.2)
k= AZA:_{, me(Ai)md (4;).

Dempster’s Rule is both commutative and associative (meaning evidence
can be fused in any order) and has the effect of focusing belief on those
propositions that are held in common.

2. Translation — to determine the ilhpa,ct of a body of evidence upon ele-
ments of a related frame of discernment. The transiation of a BOE from
frame © 4 to frame @p using the compatibility relation © 4 p is defined by:

mey(B;) = > me ,(Ax), (3.3)
Cap(Ax) = B;
Ay CO4, B;COp

where CA._.B(Ak) = {b_,-](ak, b_,‘) € @A,B,a; S Ak}.

3. Projection — to determine the impact of a body of evidence at some
future (or past) point in time. The projection operation is defined exactly
as translation, where the frames are taken to be one time-unit apart.
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4. Discounting — to adjust a body of evidence to account for the credibility
of its source. Discounting is defined as

a-me(A4;), A; #©

1 —a+ ame(0), otherwise (34)

mdeiscaunt_ed(AJ_) — {

where « is the assessed credibility of the original BOE (0 € & <1).

Several other evidential operations have been defined and are described elsewhere
[7].

Independent opinions are expressed by multiple bodies of evidence. Depen-
dent opinions can be represented either as a single body of evidence, or as a net-
work structure that shows the interrelationships of several BOEs. The evidential
reasoning approach focuses on a body of evidence, which describes a meaningful
collection of interrelated beliefs, as the primitive representation. In contrast, all
other technologies described in section 2 focus on individual propositions.

3.2 The analysis of evidence

To make the description more concrete, we trace through the analysis of the
following simple problem.

At 8:00 this morning I left for my office from my house in Palo Alto.
At 9:00 I received a phone call from a San Mateo County police officer who
informed me that someone in his district found my dog, Rufus, running
loose. At 10:00, a coworker arrived and said that he saw, on his way to
work, a dog that looked like Rufus cross Hwy 280. Rufus has run away
twice before—once I found him in Los Altos and the other time in Menlo
Park. Where should I look for Rufus?

In evidential reasoining the first step is to construct the sets of possibilities
(the frames of discernment) of each unknown. For example, my dog Rufus could
possibly be in any of the following cities:

{Atherton, LosAltos, MenloPark, Mouﬁtaz’nView, PaloAlto, Sunnyvale}
Other frames could also be constructed; we would probably want one for highways
{Hwyl01, Hwy280, el sewhere},

and one for counties

{SanMateo, SantaClara}.

16



Cities—-Counties

Highways-Cities

Santa Clara

Sunnyvale

elsewhere

Mountain View

Menlo Park

Figure 3.1: Compatibility relations.

The second step is to construct the compatibility relations that define the
domain-specific relationships between the frames. Cities and counties are clearly
related, so we might define the Cities-Counties relation graphically as shown in
Figure 3.1. The relationship between cities and highways is also shown there. A
connection between two propositions A; and B, indicates that they may co-occur
(in other words, (A3, B)) € ©4.8). :

Time dependencies can also be expressed by compatibility relations. We can
construct a state transition diagram describing how far Rufus can wander. For
example, suppose that in one hour it is possible for a dog to go from my home in
Palo Alto to Los Altos, Menlo Park, or Mountain View. This information, along
with travel times between other cities, can be expressed as the state transition
graph in Figure 3.2, where the time interval for each arc is one hour. This graph
can be interpreted as a compatibility relation, where each arc connects elements
of the city frame to those cities where the dog could possibly be one hour later.

Once the frames and compatibility relations have been established, we can
analyze the evidence. The goal of the analysis is to establish a line of reasoning
from the evidence to determine belief in a hypothesis, (e.g., the present location
of Rufus). |

The first step is to assess each piece of evidence relative to an appropriate
frame of discernment. Each piece of evidence is represented as a mass distribu-
tion, which distributes a unit of belief over subsets of the frame. For example, the
fact that Rufus was at home when I left at 8:00 is pertinent to the Cities frame at
8:00 (C1ities@8:00), and I would attribute 1.0 to PaloAlto to indicate my complete

17



DELTA-Citles

Menlo Park
Mountaln View

Sunnyvale

Figure 3.2: Compatibility relation resembling a state transition diagram.

certainty that he was there. The phone call from the policeman gives information
about Counties@%:00, specifically that Rufus was in SenMateo at 9:00. Because
this information is not as compelling as my knowledge of Rufus” whereabouts at
8:00, it is discounted to assess its true impact. Assuming that there is a 10%
chance that the information is erroneous, we attribute 0.90 mass to SanMateo,
and 0.10 to “anywhere.” The third piece of evidence, that my coworker saw a dog
like Rufus cross Hwy280, gave information about Highways@10:00 and, might
be assessed as giving 0.65 support that it was Rufus crossing the road and 0.35
that my coworker couldn’t see the dog well enough to identify him. The last
piece of evidence (Rufus’ previous escapes) weakly suggests that the dog may
have returned to either Los Altos or Menlo Park. Each possibility is modeled
as a mass distribution giving 0.25 to the city and 0.75 to “anywhere.” This
evaluation of evidence is quite subjective; however, when objective estimates are
not possible, subjective estimates must suffice. For purposes of this paper, it is
sufficient to accept some numeric estimate of belief, and we won’t further discuss
how these assessments should be made. ‘

The final step is to construct the actual analysis of the evidence to determine
its impact upon the question at hand. In this case the question can be answered by
an assessment of belief over elements in the Cities frame at 10:00. The evidential
operations can be used to derive a body of evidence providing beliefs about where
Rufus might be at 10:00. A good starting point might be to pool the San Mateo

18



police report with the fact that Rufus was home at 8:00. Before we can combine
these two bodies of evidence, we must adjust them to a common frame, say
Cities@9:00.

Translating the police report to the Cities frame yields

0.90, z = {Atherton, MenloPark}

POHCGC{ties@Q:Oﬂ(m) = { 0.10, z= {@c,‘ﬁe,@g.m}

Projecting the BOE representing Rufus being at home at 8:00 to the Citzes
frame at 9:00 uses the DELTA-Cities relation and yields

Homecisesaoo(z) = 1.0, = = {LosAltos, MenloPark, MountainView, PaloAlto}

These two independent BOEs are now represented relative to a common frame
and can be combined using the fusion operation (i.e., Dempster’s Rule). Fusing
the two previous mass distributions yields:

. 0.90, =z ={MenloPark}
Cities@9:00 0.10, z = {LosAltos, MenloPark, MountainView, PaloAlto}
The remainder of the evidence is taken into account by translating, projecting,
and fusing according to the analysis graph shown in Figure 3.3. The result is a
mass distribution relative to the C'itzes frame at 10:00, from which conclusions
about Rufus’ whereabouts can be drawn. Specifically,

(0.63, z = {LosAltos}
0.22, z = {LosAltos, MenloPark, PaloAlto}
N _ } 0.08, z={MenloPark}
Moitiesaro00(7) = 0.04, = = {LosAltos, Sunnyvale}
0.02, z = {Atherton, LosAltos, MenloPark,
L Mountainview, PaloAlto, Sunnyvale}

The associated evidential intervals for the atomic propositions in this mass dis-
tribution are:

" [Spt({LosAltos}), Pls({LosAltos})] = [0.63, 0.92]
[Spt{{MenloPark}), Pls({MenloPark})] = [0.08, 0.32]
[Spt({Atherton}), Pls({Atherton})] = [0.00, 0.24]
[Spt({PaloAlto}), Pls({PaloAlto})] — [0.00, 0.24]
[Spt({Sunnyvale}), Pls({Sunnyvale})] = [0.00, 0.07]
[Spt({Mountainview}), Pls({Mountainview})] = [0.00, 0.02] -

The hypothesis {LosAltos} is clearly the most likely of all individual cities.

19



Figure 3.3: The completed analysis graph.

All the operations discussed above have been implemented within Gister.
Frames and compatibility relations are represented as graphs, which can be con-
structed, examined, and modified interactively. Having an automated means to
compute a conclusion is necessary. However, without some deeper explanation of
why the conclusion is to be believed, it may be difficult to accept.

The completed analysis graph can be seen to be the counterpart of the proof
tree of logical deduction. Each node represents an opinion, and the arcs trace
the derivation of one opinion from other opinions and the knowledge contained
in the compatibility relations. The complete graph shows the derivation of an
ultimate conclusion from the primitive bodies of evidence. The next section
presents a methodology that makes use of the analysis graph to explain evidential
conclusions. :
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4: Generating Explanations Within
Evidential Reasoning

We have already seen how the analysis graph can be construed as the evidential
analog of a proof tree. In this section we will use it as a data structure that
defines the information flow from primitive sources of evidence to conclusions.
The interpretation of an analysis graph as a data-flow model provides intuitive
-appeal to the discussion that follows.

As was done with Hydro, we will use sensitivity analysis as the basis for
constructing explanations. Because the belief function representation provides a
richer vocabulary for expressing uncertainties than was used in Hydro, we will
need a more sophisticated technique to identify the most significant justifications
of a conclusion. ‘

Sensitivity analysis requires a systematic variation of inputs to determine
a family of solutions in the output space {9]. In Hydro, the probabilities of
each piece of evidence are the relevant input parameters. In Gister, this is not
feasible because the space of conceivable belief functions is exponentially large.
Fortunately, a smaller, more intuitive parameter space is available—one that is
motivated by the data-flow interpretation of the analysis graph. In particular, the
credibility of each primitive body of evidence can be varied and the effect upon
the conclusions of interest ascertained. This is accomplished by means of the
discounting operation. The updated belief in a hypothesis can be computed by
reevaluating the data-flow graph after discounting one (or more) of the primitive
bodies of evidence on which it depends.

4.1 . Single hypothesis
In this section, we develop the tools to explain why a particular hypothesis was

found to be strongly (or weakly) supported. For example, we seek an answer to
the question, “Why do you believe Rufus is in Los Altos at 10:007”
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The simplest case to consider is the fusion of two bodies of evidence, as shown
below:

-y
b

©={4,B,--}
. _ 0.74, z=A
Ml(z) = { gg z:ﬁ M3(z) = { 0.08, = =B
o T 018, z =26
03 z=B [Spt(A), Pls(A)lms = [0.74,0.92]
M2(z) = { o g [Spt(B), Pls(B)]ms = [0.08,0.26]
o EE [Spt(AV B),Pls(AV B)lms = [0.82,1.00]

To perform a sens:t1v1ty analysis of this graph, we insert a discounting node
after each BOE representing primitive evidence. For each such BOE;, we define
¢; to be the credibility of that evidence, so that

o; =1 = full impact of BOE;
a; =0 = BOE; is ignored.

DISCOUNT
FUSE
FUSE
DISCOUNT ]

Obviously, if Vi, (a; = 1), then the computation in the modified analysis graph
is the same as the ordinary fusion defined by the original graph. We are now in
a position to answer “Why do you believe [Spt(A) Pls(A)] = [0.74,0.92] ?” The
process consists of two steps: C

1. Compute for each BOE;

aSpt(A)

. 9PIs(A)
50.’,' :

Spti(4) = Plsi(4) = —— (4.1)

oi=1 ory=1

Here, gﬁ,—(A) is interpreted as the sensitivity of the support for A to BOE;,
and likewise for plausibility.
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2. Identify those BOE; with the extreme values.

The quantities in the preceding equations indicate the change in the support
or plausibility relative to a change in the credibility of an evidence source. The
partial derivative is evaluated at a; = 1 to assess the sensitivity of the conclusion,
which was computed at a; = 1. '

In theory these quantities can-be computed algebraically or numerically; in
practice numeric techniques are typically more practical. Returning to the pre-
vious example, we find

—— _ B-2da —

Sptl (A) - (T—Tcnc};? op=1 = 0.97
e 19242 - .24

Spr(A) = it = 008

From this information, it is apparent that BOE; is strong evidence in support of
A, and BOE; weakly detracts from its support.

In general, the quantities Spt;(A) and Pls;(A) can be compared on the fol-
lowing scale

Neutra!
Hypersensitive against Argues against  Argues for Hypersensitive for
| — I L

o
— o

1 0 1

It can also be informative to interpret Spt;(A) and PT.;,-(A) with the aid of a
sensitivity space, as illustrated in Figure 4.1. Plotting Spi;(A) and Pls;(A) in this
space for each  yields a scatter plot that can be used to further analyze the results
of the sensitivity computation. The farther a point is from the origin of sensitivity
space, the greater the impact of the BOE that that point represents upon the
conclusion. Entries in the northeast quadrant identify BOEs that support the
proposition, A, while BOEs in the southwest quadrant argue against A. Points
in the northwest signify BOEs that add to the confusion about the hypothesis,
while the southeast quadrant identifies BOEs that argue both for and against the
hypothesis. '

So far, we have given examples only of a sensitivity analysis for a single fusion
node. The techniques can be extended in a straightforward manner to apply
across the full extent of an analysis graph. For example, the analysis in Figure
3.3 can be augmented with discounting nodes after each primitive evidence node.
When the resulting analysis graph is viewed as a data-flow model, the discounting
nodes can be seen to act as “valves,” where lowering the a-value serves to diminish
the flow of information through the valve. '
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i Pls(A)

Disputes arguments both for Argues for A

and
and against disputes arguments against A

L1 .
\\\\\§‘-'///// Spt(A)

Bn Argues both for
disputes arguments for A and against A

Argues against A

Figure 4.1: Sensitivity space for support and plausibility.

A discrete approximation to the quantities S';)E;(A) and }37;,-(/1) can be ob-
tained for any proposition A by systematically varying each of the ¢;s and reeval-
uating the data flow. This information then indicates the relevant import of
each piece of primitive evidence. Plotting each point in sensitivity space yields a
graphic illustration of the effect each body of evidence has upon the belief in a
proposition.

Returning to the Rufus example, sensitivity analysis shows

Sptg,m.(LosAltos) =0 Plsgome(LosAltos) = 0
Sptpyrice(LosAltos) = 0.40 Plspoiice(LosAltos) = 0

Splcoworker (LosAltos) = 0.43 Plscoworker (LosAltos) = 0.12
SPtptentorork(L0sAltos) = —0.06  Plspreniopark(LosAltos) = —0.08
SPtrosanios(LosAltos) = 0.11 * * Plsposancs(LosAltos) = .02

From this information, which is plotted in Figure 4.2, we can conclude that my
knowing that Rufus was at home at 8:00 had no bearing on the conclusion that
he is probably in Los Altos now, while the information provided by the police and
my coworker were the strongest pieces of evidence supporting Los Altos. Only
the fact that Rufus had gone to Menlo Park once before argues against him being
in Los Altos now. This information can be used to construct explanations to user
queries:

Why do you believe Spt(Los Altos) = 0.637
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Figure 4.2: Plot of the sensitivities of Spt{Los Altos) and Pls(Los Altos) from
the lost-dog story.

Because

the police reported that Rufus was seen in San Mateo County at 9:00, and

my coworker reported seeing a dog that looks like Rufus along Highway 280, and
Rufus went to Los Altos once before.

Another example uses negativity of ﬁs;(LosAltos) to answer a question:

Is there any reason to believe that Rufus is not in Los Altos?

Yes.
Rufus went to Menleo Park once before.

If the user desires a more complete response than this, we can construct an
explanation from those compatibility relations that were used along any particular
path in the graph. A natural language text that describes what the compatibility
relation encodes might suffice (e.g., DELTA-Cities is “the limits on how far a
dog can travel in one hour”); otherwise, the identification of particular links in
the relation (perhaps graphically} can help pinpoint a reason.

This analysis indicates only the effect of each primitive piece of evidence
individually; the joint effect of multiple bodies of evidence is not determined.
Computing joint effects numerically, while straightforward theoretically, requires
exploration of a combinatorically large parameter space.
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4.2 Entire body of evidence

Explanations of a single hypothesis (such as those derived in the preceding sec-
tion) are quite similar to those produced in systems based on certainty factors or
inference nets. The notion of a body of evidence that is used in evidential reason-
ing permits a higher-level description of an inference chain. Rather than asking
a question about a belief in a particular proposition, the user can pose questions
that-search for the primitive pieces of evidence that were the most influential in
general.

There have been numerous proposals for characterizing BOEs [4] that can be
used as the basis for selecting informative explanations. While nearly any sound
characterization will suffice for our present purposes, we will make use of several
due to Yager [17].

We have already noted that the theory of belief functions allows representation
of varying degrees of precision as well as uncertainty. The relative precision of a
BOE can be characterized by the following expression for specificity:

A;
Spec(me) = > mo 2) where ||A || is the cardinality of the subset A;.
' A;CO 4,11
(4.2)
It is easy to show that
0< ||®|| < Spec(mg) < 1, for any mass distribution me.

Roughly speaking, Spec(me) measures the degree of commitment of a belief func-
tion to precise propositions, assuming that each element of @ is equally precise.
The vacuous belief function, me : mg(@) = 1, has the smallest possible speci-
ficity for any frame ©. A mass distribution whose specificity is 1 is a classical
probability distribution as well. :

The relative uncertainty of a BOE can be characterized by an entropy-like
measure. Yager defines

Ent(mo) = — 3 mo(4;)-InPls(4;) (4.3)

A;CO

and shows that Ent(me) is just Shannon’s measure of entropy in the special case
when mg is a probability distribution. To use this measure to generate explana-
tions, it will be more convenient to work instead with a measure of consonance:

1.

1+ Ent(me)’ (44)

Cons(mo) =

so that
0 < Cons(mg) £ 1.
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Figuré 4.3: The characterization of mass distributions in terms of specificity and
consonance.

Minimal consonance is thus maximal entropy, and exists whenever the focal el-
ements of a mass distribution are mutually exclusive. Consonance equal to 1
occurs when all the focal elements are nested and thus represents a possibility
distribution as defined by fuzzy set theory [13], [17], [18].

To gain some intuition, it is useful to note that any BOE is characterized by
a point in the unit square shown in Figure 4.3. The special cases of possibility
distributions and probability distributions lie on the boundaries of the square. A
Boolean statement has Cons(m) = Spec(m) = 1. The vacuous belief function has
Cons(m) = 1 and Spec(m) = 0 and is represented by the upper-left corner of the
square. Starting with no information and gradually fusing pieces of evidence as
they become available, we trace a path in the square that starts at the upper-left
corner and wanders through the space. The ideal analysis would reach a Boolean
conclusion (upper-right corner), but typically the path stops somewhere short.
The intuition, then, is that pieces of evidence that move the path closer to the
upper-right corner are the most important ones for-making decisions.

We are now in a position to select pieces of evidence as justification for an
evidential-reasoning inference chain. As before, we will perform a sensitivity anal-
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Figure 4.4: Sensitivity space for characterizations of a body of evidence.

ysis to choose the components of the explanation, but this time we will measure

the change in our two characterizations of a BOE. We define

dSpec(m)
da;

dCons(m)
c‘?a;

Spec;(m) = and  Cons;(m) = (4.5)

ai=1 oi=1

as the sensitivity of specificity and consonance respectively, where o; is the cred-
ibility of BOE; as before. Once again, these measures can be computed for each
item of primitive evidence and plotted in sensitivity space for comparison (see
Figure 4.4). '

In this graph, the northeast quadrant represents those BOEs whose inclusion
in an analysis forces the path to the upper-right (the Boolean case) and are
therefore important for making decisions. The southwest quadrant contains BOEs
whose inclusion decreases both the consonance and specificity—these are pieces of
evidence that run counter to the consensus, and may be suggestive of an errorful
source or a need to use case-based reasoning by maintaining multiple analysis
paths. The other quadrants can be interpreted as labeled. Once again, distance
from the origin indicates the relative contribution of evidence to the conclusion.
Appendix A contains examples illustrating evidence that falls in each of the four
quadrants.

Sensitivity analysis for the BOE that represents the conclusion from the lost-
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Figure 4.5: Plot of the sensitivity of specificity and consonance from the lost-dog
story.

dog story reveals

Specsome(m) = 0.00 Consgome(m) = 0.00
Specp .. (m) = 0.22 Cons potice(m) = 0.00
Spece yorker (M) = 0.25  Conscoworker(m) = —0.05
S’EECMmA'aPark(m) = 0.02 C’O-E-SMgn{aPurk(m) 2'—0.13
Specr,oattos(m) = 0.06  Conspesames(m) = 0.01

From these sensitivities (plotted in Figure 4.5) it is clear that the fact that Rufus
was at home at 8:00 did not contribute to the conclusion. The sensitivities of
specificity indicate that the conclusion would have been much less specific if either
the coworker’s report or the police report were excluded from the analysis—these
pieces of evidence were instrumental in establishing Los Altos as the strongest
possibility. Looking at the consonance values, the fact that Rufus had gone to
Menlo Park once before argues against the consensus most strongly, while the
coworker’s report disputes the argument for Menlo Park, which would have been
the consensus of the other four reports. These results can be used to answer
questions about the analysis:

Which reports can be safely ignored?

Rufus was at home at 8:00.
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Which reports argue against the consensus?

Rufus went to Menlo Park once before, and
my coworker reported seeing a dog that looks like Rufus along Highway 280.

4.3 Using sensitivity results to generate expla-
nations

With these tools in hand, a number of different questions about an analysis can
be answered. In the following, Q indicates a question that might be posed by
the user, and P indicates a procedure that can be used to construct an answer to
that question.

Q: Why do you strongly believe A7 -
(I.e., Which report argues most strongly for A?)
P: Choose the BOE; for which Spi;(A) is greatest.

Q: Why don’t you believe B?
(I.e., Which report argues most strohgly against B7?)
P: Choose the BOE; for which Pls;(B) is most negative.

Q: Which reports serve to focus the conclusion more precisely?

(1.e., Which bodies of evidence cause the conclusion to become more
specific and more coherent?)

P: Choose those BOE; for which S};Ec,-(m) and C?J—Es,-(m) are both positive.

(Q: Which report most strongly disagrees with the consensus?

(I.e., Which body of evidence serves to make the conclusion the most
divergent?)

P: Choose the BOE; for which Cons;(m) is most negative.
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Q: Which reports can be safely ignored?
(I.e., Which bodies of evidence are inconsequential?)

P: Choose those BOE; for which Spec;(m) = Consi(m) = 0.

Q: What are the most influential reports that impinge upon this conclusion?

(I.e., Which bodies of evidence are farthest from the origin in sensi-
tivity space?)

— — 2

P: Choose those BOE; for which (.S‘jmsc,-(m))2 + (Cons,-(m)) is greatest.
Throughout this paper we have used the Rufus example to illustrate our use of

sensitivity analysis for constructing explanations of evidential analyses. A more

thorough example of these explanation techniques, applied to a more complicated
evidential domain, is detailed in Appendix B.
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5: Discussion

The three requirements of explanation generation from section 2 have been sat-
isfied by our approach:

1. The difficulty of recapitulating program actions within systems that use a
numeric measure of uncertainty has been overcome by the use of sensitivity
analysis. By varying the input parameters and recomputing an analysis,
the system can explain the interaction of the evidence and its impact upon
selected conclusions. Focusing on the credibility of bodies of evidence, in-
stead of probabilities of individual propositions, makes sensitivity analysis
of belief functions feasible.

2. The correct level of detail can be controlled in two ways. First, the depth
of exploration can be confined to a selected subtree within the analysis.
When additional detail is requested, the subtree can be expanded to reveal
previously hidden details. Second, the number of justifications to be pro-
vided is adjusted by rank ordering the sensitivities and choosing the most
important ones:

3. A shared vocabulary is also provided in two forms. As with the other tech-
nologies, natural language text is associated with each primitive evidence
node and displayed in place of the machine representation. Second, the
vocabulary is in terms of the high-level constructs of a set of related beliefs
represented by bodies of evidence, instead of each proposition and its belief
individually.

The use of evidential reasoning provides a richer vocabulary for expressing
belief about uncertain events than is available in most other technologies, but
confounds the construction of suitable explanations of chains of inference. The
use of sensitivity analysis as described here not only permits the customary forms
of explanation characteristic of rule-based systems, but also enables a variety of
additional queries to be posed and answered.

The tools presented in this paper have several uses in addition to that of
constructing explanations for a user. Sensitivity information can be an impor-
tant component of decision analysis. Knowledge of the sensitivity of conclusions
can suggest whether sufficient information is available, or whether additional in-
formation should be sought. It can also be used to focus information-collection
efforts. By hypothesizing the information that might be collected by a particular
source, one can determine whether it could possibly have sufficient impact on the
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hypothesis to alter a pending decision. These ideas, while promising, have not
vet been investigated.
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6: Conclusions

We have presented an approach to constructing an answer to various kinds of
questions that can be asked about a conclusion derived through evidential rea-
soning. We have argued that the technique satisfies the three requirements for
explanations. It also has the generality to be able to provide a variety of infor-
mation about an evidential inference chain and can be used to further insulate
the user from the cryptic numbers that are manipulated by the machine. Cou-
pling this mechanism with the evidential-reasoning techniques already developed
allows the creation of a powerful knowledge-based system for reasoning under
uncertainty that can explain its behavior in understandable terms.
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A: An Exploration of Sensitivity Space

In this appendix we give examples of evidence that falls in each of the four
quadrants of sensitivity space (Figure A.1). By studying each example, one can
gain a better understanding of the meaning of sensitivities for more complicated
analyses.!

M
‘ Cons(m)
e m3 :

VAGUE SPECIFIC

AND AND
COHERENT COHERENT

«m? '
A
Spec(m)
» md » m2

VAGUE EPECIFIC

RHOD AND
DIVERGEHT DIVERGENT

Figure A.1: Sensitivity space plot for automobile example.

The question under consideration is the make of car that Fred is going to buy.
He has gone to a used car dealer who only has 5 cars available. The frame of
discernment is the set containing the make of each car:

{Mercedes 280SL, Porsche 944, Ford Escort, Ford Mustang, Ford Taurus}.

In each case, we will fuse a mass distribution defined over this frame with the
following mass distribution, which reflects our initial assessment of Fred’s choice:

0(z) = 0.90, z = {Porsche 944}
m0(z) = 0.10, =z = {Ford Escort, Ford Mustang, Ford Taurus}.

1This plot shows superimposed the sensitivities of the four mass distributions relative to
four different conclusions. The other sensitivity plots in this paper show sensitivities of BOEs
refative to a single conclusion.
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For m0, we have Spec(m0) = 0.933 and Cons(m0) = 0.755; i.e., we strongly
believe Fred will get the Porsche 944, we weakly believe that he might get one of
the Fords, and we’re sure that he won’t get the Mercedes.

A.1 Northeast Quadrant: Specific and Coher-
ent |

We fuse m0 with m1, a mass distribution independently assessed by a neighbor,
that just happens to be equivalent to m0. This fusion yields

m0l(z) = 0.99, z = {Porsche 944}
] 0.01, z= {Ford Escort, Ford Mustang, Ford Taurus}

Spec(m01) = 0.992 and Cons(m01) = 0.938

We compute Sp—f?gml(mOI) = 0.059 and Co}:‘;ml(mﬂl) = (.183. [t can be seen
that inclusion of m1 makes the conclusion more specific and more coherent, as
expected.

A.2 Southeast Quadrant: Specific and Diver-
gent

We will fuse m0 with the following mass distribution assessed by a different
neighbor, who strongly believes Fred will get the Mustang and weakly suggests
that he will get one of the foreign cars.

m2(z) = 0.90, z = {Ford Mustang}
~ | 0.10, = = {Porsche 944, Mercedes 280SL}

Their fusion yields equal probability for it being either a Mustang or a Porsche:

0.50, z = {Ford Mustang}
9 = ’
m02(z) { 0.50, z = {Porsche 944}

Spec(m02) = 1.0 and Cons(m02) = 0.591

We compute Specma(m02) = 0.067 and Coggmg(m02) = —0.164. It can be
seen that inclusion of m2 makes the conclusion more specific (since all the belief is
now attributed to individual cars) but less coherent (because the belief is divided
evenly among disjoint propositions) than the original beliefs, m0.
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A.3 Northwest Quadrant: Vague and Coher-
ent

We fuse m0 with the following mass distribution, which strongly supports Mer-
cedes 280SL and weakly supports Ford:

3(z) = 0.90, z = {Mercedes 280SL}
mAL) =1 0.10, z = {Ford Escort, Ford Mustang, Ford Taurus}

Their fusion yields complete belief in Ford: (Although neither mass distribution
held that Ford was very likely, it was the only proposition that both admitted as
a possibility.)

m03(z) = { 1.0, z = {Ford Escort,Ford Mustang, Ford Taurus}

Spee(m03) = 0.333 and Cons(m03) = 1.0

This results in Specys(m03) = —0.600 and Consma(m03) = 0.245. It can be
seen that inclusion of m3 makes the conclusion less specific (because mass has
“moved” from a proposition containing only one element to a proposition that is
a disjunction of three elements) but more coherent (because now all the mass is
focused upon a single proposition).

A.4 Southwest Quadrant: Vague and Diver-
gent

We fuse m0 with the following mass distribution, which indicates strong belief for
Mercedes and weak belief equally divided between Mustang and the other Fords:

0.90, z = {Mercedes 280SL}
md(z) = ¢ 0.05, z = {Ford Mustang}
0.05, z = {Ford Escort, Ford Taurus}

Their fusion results in complete belief in Ford, with equal probability of whether
it will be a Mustang or not:

_ | 0.50, z = {Ford Mustang}
mQ4(z) - { 0.50, z = {Ford Escort, Ford Taurus}
Spec(m04) = 0.750 and Cons(m04) = 0.591

This yields Specms(m04) = —0.183 and Consps(m04) = —0.164. It can be
seen that inclusion of m4 makes the conclusion less specific (because now only
half the belief is attributed to an individual car) and less coherent (because the
belief is evenly divided between two disjoint propositions).

40




B: Detective Example

In this appendix we provide an extensive collection of explanations constructed
as answers to various questions by using the techniques described in the body of
the paper. The figures are taken directly from the screen images produced by the
implementation of these techniques within Gister. As of this writing, emphasis
has been placed on providing a versatile explanation facility rather than one in
which the operations have been prepackaged into their most user-friendly form.
It is hoped that experience gained with the present implementation will lead to
a better understanding of the important criteria for evidential explanations. For
this reason, the actual facilities described should be viewed as a substrate upon
which a user-friendly explanation system could be constructed.

The following detective story is used throughout the appendix for the sake of
illustrating the range of explanatory information available. It has been chosen on
the basis of being small enough for the casual reader to understand, yet contains
enough richness to illustrate the scope of the explanation techniques. Of course,
the need for explanation facilities is much more acute when constructing large
analyses.

The Case of the Sweetshop Burglary

When Mike arrived to open the sweetshop on Thursday morning, ke
found the safe in the office open and the receipts from the previous day
($645) missing. The burglar apparently used a key to enter the shop and
knew the combination of the safe. A witness who lives across the street
saw what appeared to be a man entering the sweetshop at the approximate
time of the burglary.

Upon further investigation, we find that:

- The only people with keys and knowledge of the combination are the
sweetshop employees, Ann, David, Frank, Judy, and Mike.

¢ Ann is over-extended on her credit cards.

e Irank broke his leg and is still using crutches to get around.

e Mike recently started dating Judy, who was David’s former girlfriend.
o Judy’s mother says that Judy was home all night.

¢ The police find that although the fingerprints on the safe are smudged,
it can be determined that they are from someone’s left hand. How-
ever, they cannot be sure that the prints are from the burglar. David
and Ann are the only left-handed employees.

Who is the Burglar?
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The remainder of this appendix illustrates the result of analyzing this case
using the evidential reasoning technology embodied in Gister. For our current
purposes, we are not as concerned with accurate numerical assessment of uncer-
tainties as we are with deriving sound inferences given those uncertainties and
extracting meaningful explanations based upon those derivations.
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Figure B.1: Using Gister, the detective enters his assessment of each piece of
available evidence. A summary of his thoughts is provided for each assessment.

Tipe: 1.

Frame: SEX
Statenent: MALE
Credibility: 58.
Comment: A witness who 1ives across the street saw what appeared to be & nan entering the susetahop at the approxinate tine

Save [J Abore
———

(a) The detective feels there is a fifty-fifty chance that the man who was seen was
not the burglar. This yields the mass distribution {m(Mele) = 0.5, m(Male V
Female) = 0.5} for the sex of the burglar,

Report; Used left hand
Tine: 1.

Frane: KANDED
Statenent: USES-LEFT

Credibility: BO. .
Connent: "Finger prints on safe are from left hand, but they may not be fron the burglar.

Save 00 — Abort [;I

(b) The fingerprints are certainly from someone’s left hand, but they may or
may not be from the burglar. The probability that they are from the burglar is
estimated to be 0.8.

v

Tine: 1.

Framm: BUSPECTS

Statament: EMPLOYEE

Credibitity: 108,

Connent: The burglar spparentiy used a key to enter the shop and kneu the combination of the safe
Save L] RAbort g

(c) Because there was no sign of forced entry, we assume that the crime was
perpetrated by someone with a key and knowledge of the safe’s combination (i.e.,

an employee).
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i Er_i.ni.?mﬂ_ﬁmngfal notive
FOD: (SUSPECTS 1.

USER-NASS: ({(DOTHER RANN} 5@.) ((MIKE OTHER) 28.) {({OTHER JuDY) 1B.) ((OTHER FRANK) 18.) ({OTHER DAVID) 18.))
MASS: (({OTHER ANN) B.5) ((MIKE OTHER) 8.19999933%) ((OTHER JUDY) 0.299959994) {(DTHER FRANK) ©@.B999993994) ((OTHER DAVID) 8.0999999%4))
COMMENY: *Ann {5 over extended on her credit cards.

Save [ Rbort LJ
__

(d) Ann is overextended on her credit cards so she certainly had a financial
motive. But the other employees had financial motives as well, although to lesser

degrees. Clearly, others (non-employees) had financial motives of varying degrees
besides.

Eﬂm_iiu:;Js_v_:ms notive

FOD: (SUSPECTS 1.}

USER~MASS: {((OTHER DAVIP) 48.) ((OTHER MIKE JUDY FRANK DAUID ANM) 68.))

NASS: (((DTHER HIKE JUDY FRANK DAVID ANN) ©.6) ({OTHER DAVID) B.4}) .
COMMENT: *Hike recently sterted dating Judy, who was David's previous girlfriend,

Save [] Flbc&g

(e) David may have burgled the safe to get back at Mike, who is now dating
David’s former girlfriend. This tends to weakly (0.4) impugn David. The othier
employees are less likely to have revenge motives.

[Eeogck: Judv’'s atitd

Tine: 1.

Frane: SUSPECTS

Stateneat: (MOT JUDY}

Credibility: 2d.

Conment: "Mother says that she uas hone all night.*
Save [ Abort 1

(f) Although Judy’s mother claims Judy was home all night, she may well be
lying to protect Judy. It is assessed to be only 20% credible as an alibi for Judy.

~t: nk’s fnfury
Tima: 1

Frane: SUSPECTS

Statement: (HOT FRAMK)

Credibiiity: 60,

Comnent: *Frank 18 ati11 using crutches to get around; he broke his leg.”

Save [ Akart LJ

(g) It seems highly unlikely that Frank could have done it because he has a
broken leg and is still on crutches.
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Figure B.2: Analysis graph constructed for the case of the sweetshop burglary
(next page).

The menus on the left contain the evidential reasoning operations used by the
detective in constructing the analysis graph. Elliptical nodes encode individual
bodies of evidence. Circular nodes represent derived conclusions. The diamond
marked “Int” computes the evidential intervals of some selected propositions from
“Conclusion.” These intervals are displayed in the lower portion of the screen.
The numbers in brackets are [Support, Plausibility] for each suspect—the shaded
areas reflect these bounds on a scale from 0.0 to 1.0.

In constructing this analysis, the detective first combined Judy’s alibi and
Frank’s injury to form an intermediate conclusion based on alibis. Next he dis-
counted by 20% the financial motive (to account for the fact that the amount of
money in the safe may have been too small to motivate the burglar) and combined
it with the evidence representing the revenge motive to form the intermediate con-
clusion based on motives. Next he assembled the physical evidence by translating
the witness report from the SEX frame of discernment to the SUSPECTS frame;
translating the fingerprint evidence from the HANDEDNESS frame to the SUS-
PECTS frame; and combining them with the evidence regarding the burglary as
an inside job. Finally, 2 conclusion was drawn by combining this physical evi-
dence with the intermediate conclusions involving motives and alibis. Of course,
the evidence could have been assembled in any order because the fusion opera-
tion is commutative and associative, but this choice does allow some meaningful
intermediate conclusions. ‘

From this information, the detective concludes that David is the most likely
suspect. But which pieces of evidence fingered him, and how sensitive is this
conclusion to the assessments made by the detective?
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Figure B.3: The sensitivity tools allow the detective to divide the pieces of evi-
dence into useful categories. Each set is constructed by computing the sensitivity
of the conclusion for each piece of evidence; those with sensitivities that exceed
a threshold are selected.

financial motive Revenge motive
DS COUN
Inside job fuse
rusg
Used left hand nse
TRANSLAT
Judy's alibi
15E
Witness e
fust Yo 3rai

TRANSLAT Frank's injury

o

(a) These reports are the most influential—they have the largest impact on the
specificity and consonance of the conclusion.

Used left hand

TRAMBLAT

Judy's alibi

FUSE

Frank's injury

(b) Judy’s alibi and Frank’s injury were the most inconsequential pieces of evi-
dence. Alibis are inconsequential unless other evidence incriminates.

47



llevenge motive

Financial motive

Judy's alibi

RS
TRANILAT

Frank's injury

(c) These reports tended to confirm the conclusion. That is, they all tended
to increase the consonance of the conclusion.

Financial motive Revenge motive

PASCDLN

Inside job

Used left hand ruar

TRASLATI
Judy's alibi

TRANEBLAT

M Frank's injury
Male

S

(d) These reports decreased the consonance of the conclusion. Financial mo-
tive gave some support to employees other than David; while Inside job ruled out
“other,” (i.e., non-employees) which was allowed by every other report.
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Figure B.4: Scatter plot in Sensitivity Space.

[ i

®Ussd Taft ha

$oEaoK’ g ffiayenoe native

;
Ao

"

- @Financisl motive @Inside

Sensitivity Plot

S;é-c,- and Cons; of the conclusion are computed for each piece of evidence and
plotted here. Those reports near the origin (Frank’s injury, Judy’s alibi) are
inconsequential. Those in the NE quadrant tend to agree with the consensus and
also to narrow the set of suspects. Financial motive lends support to suspects
other than David, and is therefore dissonant. Inside job also is dissonant because
it rules out a possibility (“other”) that all the other pieces of evidence admit. See
Figure 4.4 for further explanation of each quadrant.
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Figure B.5: Sensitivity of Support and Plausibility. The scatter plots show the
sensitivity of the evidential interval for each suspect.

AP]I

elnaide fo

1 Sospri danernobiod
Syons — 0

efinancial aocive

Sensttivity Plot « {DRVID}

{a) Inside job, Used left hand, Revengé motive, and Witness all tend to incrimi-
nate David. Only the financial motive (of Ann) argues against David’s guilt.

‘LP‘I

aInaice jo
?Flnlhe!.l
Boc™ |

; BUssd, el has

@ Rererge nofive

elitnesy

[Benaitivity Plot — (ANNY

(b) Ann is incriminated by her possible financial motive and by the inside job
evidence. The witness report and David’s revenge motive tend to absolve her.
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| ‘}m-

#lnside jo

siitress

I
b ‘F‘m‘.‘

-4

@Reverpe nofive

SUsed left bana

Gersitivity Plot - (AIKE}

(c) Mike was right-handed, so the fingerprints (i.e, the “Used left hand” evi-
dence) argues against his guilt. The financial motive adds some support to Mike,
but also decreases his plausibility slightly. Since Mike had more of a financial
motive than David, Frank, or Judy, but less than Ann, it both supports and
refutes Mike’s guilt.

#lnside job

I §Frank's inlury T T
SFinancial motive
ludy’s alibi

SRavenge mative

SHitness
dUsed toft hand

Gensitivity Plor = (JUDYY

(d) Nothing in the collection of evidence points directly to Judy, so Spt{Judy) =
0.0, even if one piece of evidence were removed. In fact, only it being an Inside
job is suggestive of Judy. )
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| ﬂpu

Slnuide Job

! gHithess ! Ber
Sludy's alibi

#Financial mative

$Revenge mokfue

| Baack Vaf infend

Lnll!luﬁtz Plot — {FRA)

(e) Same reasoning as for Judy.

alnsioe Job

Sencitivity Plor - [(DTHERY

(f} Inside job completely rules out the possiblity of “other.” Therefore, it
decreases both the support and plausibility of “other.” The remaining reports
provide no information either for or against any non-employees.
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Figure B.6: The following graphs portray how the specificity and consonance of
the conclusion vary as the credibility of each piece of evidence is varied.

The origin indicates the measure when the report is completely disregarded; the
hash mark near the right end of the abscissa corresponds to the initial assessment
made by the detective. Intermediate values reflect various discounting factors. If
the slope of the curve is positive, the evidence increases the specificity /consonance
of the conclusion. The greater the slope, the more significant is the evidence.

hSp:ciHctty JiConsunnncc

fres

)
CredibiTity Ll Credibitity L
Mitness Hitness

(a) The witness’ report makes the conclusion more specific by increasing belief in
male suspects.

'“Speci ficity ‘lCansonance

— _

I 1
CredibiTicy L Credibiticy Ll
fised left hand \Used 1aft hand

{(b) The fingerprints increase both specificity and consonance by focusing on Ann
and David. '
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‘Speci fleity AConsonance

/

1 L
Credib{T{ty [ Eredib1TTty Ll
Inside job Inside fob

(c) Believing that it may have been an inside job decreases consonance initially
because the conclusion is totally consonant without that information (focused on
“other”). But when it’s credibility nears certainty, the consonance increases as
the consensus switches to David.

‘Fpeeificity JCnnaonan:e

3 ]
Lredibility Ll Lredibilicy L
Financial motjve Financial notive

(d) Financial motive is inherently dissonant because it points the finger (to
varying degrees) at each employee. Thus, the more we believe it, the more disso-
nant is our conclusion.
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‘Ppecﬁficity

jFonsonunce

Beuengz notive

Lredibitity

1
T

Revenge notive

Credib{Tity

Ll

(e) Revenge motive slightly increases specificity by focusing even more on

David.

‘Fne:ifi:i:y

Mudy’s atibi

Cradibility

{--

iFonunnance

Judy's alibi

Credibility

[}
| el

(f) Judy’s alibi has no noticeable effect since her guilt is not suggested by the

other evidence.

‘Fpeciriciby

‘F‘::}nsnnancc

Frank's injury

Lredibility

[ Bl

Frank's injury

Cractbility

™

(g) Frank’s injury has little effect since the other evidence points only weakly

to his possible guilt.
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Figure B.7: These graphs show the effect that credibility of a report has on
the evidential intervals. The upper boundary of the shaded region shows how
the plausibility changes as the credibility of a report is increased. The lower
boundary shows the support.

[Spt, Pla] of (DRVIN) Tept, Fis] of (ARNY

1 L
TredlBi Tty of Hitness > —TredibiTity of Wicness T
{Conclusion) {Canclusion
“[sm., P1s] of (HIKE) ﬂtsm-.. Pls] of {JUDY)

ot -

PR
sredibt

T gt

ity of Hitnes

(Conclusion)
‘[591:, P1s) of (FRANK) “[Spb. Pis] of (OTHER)
i
Ered1b‘l1ty o! Hitness I ) Credibility of Hitness Ll
{Conciusion) {Canclusion)

(a) The witness’ report raises the evidential interval for the male employees,
David, Mike, and Frank, while lowering it for the two female employees. Since
“other” is completely eliminated by the Inside Job evidence, the witness’ report
(like all other bodies of evidence) has no impact on “other.”

36




(1Spt, Fla] of (DRVID) “ESp:, Pi=] of LAANT

redib redib
{Conclusion) {Conplusion)}

TSet, Pis] of (PIKE} JUEet, PYsT of (JUY)

redib
{Conclusion)
A[s;:r.. Fis] of (FRAMK) ﬁ[su, Pls)] of (DTHER)
1
redibi ity Credibility of Used left hand
{Conclusion) {Conelusion

(b) The fingerprints incriminate the left-handed employees, David and Ann, while
supporting the innocence of the others.
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i[Spt, Ple] of (DAVID)

‘FSpt, Pls] of (MIKE)

——

{Conciusion}

JFSpt, P1s] of (FRANK}

{Conclusfon)

Eredibility u; Enside Job i'

(c) Inside job contributes to the guilt of all the employees. The plausibility of
“other,” which was 1.0 without this information, is completely eliminated as a

possibility with its inclusion.
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‘gSDt, Pis] of {ANN)

‘l[s;n:, Fie] of (JUDY)

{Conclusion}

[Spt, Pis] of {OTHER)

CredibiTity of Inside Jjob
{Canclusion)




T6nt, Pis] of (DAVID) “[5;::, Pis] of {AHN)

]
redibl 11ty of Financial notiv
{Conclusion)

\f&pt. Pis] of (HIKE) jk[Spn, Pisl of (JUDY)

| .

re
{Conclusion) (Conclusion}

A Spt, Pl1s) of (FRANK} “[Spt, Pis] of (OTHER)

- 4

s
readibility of Financia Credibility of Financial noh’v'
{Conclusion)} {Conclusion

(d) The financial motives tend to absolve David while incriminating Ann. It has :
little effect on the other employees since they are not suspected by the other
evidence, :
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[6pt, Pis] of (DAVID)

redib
{Conclusian)

‘l[Sp:, Pis) of (MIKE)}

B

ty of Revenge mot

redi
{Conclusion)

‘ESDB, Pis] of (FRAHK)

Eredim iﬂ'.y oi Eevenge nott%?

[ConsTusion)

T8pt, Pl1s) of (RAN)

‘[Spb, Pis] of (JUDY}

redibility o

{Conclusign)

llts‘”" Plg} of (OTHER)

]
"Gredibility of Revenge notivé
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{Conclusion

(e) Revenge motive points toward David and away from all others.




Tept, Fis] of (DAVLID) ' NCIRADICECY

redib
{Conelusion)

redih
(Eonclusion}

‘L[&:t, Plis] of (MIKE) k[Spt-. P1s] of {JUDY)

e

i
redib
{Conclusion) {Conclusion)}

h[spn, Pis] of (FRANK} h[ESpr., B1s] of (OTHER)

L
Er:dibiiity oi Judy's aiﬂ:ii » Credibility of Judy's atibil Lt

{Conclusion) {Conclusion)

(f) Judy’s alibi has no effect on anyone but Judy.
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[Spt, Flal of (DAWID)

edib
{Conclusion)}

‘[Ept, Pis] of (HIKE)

‘[59!., “Pis] of (FRANK)

redibilit
{Conclusion)

(g) Frank’s injury decreases the plausibility of Frank, while remaining noncom-

mittal toward everyone else.
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