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Abstract

This report surveys literature and research in the field of distributed artificial
intelligence (DAI} and provides an overview of computer architectures particularly
suited to such research. It concentrates on work to date that has involved the
construction of testbeds and development tools for DAI. It tries to draw some
lessons from these efforts and suggests ways in which testbeds, which heretofor
have been used primarily for experimentation, might be used in the full course of
system development.



1 Introduction to Distributed Artificial Intelligence

This report surveys literature and research in the field of distributed artificial intel-
ligence (DAI) and provides an overview of computer architectures particularly suited
to such research. It concentrates on work to date that has involved the construction
of testbeds and development tools for DAL It tries to draw some lessons from these
efforts and suggests ways in which testbeds, which heretofor have been used primarily
for experimentation, might be used in the full course of system development.

1.1 Motivations and Distinction from Parallelism

The most general thing that can be said about research to which the term DAI is ap-
plied is that it all involves the attempt to understand and program intelligent behavior
in some distributed context. For the most part, the nodes of the distributed system are
processors or computers that are viewed as “agents.” The agents interact with each
other, and, in some cases, respond to a centralized controlling agent, but the “intelli-
gence” in the system may be displayed by the whole system, by the individual agents,
or at both levels. There seems to be an implicit distinction in the literature between
work on parallel processing and work on distributed processing and problem solving.
Use of the term ‘parallel’ to describe an approach to a problem indicates that the
emphasis is on performance goals, i.e. eliminating the bottlenecks of serial processing.
When an approach is instead described as “distributed,” one can usually infer that
the motivation is an increase in functionality of some type. For instance, a distributed
system for solving a problem may be more reliable than a centralized system, because
in the distributed case the effects of a failure are to a greater extent limited to just the
node at which it occurs. A distributed design may be better in other ways for solving
a particular problem, e.g. by providing a better fit to a partitioned problem, by being
more extensible should the problem change or grow in scale, or by being more modu-
lar and therefore easier to design and debug [102,111,33,19,21]. Improved efficiency is
often one of the goals as well—but the motivations usually go beyond efficiency alone
when one speaks of “distributed,” as opposed to “parallel,” processing.

Much of the motivation for studying DAI comes from a desire to build intelligence
into systems that are already distributed. Distributed databases, networks of work-
stations, and the like, already exist, because localized computers provide guaranteed
response times and dedicated power [102,69]. Getting these systems to communicate
intelligently is a DAI problem. So in some cases, a DAT approach is a necessity rather
than a choice if one is to apply Al to a problem at all.



1.2 Varieties of DAT

The various problems being worked on under the rubric of DAI can be confusing
to the uninitiated. Work reported at the seven DAI workshops held through 1986
[19,21,33,111,41,112]' has ranged in its focus from neural networks to small numbers
of workstations. Someétimes, the distributed nature arises from decomposing a single
problem into multiple subproblems, and sometimes the distributedness is the main
problem that arises from multiple agents or processes with different, possibly conflicting
goals. Sometimes, the theory or techniques proposed focus on how an autonomous
agent should behave in an environment with other intelligent agents, and sometimes
they focus on how the “society” of agents should be organized to achieve globally
desirable results. The agents can be of relatively equal status, or subservient to a
central controller to whom they report. They can be specialized or general problem
solvers, simple or complex, numerous or few, benevolent or competitive, tightly coupled
to others or decoupled, communicative or silent, active or passive—in short, the space
of possibilities is very large. What is common to all the approaches is only that they
involve multiple processes.

Nonetheless, the field can be decomposed into a manageable number of subareas.
The following list of nine such subareas of DAL is an attempt to distinguish between the
types of problems being worked on under headings that have emerged in the literature.
The subfields are given in rough order (from most to least) of how representative they
are of work that has been called “DAIL.”

1. Distributed Problem Solving. Much of the work in DAI has involved building
systems in which two or more agents work together to solve a single problem. In this
subfield, the main problem is therefore how to achieve cooperation in the service of
a common goal. The agents usually have complex capabilities of their own, so that
much of the processing is done locally. Typical issues include when and from whom
agents should seek help, how the group or its “director(s)” (if any) decide that the
problem is solved, how different agents can work on separate parts of the problem
semi-independently, when an agent should interrupt its own problem solving activities
and answer a request, when it should volunteer information, who should have control
over what, and so forth. Examples of systems that have been built for (and theories
of) the cooperative solution of problems include [20,22,11,38,34,81,24].

2. Distributed Processing. Randy Davis distinguishes the distributed problem-
solving paradigm discussed above from that of distributed processing. Davis writes,
“Typically, for instance, most of the processing in such [distributed processing] systems
is done at a central site and remote processors are limited to basic data collection. Con-
trol is not distributed and the processors do not cooperate in a substantial manner.”[19]
The goal for such systems is often to achieve fault tolerance in information gathering.

!The 1983 conference, held at the University of Massachusetts, was not reported.



In addition to issues such as how to combine evidence and otherwise integrate data
from multiple “knowledge sources” (esp. sensors) that can have different capabilities
and varying reliability, there has been a growing interest in this subfield in doing more
of the interpretation processing at the site of the data collection [102]. This makes for
more of a DAl-flavored problem. Still, the distinction from distributed problem solving
is worth noting: The knowledge sources work independently of one another and report
their results to a central agent who tries to make use of these results, or to a central
representation like a blackboard. Examples of this work, most of which has been in
the domain of perception, include [36,37).

3. Multiagent Planning (Distributed). Much of the work in this subfield could
also be called distributed problem solving. However, whereas distributed problem
solving may include tasks like monitoring in which agents are passive observers of
the environment and other agents, in distributed planning problems the agents can
take actions that affect the world and thereby change it for other agents. Another
distinction from the distributed problem solving paradigm described above is that the
problems of multiagent planning exist also in contexts in which the agents are not
necessarily cooperating to solve a common goal. The focus is on an individual agent’s
goals and how they can be achieved when other agents and processes are around. The
traditional problems of planning are therefore of interest, including how to compute
the effects (and, importantly, the noneffects) of one’s actions, how to know when an
action is possible, and how to plan to achieve a goal when there are other agents to
factor in and to make use of. Examples of research is this subfield include [50,70,20).

4. Planning for Multiple Agents (Centralized). In this paradigm, the planning
process itself is not distributed. The issues rather focus on how an agent—either a
controller or the designer—can coordinate multiple agents to suit particular needs.
Typical problems include: how to decompose a problem, assign tasks, allocate re-
sources, and schedule, and also who should be allowed to communicate with whom,
and how much. Examples of work addressing these issues include [45,46,75,76]. This
differs from distributed processing (see above) because the agents perform actions
rather than just gathering information and interpreting it.

5. Multiagent Domain Moedeling. Just as there is a subfield of distributed systems
that deals with formalisms and specification languages for concurrent processing {e.g.
Petri nets, data flow graphs) [88], one of the problems to be addressed in DAI is
how to describe temporal and causal relationships between actions and events in the
multiagent context. This area complements work in multiagent planning by addressing
problems faced by the designer of a distributed planning system {or the scheduler in
the centralized case), given reasoning and planning capabilities on the part of the
agents. Typical issues include how to avoid interference between concurrent actions,
what constraints should hold across agents for particular actions, how to represent
these constraints and detect interference, and how the global behavior of the system of



agents can be predicted from facts about local behavior at different nodes. Examples
of this work include [77,48,92,23,116].

6. Intelligent Communication Between Agents. Work in this subfield addresses the
planning and interpretation of communication acts that take place between agents. In
this subfield especially, one of the agents might be a person who is either the generator
of an utterance to be interpreted by a computer, or the recipient of a communication
initiated by the computer. The “communication” subfield therefore encompasses most
research in computational linguistics, though the problems involved when all of the
parties in a communication are artificial makes it especially pertinent to DAI. Typical
issues include what message to send to convey an intention, desire, or belief, how
to understand a received message in such terms, and how to plan speech acts and
reason about the effects of these on the receiver. Some examples of this research are
[12,13,1,95,96].

7. Reasoning About Other Agents. This subfield overlaps substantially with that
of intelligent communication between agents, but also includes reasoning that is not
based on communication from an agent (e.g. reasoning based on observed behavior or
on beliefs about the agent and the situation)-as well as reasoning about the effects on
other agents of actions other than communicative ones—for example, believing that
another agent has an intention and knowing that a particular action will interfere with
that intention. Both this and the subfield above apply especially, but not exclusively,
to distributed planning (they could also be problems in distributed interpretation or
monitoring tasks, for instance). Some typical issues are how to infer things about
the plans, beliefs, and goals of other agents, how to compute the effects of actions on
these, and how beliefs about other agents and their plans should affect the agent’s own
reasoning. Examples of work in the area include [72,95,96].

8. Rational Interaction. This subfield gets its name from Jeff Rosenschein’s Stan-
ford Ph.D. thesis [102]. Unlike distributed problem solving, this work assumes that
agents do not have a common goal or problem to solve, but rather must find ways to
resolve conflicts between their goals by negotiation and compromise. Some issues that
arise are what is rational {e.g., in a game-theoretic sense) for an agent to agree to, and
what mechanisms for agreement and deal enforcement should be used. Some papers
on this topic include [102,44,42,43,100,101].

9. Massively Parallel Processing. Some work on systems with thousands of nodes,
e.g. relaxation labeling, neural networks, and semantic networks, has been deemed
to be a part of DAL In general, the “agents” in such systems are extemely simple
homunculi, and the intelligence is intended to arise from the ways in which they are
connected and changed at each iteration. For this reason, the philosophy behind this
approach is often called “connectionism.” Typical issues involve how the network
topology should be set up, how each node should respond to its inputs, how connections
should adapt to the data over time, and how to get convergence to an optimal state.



The literature in this area is very large, and growing. The work that has appeared in
the DAI workshops includes [3,94,117,106].

Most of the papers that have appeared in DAI over the last decade and a half can
best be categorized as being in one of these nine subareas of the field. But projects
and systems often involve tackling more than one of them at a time. In the next two
subsections, specific projects are surveyed that have given rise to important ideas in
each of the subfields.

1.3 Survey of Approaches to DAI Problems

The literature of DAI is much too large to summarize in a way that mentions all of
the projects that have been undertaken. Instead, this subsection are lists what might
be considered the major results in the field—programs, techniques, and findings that
have had an impact beyond the projects from which they arose. The presentation is
chronological, but it omits all work on, and findings from, testbeds and development
environments for DAI (covered in greater detail in section 2} as well as the work that
has been done at SRI (see subsection 1.4). Other summaries of DAI include [64] and
[102].

The first paper in AT to address distributed systems of agents appears to have been
that of V. L. Stefanuk [114], which discussed theoretical aspects of systems whose main
characteristics are “the antagonism of aims of different elements of the system and com-
paratively small information concerning the actions of other elements.” However, work
that both embodied the spirit of DAI and had important subsequent influence did not
appear until two years later, in 1973 [26,59]. This initial research at Carnegie Mellon
and at MIT concerned viewing systems implemented in single computers as collections
of multiple agents, with the clear intention of making the abstract description reflect
concrete implementations at a later point. There followed a period of developing more
general techniques and designs for multiagent systems, using multiple processors, and,
later, frameworks for experimenting with and reasoning about these techniques and
designs, as well as principles for building distributed AI systems. There is still much
work to be done. What follows is a listing and summary of the major developments
(excluding testbeds and work done at SRI) in DAI

1. HEARSAY and Its Successors (CMU,Rand, UMass, WPI). HEARSAY was a sys-
tem for speech understanding originally implemented as a small number of coroutines
realized as separate jobs in a PDP-10 [26,97]. The different “processes” communicated
with each other on a shared data structure, which in HEARSAY-II became known as
the “blackboard” [27,28]. The idea of the blackboard was that its contents represented
the system of knowledge sources’ (KSs’) hypothesis about the received signal at any
given moment. The hypotheses existed at different levels, so for instance a “phoneme



hypothesizer” knowledge source would post on the blackboard alternative pronuncia-
tions of a word hypothesized at the lexical level but not vet supported by hypotheses
at the level of surface phonemes. The blackboard has become an important commu-
nication device for distributed processing systems, allowing multiple “expert” agents
to work in parallel on a given problem and to work from each others’ hypotheses. The
approach of blackboards has been extended by others (e.g. [57]) to active, planning
systems, and has been employed in the expert-system-building tool HEARSAY-III [29].

2. Actors and Sprites (MIT). “Actors” are Carl Hewitt’s metaphor for program-
ming objects, emphasizing “the inseparability of control and data flow” [59]. He and
his colleagues have argued that all behavior can be analyzed in terms of the fundamen-
tal action of one object (actor) sending a message to another. Act2 [60] is an attempt
to combine the descriptive character of declarative languages with the active character
of procedural ones. Hewitt believes that logic, with its “truth-theoretic semantics,” is
an insufficient language for building what he calls “open systems” [61], which appears
to be a synonym for distributed systems. As an alternative he advocates “due pro-
cess reasoning” and “message passing semantics,” in which actors construct arguments
and build cases for hypotheses to be presented to an “arbiter,” and the meaning of
a message is the set of effects it has on other actors. Hewitt and W. A. Kornfield’s
“scientific community metaphor” [73] advocates a form of distributed problem solv-
ing that is modeled on the scientific community, with proposals and sponsors, and in
which the KSs are called “sprites.” Although Hewitt’s terminology is often confusing,
his views find expression in the work of many others in DAI and connectionism, and
he has been advocating them for a long time. A problem that remains, even if he is
right about how to go about solving DAI problems, is that of actually solving them.

3. Beings and Agendas (Stanford). The antecedent to Doug Lenat’s AM program
(described below) was one called PUP6, which consisted of “a community of inter-
acting modules,” (with more complex structure than Hewitt’s actors) called “beings.”
The beings had a uniform architecture but were each designed “to simulate a partic-
ular expert in some small domain” [79]. PUP6 tried to use modules, who were each
“expert” in some aspect of programming, to synthesize Lisp programs. In the subse-
quent Automated Mathematician (AM) program [80], Lenat introduced the additional
notion of “agendas” as a global data structure in the same vein as blackboards. Using
agendas as a communication scheme for distributed systems allows each agent or mod-
ule to “share evidence about the merits of performing various tasks,” although “no
module need have any knowledge of how the other modules work or what knowledge
they contain” [99)].

4. Contract Nets (Stanford, DREA,MIT). Contract nets were proposed by Reid
Smith [107)] as an organizing strategy for distributed problem solving. The idea is that

the problems to be solved are announced to all the agents, who bid to solve them,
an idea later echoed in the *scientific community metaphor” of Kornfield and Hewitt.




Some problems that have been or might be pointed out for this approach are the lack
of fault tolerance if the central dispensor becomes disabled, and the lack of redundancy
in the resulting assignment [102], the communication overhead [64], and the lack of
automatic dispensation when such dispensation is appropriate. Jeff Rosenschein has
pointed out that all of these problems are solvable if the formalism is modified [102].

5. Anarchy versus Hierarchy (Rand). An interesting, nonobvious result from ex-
periments with human subjects was shown by Wesson, Hayes-Roth, Burge, Stasz, and
Sunshine [121}. The study was described by V. Jagannathan and Rajendra Dodhiawala
in their annotated bibliography of DAI, as follows: “Experiments were conducted first
involving human subjects trying to solve a dynamic crossword-like puzzle task. They
note that the ‘anarchic’ human committee organization performed much better than
the hierarchical organization. The yard stick was an omniscient single expert. The
machine version of the experiments involved a blackboard to model the anarchic com-
mittee. In order to minimize communication, they note that the individual XS (expert)
should have knowledge about what other experts know” [64]. Clearly, this one result
does not establish the nonefficacy of hierarchies, but it provokes thought, and further
experiments in this mode might help to debug our intuitions further about what works
in human groups. Such research may be of use to DAI if the communication and
control factors leading to the results can be elucidated and synthesized into principles
that would apply to computer systems.

6. Principles of Cooperation (MIT). Jeff Rosenschein summarizes this work: “An-
other area examined by scientists at MIT has been ‘principles of cooperation,’ the
notion that there are heuristic guidelines to be followed by computer systems that
will be interacting with one another. The desire is to develop plans that are ‘robust’
(insensitive to other agents’ actions) and ‘cautious’ (minimizing the chances for other
agents to interfere). Towards these ends they have identified principles such as behav-
ing predictably, generating simple plans, and using task domain knowledge to predict
other agents’ (future) plans [[20,109]]. A planning system was to be built using these
principles, but it is not known whether such construction took place” [102].

7. Neural Networks (Rochester, UCSD, CMU, Toronto, Caltech, AT&T, Bostonll).
A preat deal of work in neural networks has been done over the last five years, and
anything close to a summary would not be possible here. For distributed AI, the ideas
of central importance seem to be the organizing principles shared by these adaptive
systems. Locally, at each processing element (“neuron”) in such a system, the im-
portant unifying characteristic is that the state of the element is determined at each
instant by a nonlinear function of a weighted summation of the states of the elements
connected to it as inputs, as well as of (sometimes) its own previous state [105]. For
the whole system, which may consist of millions of these elements, the central results
show that global summarizing functions for the states and connection weights have ac-
cessible local minima, starting from initial states and weights [62,105]. A near-optimal



solution can be reached if simulated annealing is employed [66,58]. The weights may
be set adaptively to minimize a summarizing function of error relative the patterns
of states that arise or are specified as acceptable by an oracle, and the networks can
very quickly classify input patterns to the desired output, with varying accuracy, when
equilibrium is reached. Weighted voting networks may be useful for reasoning systems
by making probabilistic and evidential inference more tractable [52] and by allowing a
designer merely to specify what factors are relevant to believing, desiring, or intending
something, without requiring the designer to specify probabilistic relations between
propositions. The numerical relations can then be induced adaptively by the system.
So the local model of a neuron used most often in these networks also seems useful for
reasoning and representation of a more symbolic nature. This description does not do
justice either to the capabilities or to the limitations of this approach. A good refer-
ence for the latter is the “Epilogue” of the recently expanded edition of Percepirons
by Marvin Minsky and Seymour Papert [91].

8. Reasoning about Knowledge (IBM). The work of Joe Halpern and his colleagues
at IBM’s Almaden Research Center has yielded important results in the theory of
distributed systems. In particular, the logical modeling of distributed systems eases
the design of efficient, fault-tolerant protocols that solve the problem of Byzantine
Agreement [74] as well as it can be solved, i.e. that guarantee the earliest performance
of simultaneous actions possible assuming some maximum possible number of failures
[93,56]. What is important to note about this work for DAI is that these researchers
have found success in using possible worlds models for multiple agents to analyze
what each agent “knows” in each cycle or block of time about the states of the other
processes, and that various models, depending on the application, can be useful for
describing and reasoning about the knowledge, ignorance, and “beliefs” of agents [55,
31,32). This work connects quite intimately with that of researchers at SRI concerning
the relation between knowledge about other agents, communication, and planning.

1.4 DAT Research at SRI

Over the years, the Artificial Intelligence Center at SRI has produced a good deal of
work in distributed artificial intelligence, particularly at the theoretical end.

In the area of natural language and communication, Doug Appelt wrote a planner
called KAMP whose actions were utterances. The input to the program was a goal
for changing the beliefs and desires of another agent [1]. More recently Phil Cohen
has teamed with Hector Levesque of the University of Toronto in developing a formal
theory of speech acts, beliefs, desires, and intentions, that can be used to reason about
“rational” agents [12,13]. The interest in underlying principles of rationality, both for
planning and for interpreting the actions and utterances of others, is an important
characteristic of much of the DAT work at SRI. In particular, these principles are often




thought to include design principles for agents with limited resources who must cope
with a changing environment in real time. Martha Pollack’s work [95,96] has concerned
how agents can infer the plans of other agents from their utterances combined with
beliefs about the other agent’s beliefs and goals.

Much research has concerned planning in multiagent domains. In the early years
of this research, Kurt Konolige and Nils Nilsson attempted to extend STRIPS-like
planners for single agents to planning in the multiagent case [70]. a recent summary,
“Over time, however, it was discovered that the underlying models of action for single
agent planning were not sufficiently rich to capture the complicated synchronization
properties of multiagent worlds. Subsequent research then began to explore richer
action representations, and in particular tried to make use of work that had been done
in computer science concurrency theory” [47]. has been done by Michael Georgeff and
Amy Lansky. Georgeff has developed a means for handling the “frame problem” for
planning agents (i.e. the problem of knowing what is and is not affected by an action)
that takes advantage of the fact that there are other agents in the environment, where
the environment itself can be viewed as an agent or process [50]. Both Georgeff and
Lansky have worked on coordination, plan specification, and how to avoid interference
between the actions of different agents [45,46,75,76]. Subsequent work has involved
building representations of the concurrent actions and events in multiagent domains
[77,48]. Most recently, Lansky and David Fogelsong have applied her Group Element
Model (GEM) for concurrency and domain representation in an actual multiagent
planning system known as GEMPLAN, which uses locality constraints in order to
insulate agents planning for independent subregions of the planning space from having
to consider changes that apply only to the tasks or regions assigned to other agents
[78].

Reasoning about other agents in multiagent domains is the topic of current work
by Kurt Konolige, Martha Pollack, and Todd Davies. Konolige’s past work on how
an agent can reason about the cognitive states of other agents using “experimental
robot psychology” [72] and on how it can reason introspectively about its own beliefs
[71], Pollack’s work on plan inference from communication acts [95,96], and Davies’
work on reasoning by analogy [16,17] may be able to be combined to form a general
methodology for how an agent can reason about the intentions of other agents, their
beliefs and their goals, in part by analogy to its own processes [49].

Part of the focus for the DAI research at SRI is on problems arising from the
interaction of autonomous, mobile robots, both with other robots and with people.
A group headed by Stan Rosenschein, which also includes Stan Reifel, Leslie Kael-
bling, Nathan Wilson, Stuart Shieber, and Sandy Wells, has built one robot (named
FLAKEY) that has sonar sensors, tactile sensing bumpers, and a camera for percep-
tion, a speech synthesizer and wheels for effectors, and a small on-board keyboard with
display for receiving typed instructions and displaying data. Further features, such as
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an arm, may be added, as well as additional robots with whom FLAKEY can interact.
Rosenschein, Kaelbling, and Fernando Pereira have been working on the theory behind
the design of interacting automata embedded in an environment [103,104,65] and on
modeling concurrent interacting automata [92].

In the area of perception, Marty Fischler and QOscar Firschein have advocated a
“parallel guessing” approach to distributed processing for image understanding. In
this approach, they “envision a parallel set of computers, each of which carries out a
computation on a data set using some random or guessing process, and commmunicates
the ‘goodness’ of its result to its co-workers through a ‘blackboard’ mechanism” [36].

In the area of massive or small-grained parallelism, Todd Davies has been explor-
ing the ways in which neural network architectures could be constructed that embody
knowledge that is described in a combinatorial language at the metalevel. Some pre-
liminary results are reported in [18].

In short, research in DAI at SRI covers the full spectrum of varieties. Much has
been developed in the form of techniques and theories for making distributed planning,
communication, and processing computationally feasible. At this point, there is an
especially strong interest in testing many of these techniques on realistic problems
involving multiple robots and computers.

1.5 Traffic Monitoring as the Prototype Domain

Many of the programs written by DAI researchers, particularly the testbeds described
in section 2, have as their application one form or another of traffic monitoring or con-
trol, largely because this domain has many of the characteristics of military problems,
such as battle management, automated guidance systems, and automated assistants
for pilots. In addition, there is potentially a more direct application of these systems
to the Federal Aviation Administration’s Advanced Automation Program (AAP) [40],
which is expected to lead to “highly automated air traffic control by the turn of the
century” [63]. The major goals of this program are to develop a system that will “be
very reliable, be operational 24 hours a day, and be capable of beng upgraded without
impeding the control of the air traffic” [63]. Obviously, the testing the software devel-
oped for this system (which is viewed as being functionally decomposed and partitioned
into a distributed architecture [63]) in a very realistic simulation is of paramount im-
portance [9,2]. The future for traffic control automation is not confined to aircraft;
architectures for railroads and space vehicles are also being researched, developed, and
manufactured [119].
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1.6 Summary of Main Issues and Problems

The concerns of DAT researchers may be divided into “issues,” that is, questions of the
form “What approach should be taken along a particular dimension in building a sys-
tem?,” and “problems,” i.e. questions of the form “How can a particular desideratum
be achieved?” The listing of issues and problems in this subsection owes a great deal
to previous lists provided in [102] and [112].

1.6.1 Issues:

The main issues appear to be the following.

1. Control. Agents may take all of their orders from a single directing agent, in
which case control is centralized. At the opposite end of the spectrum, each agent
can be completely autonomous, so that control is distributed throughout the entire
system. There are various intermediate possibilities, including hierarchical control
(like a business} and partitioned control (like an industry).

2. Cooperativeness. If agents always let the goals of others take priority, they
might be called “benevolent” [44], or, to use a technical term, “nice.” Alternatively,
they may be negotiating agents, or they may be competitive or even hostile. Clearly,
as is the case with most of these issues, the amount of cooperativeness will depend on
the application—there is no single right level that covers all cases.

3. Complezity. The capabilities and architectures of each agent may range from
simple to very elaborate, the advantages of the former being the possibility of having
greater numbers of agents and ease of design, while for the latter the advantages are
greater processing power at each node and more opportunity for specialization among
the agents.

4. Communicativeness. How much agents say to those with whom they communi-
cate can vary greatly from system to system. Agents can be completely silent, or they
can communicate profusely. The cost of communication and the bandwidth impinge
on this issue.

5. Specialization. Whether the agents should be homogeneous or very heteroge-
neous depends in large part on the task decomposition strategy. This is an important
issue in the design of any system, since there is a trade-off between the ease of coor-
dinating agents who share the same architecture, and the efficiency of specialization
when the problem can be decomposed functionally.

6. Redundancy. In designing a system, one needs to evaluate how much the solution
to a problem should depend on any one agent. Building-in redundancy makes the
system fault-tolerant, but it can also result in less efficient use of a community of
agents.
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7. Information Sharing. There is a variety of possibilities for whom agents should
share information with, as opposed to how much they should share (see Communica-
tiveness). At one extreme, agents may share nothing. They may share information
only with their nearest neighbors, or with the next agent up in the hierarchy, or only
with a centralized controlling agent, or with every other agent in the system.

8. Number of Agents. Obviously, the number of agents in a multiagent system can
range from 2 or 3 to many. The important consequences are for communication and
overall system complexity. The number of connections required to maintain a constant
communication time between arbitrary processors grows exponentially in the number
of processors, but the spatial region defined by the processors, assuming no increase
in the distance between nearest neighbors, grows at most only polynomially—as the
square or the cube of the number of processors, depending on whether the agents live
in a two- or a three-dimensional world. So communication between arbitrary agents in
the system becomes harder as the number is increased. This makes the arrangement
of agents important, so that they are close, for communication purposes, to the agents
they need to talk to.?

9. Decomposition. Agents may inhabit a world or solve a problem based on func-
tion, object (as in man-to-man coverage in football), or space allotments. Another
possibility is to assign tasks based on what agents are available by virtue of having
completed their more recent assignments.

10. Independence. Similar but not identical to the issue of information sharing is
the issue of how much of an agent’s actions should be determined independently from
those of other agents. A high degree of interdependence can magnify the effects of one
agent’s failure or of wrong information percolating through the system.

11. Coherence. A more abstract issue is the degree to which the system should
appear to behave as a unified whole. In some systems a high degree of coherence is
the aim, but in others the agents may be viewed as rather like a team, committee, or
society.

1.6.2 Problems:

The main problems appear to be the following.

1. Coordination. Agents must respond to each other’s actions at the right times
and in the right way if a distributed system is to function properly. The focus for this
problem is the set of mechanisms used by the individual agents to detect actions on
the part of other agents and to control their own.

2This was pointed out to me by Stan Rosenschein,
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2. Conflict Resolution. Two agents may have opposing goals. It is important, if
conflicts are possible, that there be a means for detecting this, replanning in light of
the conflict, and resolving known conficts in future intentions.

3. Noninterference. Even when agents share some goal, their intended actions may
interfere with each other. This can be a problem both for the individual agents and
for a central planner.

4. Dealing with Incomplete Knowledge. Because the cognitive states of other agents
are underspecified by their actions, and because each agent has only a limited percep-
tual view of the world, an agent must infer what it does not know.

5. Obeying Causal and Temporal Constraints. In addition to avoiding interference,
the actions of agents must be such that constraints of the form “A must occur before
B occurs” and “C and D must occur simultaneously to cause E” are met by their
collective plans or plan.

6. Reliability. Some systems require high levels of reliability, and others require
less. To the extent that it is required, factors that affect it, such as failures at individ-
ual processor sites, and interdependence between components of the system, must be
minimized.

7. Communicating with Limited Bandwidth. When agents are restricted to any-
thing less than core-dumps broadcast to the whole system at every tick, they must
communicate only partial information about their beliefs, goals, and intentions. This
leads to a concern with how the important information can be selected.

8. Allocating and Using Limited Resources. Apart from communication channels,
there are often other resources that are in short supply in a distributed system, such
as tools, shared memory, and space. This is obviously related to the noninterference
problem, but differs in that it emphasizes how priorities should be set given that a
possible interference condition has been identified.

9. Reacting to a Dynamic Environment. Agents in a DAI system must be prepared
for the possibility that their original plans could go awry, either because of unantici-
pated changes in the environment or because of unanticipated actions on the part of
other agents; they must react in reasonable time and change their plans if necessary.

10. Evaluating ¢ Group Solution. In distributed problem solving, an important
question to be answered is when the agents should stop working on a given subgoal
and conclude that it is fulfilled. This is difficult without some objective source of
information, such as an oracle or an identifiable criterion for success about which the
agents can agree.

11. FEztensibility. In a system with a substantial lifetime, there is bound to be
a need to add more agents to the system, more capabilities to the agents, or more
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problems for the system to solve. If these possibilities are foreseen, the initial design
should make the upgrading as painless as possible.

12. Reducing Communication Uncertainty. Well-known problems in distributed
systems theory arise from uncertainties about whether, or at what time, a message
from one processor is received by another. The protocols for communication should
minimize the probability that an agent will act with unjustified confidence that a
message has gotten through.

2 Testbeds and Development Tools for DAI

In the last section, a number of issues and problems of DAI were reviewed, as well as
some specific approaches and findings relating to these issues and problems. In this
section the part of research in DAI that has involved constructing “testbed” systems
and DAI software development environments is explored. Testbed research involves
the empirical testing and evaluation of different approaches, and development environ-
ments ease the task of building systems with multiple agents, under a potentially wide
variety of approaches.

2.1 Survey of Testbeds

Most testbeds for DAI can be described as instances of the following scheme. An
environment module js either simulated or actually created. The environment is often
highly dynamic, and can be varied in, for example, the difficulty and complexity it
poses, by adjusting parameters (in the simulated case) or by changing the setup (in
the actual case). The testbed provides for a number of agents to “populate” this
environment, i.e. to receive input from it. The number of agents may be fixed, or it
may be a parameter, as may other aspects of the agents such as their architecture,
what kinds of messages they send, what their policies for response are, and whom
they are allowed to communicate with. The agents may be set up to work on a specific
problem posed by the environment, like controlling traffic, or they may each be capable
of being given different goals. The problem itself, in a distributed-problem-solving
testbed, may have parameters to describe what agents should try to accomplish in a
particular testbed run. Other parameters for the testbed may be how the problem is
decomposed and assigned to the agents, and what the policies of the scheduler are, if
one is present.®> A search of the literature has revealed nine known testbed projects
that have been initiated to date. Each of these is reviewed below. Of the eight, the first

3The description of this general framework comes largely from Tom Garvey (personal
communication).
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two projects—those at the University of Massachusetts and at the Rand Corporation—
have been the most extensively reported, and are thus given fuller treatment in this
survey. :

2.1.1 TUniversity of Massachusetts’ “Distributed Vehicle Monitoring Testbed”

The construction, use, and expansion of the Distributed Vehicle Monitoring Testbed
(“DVMT™) has been documented over the last eight years in a series of papers, all of
them written in part by the testbed’s chief architects, Victor Lesser and Dan Corkill
[82,83,84,85,15,86,24,25,87].

Corkill and Lesser’s primary aim has been to explore means for achieving and main-
taining global coherence in a distributed-problem-solving network, in which the nodes
share a common overall goal. Aspects of design that minimize the total time required
for a network to solve a problem have been tested in many variations. The focus has
therefore been on performance, which, as was mentioned earlier, is not usually consid-
ered by others to be the main problem in building distributed Al sytems. More will be
said about this below. One of the goals in building the testbed was to discover princi-
ples for deciding what organization schemes are most efficient for particular situations,
with the ultimate aim of programming-in criteria the system could use for changing
its own organization to suit particular capabilities of the nodes and characteristics of
the environment and problem. Some other questions to which experimentation was
addressed included the following: What is the best balance between reliability and
speed of the knowledge sources? How do the conditions of high and low error or noise
in sensing affect what control regimes are most effective? To the extent that commu-
nication costs and reliability considerations preclude having a central controller, how
can local decision making and communication achieve adequate levels of coordination
between nodes? How can mechanisms for coordination be made simple enough so that
their cost does not outweigh their benefits, and how does one determine this? What
defines adequate coverage of the problem space by the network? How much connec-
tivity is necessary? How much capability should each node have? What is the right
mix between organizational and local control of a node, i.e. 2 medium between being a
“company node” and a “lone wolf”? And finally, how should one balance the overhead
required for cooperation between nodes against requirements on local processing? All
of these questions may be best asked relative to a particular problem and environment.

The testbed has been in existence since the beginning of this decade. The number
of problem-solving nodes has risen from between 2 and 4 to between 10 and 13, with
about the same number of sensors. The task common to all of the simulations has
been distributed traffic monitoring. Spacially separated processor nodes receive input
from multiple, nearby sensors. The processors must cooperate to identify, locate,
and track patterns of vehicles moving around and between them in a two-dimensional
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field. The vehicles generate acoustic signals that are picked up by the sensors. Each
processor node was originally designed as an architecturally complete HEARSAY-IT
system [81] with capabilities for vehicle monitoring, and the processors have since
been given planning capabilities. The processors transmit to other processors requests
for the creation of hypotheses with specified attributes, as well as their own hypotheses.
Hypotheses include specifying a time-location trajectory for an identified vehicle, the
identity of the vehicle, and a degree of confidence. The goals to make certain hypotheses
are also given importance ratings. There is an oracle that computes the optimal
solution for each run ahead of time, and that is used for comparing the system’s
performance to the best possible performance. The earlier experiments were all done
on four- and five-node systems. In the four-node version, the processors all participated
in solving a problem, whereas in the five-node version, four of the processors sent
thejr hypotheses to a fifth node that constructed the answer. The nodes in each
version generate hypotheses consistent with their roles in the organization. Indeed, the
hypotheses upon wich each processor is to work are a way of specifying the organization,
but Corkill and Lesser make it clear that in the general architecture the node’s role
is just a guideline rather than an absolute—the node may be more or less internally
directed depending on the setting of parameters. In later experiments a node has
sometimes been given the capability to communicate “metalevel” information to other
nodes; that is, information about what hypotheses it is working on rather than the
hypotheses themselves.

Most of the experiments with the DVMT have been tests of the performance of
a given parameter setting for the network and its nodes given a particular parameter
setting for the environment. The testbed allows many parameters to be varied in a
simulation run. The system allows arbitrary node-node and node-sensor connectivity,
as well as arbitrary distributions of task processing capability. The accuracy of individ-
ual knowledge sources and sensors can be varied. Control policy is varied according to
the level of priority each node gives to its own (internal) goals and hypotheses relative
to those from the outside. A variety of communication policies can be invoked, such
as transmitting hypotheses only, goals only, both, or neither. Within hypothesis com-
munication a node may be set to send all of its hypotheses, only its completed ones,
only those judged to be relevant to send, only its first and last, and so on. Vehicle
characteristics can be varied, as can those of the communication channels. Placements
of the sensors, their range, the number and size of the vehicles and the complexity of
their signals, the hypothesis-forming power and type of the knowledge sources, consis-
tency constraints on the number of legal hypotheses, and the amount of noise in the
environment can all be varied independently. Transmissions of hypotheses and goals
can be exclusively voluntary, exclusively in response to requests from other nodes, or
mixed. At each node, one can set parameters for the weight given to local processing
versus communication, weights for specifying the relative importance of each type of
hypothesis and goal for that node to send and receive, threshold ratings for transmis-
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sion and acceptance of hypotheses and goals, where to transmit to, weights for the use
of received hypotheses and goals in processing, and for the priority of internal versus
external goals. (This is not a complete list.)

Experiments have been run with the DVMT in many different configurations. The
results are not easily summarized. One observed phenomenon was that when a node
is externally directed, it can be distracted from productive problem solving by giving
priority to a received goal or hypothesis when it should not. This led to degraded
performance in some of the early simulations. Corkill and Lesser advocate “node skep-
ticism” for robustness, that is, not giving full weight to received hypotheses and goals,
but there do not appear to be any hard-and-fast rules for how much skepticism is
the right amount. The idea is that even strong organizational responsibilities can and
should be ignored when a node possesses strong information to the contrary, but this
creates the problem of how a node should judge the relative value of its own informa-
tion (or the importance of its own goals for solving the problem) versus that obtained
and generated by other nodes [15]. Another general finding was that performance is
improved if only higher-leve] information is exchanged between nodes, because of the
heavy cost of communicating every low-level hypothesis. Corkill and Lesser found that,
at least in the type of problem solving they investigated (finding the solution and then
stopping), the overhead required for cooperation causes diminishing improvement in
performance for each added node, although they appear to feel that improvement could
be linear for continuous problem-solving systems. Other improvements in performance
came from adding planners to the nodes and allowing metalevel communication so that
nodes can coordinate with each other which problems they work on. The latter finding
was more ambiguous in its scope. Corkill and Lesser found significant performance
improvements with metalevel communication among nodes with overlapping interest
areas and capabilities, but only if the performance without it was very suboptimal
and if the bandwidth was sufficient to support the extra communication. No improve-
ment was found to result from metalevel communication for nonoverlapping nodes. In
general, Corkill and Lesser found that overlap turned out to be a very good thing,
allowing flexibility among the nodes and improving reliability, and their mechanisms
for improving performance (planning, metalevel communication, and so forth) worked
better with it [24]. But of course for some types of tasks, more specialization and less
overlap seem desirable. Blanket principles are very hard to extract from this work.

It seems worthwhile to list some of the problems that have arisen in the course of
this work as well as some possible limitations of the methodology. A problem that was
known from HEARSAY-II and that persisted in the earlier three- to five-node networks
was that self-directed nodes led to wasted effort, global incoherence, misallocation of
tasks (resulting in inaccuracy and untimely solutions), and lost processing due to
waiting, nodes working at cross-purposes, and duplication of effort. In an effort to
correct this, various coordination schemes were tried to make nodes more responsive to
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the rest of the network, but this resulted in a concommitant set of problems, including
distraction and inefficiency due to overhead. Finding the right balance in this trade-
off became, apparently, a delicate enterprise. The dominant theme in the findings
seems to be “It all depends.” Metalevel communication is usefu! sometimes, but not
always. It may improve performance for overlapping nodes, but not if low bandwidth
makes it too expensive, unless its absence causes a good deal of waste, in which case it
might help—it all depends on the particular set-up, and the designer must have good
intuitions about what can go wrong. These intuitions are surely aided by a careful
reading of this work, but general principles are far less common in Corkill and Lesser
than statements like “An organization that is specialized for one short-term situation
may beinappropriate for another,” and ”No single static communication policy appears
appropriate for all problem solving situations” [24].

One problem that, as these researchers point out, has not yet been addressed
concerns when a node or network should decide that it has solved a particular problem.
DVMT has an oracle, and problem solving continues until a solution is reached, but of
course in real-world problem solving there is no oracle. Ideally, one would like it to be
a fact about the system that its proposed solution of a problem in some fixed amount
of time is guaranteed to be correct. This is, itself, a problem that seems well suited to
a realistic testbed, since correctness can be empirically tested for a particular design.
Corkill and Lesser’s findings also do not apply to what they call “continuous” problem
solving without a natural terminus, which seems more likely to be the kind required
of real systems [24].

Corkill and Lesser have worked tirelessly and admirably on this experimental ap-
proach to DAI, and their papers contain a wealth of insights gained from their years of
experience. They do not offer a prescription for building DAI systems given particular
characteristics of the problem, environment, and possible networks, although it may
be possible to come up with a fairly clear set of guidelines. They may well be planning
to attempt this. In the meantime, the main benefit of this work seems to be that it
has illustrated some of the many possibilities, trade-offs, and complexities involved in
building DAI systems. The idea of building a testbed is also highly suggestive, not so
much for its power in doing experimental Al but for its potential use as a development
tool for real systems.

As was mentioned before, Corkill and Lesser’s main objective has been to find
the effects of design changes on performance in a DAI system. Their results are of
the form, “In configuration n, with this particular pattern of vehicles and ghost data,
agents set up to do x rather than y achieved solution in only 14 cycles instead of 19,
where optimal is 10.” An alternative approach that could build on this work would be
to forget about efficiency, for the moment, and concentrate on giving the individual
agents the knowledge and inferential power necessary to make intelligent decisions
about what to do under a reasonable but uniform set of constraints on communication.
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Later, one could concentrate on making the inference at each node efficient through
parallel processing and fast algorithms. The reason one might be optimistic about
this-approach is that it conforms more to our experience as human problem solvers.
We are not able to transmit all of our hypotheses and goals to everyone else, and
receive them all, so it should not be seen as a problem that computers cannot either.
However, we can make very fast and informed local decisions, understand our place
in the scheme of things, decide when to seek help, and so forth. Perhaps this goal—
focusing on the individual agent’s processing capabilities in a way that takes account
of other agents—would be a good way to proceed.

2.1.2 Rand Corporation’s Framework for Distributed Pvroblem Solving

A group at the Rand Corporation, including Robert Wesson, Randy Steeb, Freder-
ick Hayes-Roth, Perry Thorndyke, David McArthur, Stephanie Cammarata, Sanjai
Narain, and William Giarla, reported work on an experimental environment for dis-
tributed air traffic control from 1980 until 1985 {120,118,89,90,11,113]. The questions
that interested them were similar to the ones asked by Corkill and Lesser. They sought
experimentally to find functional relationships between architecture structures and sys-
tem performance measures [120]. In particular, they also assumed a single goal for the
-system and therefore sought globally coherent behavior arising from local computation.

The task for the system was slightly different from the one for DVMT. Multi-
ple problem-solving nodes guided airplanes through a simulated three-dimensional
airspace. The problem was to develop flight plans for each of the vehicles to ensure a
separation of at least three miles horizontally and 1000 feet vertically between aircraft,
while conserving fuel and allowing the airplanes to reach their destinations if possible.
The researchers attempted to evaluate the effectiveness of cooperation strategies hold-
ing constant the degree of expertise available at each node. As was mentioned in the
section on DVMT, the reverse approach may be fruitful for future testbeds. In this
testbed, each agent knew its own airplane’s flight plan, and had beliefs about the flight
plans of the airplanes around it. When agents perceived a potential conflict (violation
of the separation rules), they had to find some way, with or without communication,
to change their plans [120,118,89,90]. Agents in the testbed had a constant bandwidth
for communication (no more than five messages every 15 seconds}, but the distribution
of planning tasks was variable. Performance indices measured included the communi-
cation load, processing time, and “task effectiveness” (separation rule violations and,
less importantly, fuel use) [11].

The parameters that were varied in the simulation changed over the course of the
research. Originally, there were plans to experiment with various ways of assigning
processors to airplanes, including space-centered (covering a region}, function-centered
(according to mission function), object-centered (one agent per aircraft), and plan-
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centered (specialization by subgoal) {120]). In the reported research up through 1985,
however, only the object-centered approach was ever used—aircraft were essentially
identified with a processor. Initially, two general coordination regimes were tested—
autonomous planning without cooperation (like cars on a freeway), and a cooperative
strategy. The density of aircraft was varied for each of these strategies. The results
were that, with low traffic, autonomous control produced conflict-free plans as often as
cooperative control did, but in the high-density case the cooperative regime performed
significantly better [118].

The experimenters then tested various ways to distribute the planning burden in
the cooperative case. In one approach, the task was shared by the agents involved in
a potential conflict. In three other approaches, a single agent was selected to plan the
paths for both agents. Selection criteria for the designated agent varied and included
selection of the least spatially constrained agent and of the most knowledgeable, least-
committed agent. Results indicated that the latter selection criterion performed best
among the task-centralized approaches. The authors made some effort to point out
results that surprised them [11]. This seemed to make a stronger case for the utility of
the testbed than is found in the writings of Corkill and Lesser, especially since there was
more of an attempt to integrate the results into an understandable theory in the case
of the Rand researchers. Unfortunately, they did not report anywhere near the volume
of results that the DVMT researchers reported, so the robustness of the phenomena
they discovered is not easy to assess. By 1984, the researchers reported working more
on strategies involving individual decisionmaking [113], with the strategies written in
ROSS, an object-oriented language for simulation originally developed by Phil Klahr
and William Faught [67] and used later in the construction of the SWIRL system for
simulating military air battles [68].

2.1.3 DREA’s CNET

CNET was a system built by Reid Smith at the Defence Research Establishment At-
_lantic (DREA) in Dartmouth, Nova Scotia. It was conceived of as a “medium for
writing programs for distributed problem solvers,” but had many of the features of a
testbed. Its domain was sensor data integration. Its name derived from the protocol
for communication among the nodes of the system—the contract net. The questions to
which it was addressed were similar in form to those of the DVMT and Rand projects,
in particular “what task specific information to communicate, how to combine con-
flicting results from different nodes and coordinate node activities to maintain global
coherence, and how to manage the tradeoff between communication and computation”
[107]. One of the comparisons to which it was geared was that between task-sharing
and result-sharing, a distinction introduced by Smith and Randy Davis [109] to capture
the fact that cooperation may involve a distribution either of tasks or of results. Al-
though the project was apparently abandoned due to Smith’s departure from DREA,
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CNET was interesting in that it had a more powerful language for knowledge repre-
sentation, based on the Unit Package {115,108], than most experimental DAT systems
have had [110]. ~

2.1.4 WPDI’s Distributed Sensor Networks Testbed

Peter Green of the Worcester Polytechrnic Institute in Worcester, Massachusetts, re-
ported in 1982 on a testbed for systems to acoustically track low-flying aircraft [53].
This grew out of the HEARSAY-II and Distributed Sensor Nets projects at CMU
[81,37]. The DSN testbed was “a distributed AI system of six geographically dis-
tributed nodes with each node containing three processors that were used for data
interpretation and message communications” [54]. The architecture was distributed
HEARSAY-II, with separate blackboards at each node. The main conclusions were
that the distributed HEARSAY architecture lacked the desired features of modularity
of the nodes and focused ordering of KS invokation. What is meant by “modularity”
is that the modules should be able to be developed by separate teams, “should be sep-
arately testable and obey good software engineering practices in terms of data hiding
and freedom from interactions.” The ordering problem arose because “KSs are trig-
gered by the order in which the blackboard is searched rather than the KS execution
being ordered by a consideration of the current problem state and goals.” An attempt
to solve these problems was the development tool AF, described in the next subsection
[54].

2.1.5 GTE’s Experimental Testbed

W. Frawley, Ralph Worrest, and Henrik Sandell of GTE Laboratories have been de-
veloping an experimental environment for exploring “real-time cooperative planning
and action” in multiagent domains [39]. Only a few results have been reported. One
early conclusion has been that cooperation and communication need to be designed
into the system from the start to allow better use of it, that is, the agents should not be
constructed first as isolated processors and then given the capability to interact. The
comment by the authors that “creating a useful experimental environment for DAI
research is a major undertaking” [122] is one worth noting, and goes very well with the
Rand researchers’ remark that “Distributed problem solving is an enigma” [11]. The
thought is that in-principle arguments for the usefulness of cooperation and multiple
agents are hard to make real; the practical issues are very complex. A promising idea
of the GTE researchers is to construct taxonomies to characterize different dimensions
and styles of behavior, and to try to reason out how they relate in addition to testing
human intuitions on a system [122].
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2.1.6 Stanford’s Formal Framework for Rational Interaction

Some very interesting “theoretical testbedding” has been done in the Knowledge Sys-
tems Laboratory at Stanford by Mike Genesereth, Matt Ginsberg, and Jeff Rosen-
schein. Their point of departure from prior distributed problem-solving research is
what they call the “benevolent agent assumption,” viz: “All agents are assumed to
have identical or nonconflicting goals and to freely help each other (with limited ex-
ceptions)” [44]. They reject this assumption and concentrate on how cooperation and
compromise can be achieved by agents with potentially conflicting goals. As they point
out, this “conflicting agent” metaphor is more realistic for many situations in which
DAT might be applied. It also seems more general, since techniques derived under the
assumption of benevolence appear less likely to scale when the assumption is removed
than do techniques developed assuming potential conflict when that assumption is re-
moved. Genesereth and his colleagues developed a formal framework for modeling and
investigating what agents ought to do to resolve conflicts.

The following chronology of this work is taken from the group’s summary for the
1984 Distributed Artificial Intelligence Workshop [44]:

Agents with identical goals, communication stralegies. Early work fo-
cused on the case of communicating agents that have identical goals, but
potentially distinct (and conflicting) information about the world [[100]].
We have isolated strategies of information transfer that will cause agents
to converge to identical plans, and identified strategies that will not cause
convergence. We have also examined what role “lying” (i.e., the transfer
of locally inconsistent information) might play in such interactions, and its
limited utility.

Agents with distinct goals, no communication allowed. Later work [[42,
43]] focused on the case where agents with potentially conflicting goals
had to interact, and no communication was possible (i.e., after initial joint
recognition of the interaction). A hierarchy of rationality assumptions was
developed, and various types of behavior were shown to provably follow
from each level of rationality. The notion of “common rationality” (where
agents use identical decision procedures in choosing their actions) was in-
troduced, and certain types of positive behavior were shown to result from
this assumption.

Agents with distinct goals, promises allowed. Qur latest work [[101]]
has introduced into the “conflicting agents” model the notion of binding
promises and deal making. Agents with distinct goals are assumed to be
capable of promising particular actions, contingent on certain conditions be-
ing met. Qur research has answered the gquestion of what kinds of promises
are rational, given assumptions (once again) about the rationality of other
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agents. It has also shown the power of communication: using a deal-making
mechanism, agents are able to coordinate and cooperate more easily than
in the communication-free model. In fact, there are certain types of in-
teractions where communication allows mutually beneficial activity that is
otherwise impossible to coordinate.

This work is a good example of the mileage that can be gotten from pad-and-pencil
testbedding, which might be a beneficial first stage in the design of any DAI system.
Because of its normative character, much of this work, at least in these early stages,
failed to address the issue of resource limitations on how rational an agent can be. This
has been a later topic of investigation in studying models of rational interaction and
rational behavior, and is obviously crucial to investigate for practical uses of rational
principles.

2.1.7 Intellicorp’s Distributed Expert System Simulation Testbed

Robert Filman of Intellicorp has announced a plan to build a testbed to be populated
with “collections of expert subsystems obeying different heuristic architectures.” He
is apparently interested in performance when expert systems of varying architectures
attempt to cooperate and compete with one another. Examples of the architectures he
has in mind include contract nets, distributed blackboards systems, the scientific com-
munity metaphor, “systems based on market economics, centralized control, classical
operating system priority mechanisms, neural mechanisms, and hybrids of the above”
[35].

2.1.8 Clarkson University’s Testbed for Monitoring and Controlling Large
Communications Systems

Susan Conry of Clarkson University recently reported a project that has been under-
taken there to build a testbed for investigating cooperative problem solving in commu-
nications networks. The task is distributed over geographically separate agents, who
must cooperate to assess the impact of various disturbances on the communication
system, diagnose the sources of outages, and plan the reconfiguration of the network
in the event of an outage [14].

2.1.9 Boeing’s Experiments on Optimal Cooperation of Knowledge Sources

Miroslav Benda, V. Jagannathan, and Rajendra Dodhiawala of the Boeing Advanced
Technology Center have done experiments to measure how the organization of knowl-
edge sources in a blackboard framework influences system performance. The task for
the community of agents was to corner an adversary. This ensured that the agents had
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to cooperate to solve the problem. They experimented with nine organizations and
found performance differences among them [4,64,5].

2.2 Survey of Development Tools

All of the systems described above as “testbeds” embody a specific environment and
family of problems for a proposed architecture to solve, and the role of the system is to
generate experimental results to show what properties of an architecture are best suited
to the particular version of the problem being run. In this subsection, environments
of a more exploratory and general nature are considered. These development tools for
DAI, which are sometimes also referred to as “testbeds” by the people who build them,
generally allow a rather complete definition of the agents and their communication
paths, as well as the problem to be solved and the environmental inputs to the system.
Seven such systems are reviewed below.

2.2.1 AGORA (CMU)

AGORA is an environment in use at Carnegie Mellon “that has been designed specif-
ically to build efficient problem solving architectures on a number of different multi-
processor computer systems” [7). The driving problem for building this environment
is the desire to speed the design of speech recognition systems, as part of a CMU
effort to develop real-time, continuous-speech recognition without previous knowledge
of the identity of the speaker. AGORA hides from the user all the details of the im-
plementation in a multiprocessor or single-processor system, as well as shielding the
user “from the complexity of interfacing programs written in different languages (C
and Common Lisp are currently supported, and eventually Ada will also be supported)
and executed in different operating systems (Berkeley Unix and Spice/Accent are cur-
rently supported)” [7). The system provides facilities for defining knowledge sources,
sets of hypotheses, and “knowledge clusters,” or collections of knowledge sources that
interact, communicate, or share some property in a way specified by the user. The
system also provides blackboards for the knowledge sources to access, and schedulers
for each cluster that coordinate the execution of its knowledge sources [7]. Roberto
Bisiani claims that “AGORA has reduced the time to assemble a complex parallel
system and run it on a multiprocessor from more than six man-months to about one
man-month. The main reason for this lies,” according to Bisiani, “in the fact that the
details of communication and control have been taken care of by AGORA.” He notes
that even shorter times would be necessary for efficient development, e.g. running and
completing a system in a single day [8].
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2.2.2 MACE (USC)

A summary of MACE recently appeared in Digital Design [6]:

One tool implemented on the iPSC system* with CCLisp is MACE from
the University of Southern California. Developed on the IBM PC/AT,
it was ported to other Common-Lisp standard environments—first to the
Texas Instruments Explorer workstations and then to the iPSC. Because
it is a flexible test-bed for building distributed AI systems, MACE may
show how future AI systems will work. MACE programs are built from
units called agents, which are objects encapsulating both data and pro-
gram code. Rule-agents may represent a single rule or a rule-based system.
Rule-based systems, a class of expert systems, capture knowledge as rules
specified by a knowledge engineer. MACE allows testing and exploration of
the parallelism of multiple-agent systems. It provides a complete program
environment in which to define and use agents. It provides automatic load
balancing by distributing agents across the nodes of a large-scale concur-
rent computer. Another MACE feature is instrumentation—meters and
measuring devices that tell the programmer how the user application is
distributed across the hardware system, and how eflicient the execution is.
This information is valuable not only to the researcher gathering data on
experiments with paralle] Al, but to the programmer debugging complex
applications on many nodes. Most current work with MACE focuses on
proving it is a description language for a variety of distributed Al systems.

A fuller account of MACE is given in [10].

2.2.3 Concurrent GESBT (SAIC)

The Digital Design article continues [6]:

Another tool, which has been used to develop an end-user application
[on the iPSC], is Concurrent GESBT. Concurrent GESBT helps to dis-
tribute an expert system across an array of iPSC nodes. Originally written
in Common Lisp on the IBM PC, it includes additional message constructs.
These constructs use the underlying CCLisp message streams to allow the
expert systems on each node to communicate with expert systems on each
of the other nodes. The resulting collection of cooperating expert systems
offers a simple tool for distributed expert system applications.

“The iPSC Al computer from Intel Scientific Computers is enhanced by Gold Hill Computer’s
Concurrent Common Lisp {CCLisp). Implementing a concurrent configuration, the Al version of the
iPSC supports up to 64 processing nodes. [Footnote in orginal ]
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Concurrent GESBT is simple because it offers the programmer no help
in distributing the application. The programmer determines how much
knowledge to store in the knowledge base on each node, and how many
nodes to use for the application. Most significantly, the programmer is
responsible for tuning the application: optimal performance depends on
a balance of computation per node (work for the individual expert) and
communication of data between experts (the cooperation requirements of
the problem). This is a difficult problem of load balancing, which is at the
core of parallel processing research.

The first application for Concurrent GESBT is a demonstration battle
management simulation developed at Science Applications International
Corp. (McLean, VA), creators of GESBT. A community of cooperating
expert systems uses captured knowledge to conduct air defenses for an air-
craft carrier task group. Each expert system contains the defensive strategy
for part of the total area about the aircraft carrier. The area around the
aircraft carrier is divided into six sectors, each representing 60 degrees of
the horizon.

Six sector commanders, located in an airborne radar command plane
(E2C), are each assigned an expert system on a CCLisp node. A seventh
expert system is assigned to the aircraft carrier commander, and an eighth
expert system tracks total resources. The application can address more
than 250 hostile airplanes as they converge on the carrier group from all
directions. Each of the six expert systems uses its knowledge about defen-
sive strategy to respond to the incoming airplanes. All six cooperate with
neighboring expert systems to borrow or loan resources, to warn of threats
entering new sectors and to report success or failure,

The Concurrent GESBT application uses only eight nodes of a 16-node
iPSC system. The design is such, however, that many instances of the
eight-node system can execute as each community of experts uses a differ-
ent defensive strategy against the same threats. With concurrent execution
of many scenarios, another expert system could choose among all of the sim-
ulation runs for the best defensive strategy. The final defensive strategy
could then be presented to human operators, with justification and reason-
ing. Such a system would execute far faster than the human planning-staff
equivalent, and of course the simulations could be run again and again as
the problem data changed.

2.2.4 ABE (Teknowledge)

In 1985, a group at Teknowledge led by former HEARSAY researcher Lee Erman be-
gan work on ABE, which was described as “a multilevel architecture for developing
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intelligent systems” [30]. At the heart of the architecture is a computing model re-
ferred to as “module-oriented programming,” which is presented as a generalization
of object-oriented programming models such as Smalltalk and Actors. The extensions
are that messages are broadcast to other modules who are attuned to receive that
type of message, and the module definitions must encapsulate how they manage a
set of processor resources (processors, memory, cycles) to accomplish pending module
actions. The modules are constructed hierarchically. The goals of this project are to
allow reuse of previously contstructed modules, integration of modules constructed in
different languages, and large-scale development of application systems [30].

2.2.5 AF (WPI)

Peter Green of Worcester Polytechnic Institute has reported work on a “framework for
real-time distributed cooperative problem solving” called AF (for “Activation Frame-
work”). This architecture attempts to remedy some of the problems he encountered in
the Distributed Sensor Networks Testbed (see previous subsection), namely the lack
of modularity and control focus in the distributed HEARSAY architecture. The basic
approach is to make what were HEARS AY nodes into what are here called “activation
framework objects (AFOs),” which generate hypotheses at varying levels of activation
(translated into immediacy for processsing by other nodes) and with varying “weighted
evidence levels” to indicate strength of support for other hypotheses. In other words,
it is a connectionist system, except that the machinery at each node is more compli-
cated than that of model neurons because there are expert knowledge and procedures
for hypothesis generation in each AFO. The architecture has been used to develop a

navigator for an autonomous vehicle and a system for a “smart conveyer belt robot”
[54].

2.2.6 Advanced Architectures Project (Stanford)

The Advanced Architectures Project of Stanford’s Knowledge Systems Laboratory
encompasses four subprojects, each of which is to contribute to the goal of achieving
“2-3 orders of magnitude in overall speedup for expert sytems applicatons through
the exploitation of parallelism” [98]. The subprojects are (1) The CARE Simulator,
a program to simulate machines with “up to 256 processors” that is reported to run
very slowly (“2-3 orders of magnitude slower than an equivalent program running
serially”); (2) Laming, “an object oriented programming extension to Lisp which is
designed to operate in a distributed memory multiprocessor environment”; (3) CAGE,
or Concurrent AGE, a version of the program AGE “extended with constructs for the
exploitation of concurrency which is targeted at shared memory and hardware”; and
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(4} Poligon, “a high level language and system for the implementation of blackboard-
like AT applications on distributed memory machines” [98]. This project is funded by
DARPA.

2.2.7 Connectionist Simulator (Rochestor)

The following is a description of the Rochester Connectionist Simulator for neural net
simulation, which appeared with the announcement of its general release in February
of 1987:

The Rochester simulator allows construction and simulation of arbi-
trary networks with arbitrary unit functions. It is designed to be easily
extensible both in unit structures and user interface, and includes a facility
for interactive debugging during network construction. The simulator is
written in C and currently runs here on Suns, Vaxen, and the BBN But-
terfly multiprocessor (and should run on any UNIX machine). There is a
graphics interface package which runs on a Sun urder Sun tools, and is
primarily designed for interactive display of the flow of activation during
network simulation . The simulator is easy to use for novices, and highly
flexible for those with expertise. [51]

2.3 Conclusions About Testbeds and Environments

The terms ‘testbed’ and ‘development tool’ have herein been distinguished from each
other primarily along the dimension of purpose. Testbeds, in addition to providing a
more complete specification of the problem than do environments, have as their pri-
mary purpose the carrying out of experiments to determine which of several candidate
architectures is the best for a particular problem. Development tools encompass en-
vironments and languages for building distributed Al systems to solve a more general
class of problems. An interesting possibility is that the two notions (testbed and tool)
could be combined to form a tool for the development and testing of actual systems.
The benefits of such a merger are more easily seen when one looks at the limitations
of either approach in isolation. Development tools that lack a strong simulation of the
environment and problem to be worked on offer little in the way of testing for the sys-
tems built with them, so while the definitional facilities may make things very nice for
the programmer, it may be harder to test the system gradually during development.
Testbeds put the emphasis on being able to test a variety of architectures quickly, which
limits the specification of each architecture to filling-in parameters; the language for
development is not rich enough, nor is the scope of possible architectures large enough,
to support software development in a full sense. There are certainly places in the ex-
ample systems described above in which the limits have been stretched. A system that
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is a true hybrid of testbed and tool could be of great use for the development of real
systems, by eliminating the limitations inherent in either approach individually.

This suggests perhaps a different motivation for testbeds than has led to their con-
struction in the past. To the extent that testbeds are designed merely to generate
experimental results, it seems that their value, though nonnegligible even in this con-
text, is somewhat diminished by the fact that much of what one learns qualitatively
from performing such experiments could have been predicted beforehand, and that
in other cases the causal factors that go into a result are so complicated as to make
generalization impossible. For learning general principles about DAI, careful thought
experiments may often be both more effective and less expensive, but at the point
where these ideas are to be applied, it seems that a testbed is indispensable in the
verification of well-thought-through, but potentially bug-ridden, designs. One might
conclude, then, that building testbeds is a good idea, but in a different style and for
different reasons from those that have been built in the past. Namely, the testbed
should provide a rich development environment for exploring architectures pertinent
to the driving problem, rather than just providing some parameters to be varied, and
it should be used to find a good design tailored to the actual problem to be solved,
rather than to find general rules for how to tackle a class of problems that may or may
not be of equal importance.
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