THE SRI MOBILE ROBOT TESTBED
A Preliminary Report

Technical Note 413

February 1987

By: Stanley Reifel
Research Engineer

Representation and Reasoning Program
Artificial Intelligence Center
Computer and Information Sciences Division

International

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED

)

This research has been made possible in part by FMC Corporation under contract 147466

(SRI Project 7390), and in part by General Motors Research Laboratories under contract
50-13 (SRI Project 8662).

333 Ravenswood Ave. * Menlo Park, CA 94025
(4157 326-6200 » TWX: 910-373-2046 ¢ Telex: 334-486




ABSTRACT

This paper describes a mobile robot designed for experimentation in artificial intelligence
(AI). Presented here are details of the robot’s hardware and software architecture. The robot
is driven by two electrically powered wheels. On-board computers control the motors and
visual and ultrasonic sensors. A library of low-level software provides primitive functions for
high-level programs to interface with the robot’s sensors and effectors.



Introduction

One of the goals of research in artificial intelligence is to develop information-processing
techniques that can be applied to systems that interact with their physical enviroument.
Sometimes it is possible fo investigate this problem using simulation and modeling methods.
Often, however, it is desirable to experiment with a fully integrated, functioning system that
has perceptual and motor capabilities. In order to study this area better, the Al Center of
SRI International is currently engaged in a program of basic research on intelligent mobile
robots, including the design and construction of a mobile robot that will serve as a testbed for
experimentation. In this paper, I describe the llardware and low-level software of the robot,
and its interface to higher-level programs.

Mechanical Architecture

The robot stands 35 inches tall and weighs 300 1b. The cross section of its body is octagonal. A
cylindrical shape would allow the robot to rotate about its center without the risk of colliding
into nearby objects; however, it is difficult to package rectangular equipment efficiently in
a cylindrical volume, and a lack of planar faces would make mounting sensors and controls
accessible from the vehicle’s outside inconvenient. The octagonal cross section is practical from
a packaging point of view and retains much of the maneuverability offered by a cylindrical
form. Its width and depth are 24 inches, large enough to house the necessary components
and narrow enough to navigate through doorways.

The robot’s body is built in two modular levels or tiers, with additional equipment
mounted on the upper surface. The multi-level architecture maximizes the area for mounting
the internal parts and provides a flexible environment for changes and additions. The Leight
of a tier can be easily increased or new tiers can be installed in a modular fashion. A single
“spinal cord” of cables connects the tiers together electrically. The eight faces around the
perimeter of each tier perform several functions. Structurally, they serve to support the layer.
The exoskeleton design is advantageous because none of the inner volume is obstructed with
support members. The rear face of each tier is used to attach all the connectors, controls, and
indicators that need external access by the equipment housed in that layer. Each rear panel
is hinged fo an adjacent face. The cables that connect to the panel components are grouped
along the hinge, making access belhind the rear panel simple. The side faces also help to give
the robot a clean appearance. Four views of the robot are shown in Figure 1.

The bottom tier of the robot is the locomotion platform. It contains the two motors,
gear-train assemblies, optical encoders, and the servo amplifiers. Two large batteries and a
pair of DC-to-DC power supplies are also mounted in this area. All of the heavy items are on
the bottom tier, so the robot is very stable because its center of gravity is near the ground.



Four views of the robot

1

igure

F



Attached to the outer faces of the bottom tier are 12 ultrasonic transducers and 8 bumper
bars linked to microswitches.

Enclosed in the upper tier are the computers. Two computers working at different levels
divide the task of controlling the robot. A small Z-80 based computer performs the low-level
sensor/effector functions, including controlling thie motors that drive the vehicle, coordinating
the ultrasonic devices, and monitoring the bumpers and battery voltage. The second computer
is a Sun Workstation that has been repackaged into a form suitable to fit in the robat. It is
divided into two subcomponents: a 12-slot multibus card cage housing ten PC boards and
a Winchester disk drive. Special precautions have been taken to ensure that the hard disk
will operate reliably and avoid damage from vibrations and collisions; the drive has been
mechanically isolated from the robot using rubber shock mounts manufactured by Barry
Controls. The disk orientation was selected so that the head is least likely to collide with the
platter. It is positioned with the plane of the platter aligned front to back and up and down
with respect to the robot. Thus only a side-to-side motion can cause the head to crash into
the disk. These precautions seem effective, because the disk drive functions reliably. Mounted
on the upper surface of the second tier is a LCD terminal, a television camera, the speaker
for the speech synthesizer, and two emergency stop buttons.

The body is supported by four wheels; two are driven by motors and two are free. The
powered wheels are located on the right and left sides of the robot. One motor on each side
drives a 10 inch wheel through a 25:1 gear reduction. An optical encoder is geared to each
wheel, providing position and velocity feedback to the motor controller. It would have been
easier to implement an open-loop system driven by stepper motors, but servoed DC motors
offer several advantages. Stepper motors with sufficient torque to propel the robot would have
been too energy-inefficient. A closed-loop control system provides better accuracy and allows
the computer to detect whether or not the vehicle is moving as expected. The two free wheels
are located in the front and rear of the robot. These casters are mounted on a spring-loaded
suspension system. The suspension guarantees that all four wheels support the robot when
it moves on uneven surfaces such as bumps and ramps.

This wheel configuration allows the robot to move forward and backward and along curved
paths and to rotate about its center. Unlike other designs, however, the robot cannot move
from side to side. The most common method used by omnidirectional velicles is a three-
wheel configuration, in which the steering mechanism couples the wheels together so they
always point in the direction of travel. The robot is maneuvered by rotating the tliree wheels
until they point along the desired trajectory and then driving them forward. This design
is not truly omnidirectional because it has only two degrees of control and seems to offer
little advantage over the differential drive method we use. Furthermore, because the vehicle
cannot rotate about its center, a pivoting sensor platform with slip rings is needed to conduct
electric signals to the base. Another approach that does achieve three degrees of freedom uses
three omnidirectional wheels equipped with rollers mounted along the perimeter of the wheels.
While this design provides more freedom of motion, it does so at the expense of additional



complexity and bulkiness. The wheel and roller assemblies are mechanically complicated and
the control problem is more difficult as well. This type of robot with a triangular footprint
uses its interior space inefficiently. No central area low-to-the-ground remains for mounting
large batteries and power supplies. We believe that the benefits of the simplicity of our design
seem to outweigh the advantages gained from onnidirectional motion.

Electrical and Computer Architecture

The robot js powered by two large electric vehicle batteries with a capacity of 85 Al at
24 V. These old-technology wet cells are used because our experience has shown that they
perform better than the more modern sealed gelcells. This single source powers both the
motors and the computers. For efficiency, the motors run directly off the raw 24 V; power for
the computers is conditioned by six Converter Concepts 100-W DC-to-DC switching power
supplies. This system provides about two hours of continuous operation. For longer debugging
sessions, an external battery charger can be connected that can power the robot indefinitely.

To propel the robot, two PMI U12M4LR flat armature DC motors are used. The servo
amplifier drives the motors with pulse-width modulation at 15.6 kHz, a frequency high enough
to be inaudible. As a safety precaution, the motor power is also controlled by a relay that
must be active for the motors to function. The relay can only be activated by manually
pressing the high-power-enable button. Tle relay can be disabled by several sources: any of
three kill buttons, either of the two computers, or a watchdog timer that detects if the motor
controller is inoperative.

The servo amplifier switches the motor power based on signals received from the motor
controller. The motor controller consists of four cards in a STD card cage. The CPU board is
an off-the-shelf product manufactured by Prolog that includes a Z-80 microprocessor, RAM,
ROM, and serial I/0Q ports. Three custom I/O cards are used to interface to the robot’s
sensors and effectors. Two of the cards provide the circuitry that generates the pulse width
modulated signals that drive the motors, decode the outputs of the shaft encoders and monitor
the bumper switches. Also, a hardware floating point processor is included to speed up the
servo control calculations, and an analog to digital converter is used to measures the battery
voltage. The third card is an interface to the ultrasonic sensors.

Twelve ultrasonic sensors provide range measurements to nearby objects. The transducers
are mounted six inches up from the bottom of the robot. Because most common obstacles
rest on the floor, placing the sensors low and pointing them in a plane parallel to the ground
increases the ability to detect these objects and thus avoid collisions. The transducers are
arranged with four pointing forward, equally spaced apart to cover the full width of the
robot. Four are similarly mounted in the back. Each side of vehicle has two transducers
aimed perpendicular to the direction that the robot moves, one forward of the wheels and one



behind. These side-mounted sensors are useful for following walls and detecting doorways in
halls. One reason for choosing this configuration is to reduce erroneous 1neasurements cause
by specular reflections. Because the robot often maneuvers in a rectilinear world and much
of the time it is aligned with that world, this placement of the transducers points them at
nearly right angles with the surfaces in the environment.

The ultrasonic electronics is organized in a network consisting of one host module and
six slave modules. Each slave module has its own single-chip microprocessor, two Texas
Instrument ultrasonic analog boards and a pair of Polaroid instrument-grade transducers.
The slaves are responsible for controlling the analog electronics, measuring the time of flight
of the sound waves, and communicating with the host over a common ribbon cable bus.
The host module serves as an interface between the slaves and the motor controller. This
networked architecture is used for several reasons. By mounting the analog electronics near
the transducers, the coaxial cable that connects themn together can be very short; this reduces
the possibility of inducing motor noise into the ultrasonic signal. Having a single digital bus
connecting the slaves with the host module simplifies the wiring and improves reliability, since
an error correcting protocol is used. Because the host and slave modules eaclh have their own
microprocessor, the work of controlling the ultrasonics is distributed rather than performed
by the motor controller.

After the initial installation of the ultrasonic system in the robot, we found that motor
noise caused false echos and, therefore, faulty range measurements. This problem was solved
by reducing the noise generated by the motors and shielding the ultrasonic analog electronics.
The noise is attenuated by small capacitors across the motors and the servo amplifier, and
by high-frequency ferrite shielding beads that are placed on the wires leading to the motors.
Small aluminum plates are mounted near the circuit side of each pair of ultrasonic analog
boards to provide additional shielding for the analog electronics from the remaining noise.

The ultrasonic modules receive instructions from tlie motor controller, and the motor con-
troller is directed by the on-board Sun through a fast serial line. The Sun is a general-purpose
off-the-shelf computer that runs the UNIX operating system. The hardware is designed around
the Intel multibus, which is advantageous because a rich variety of peripherals are available
for it. The CPU is a 68010 microprocessor with four megabytes of physical memory. The
Sun includes three types of I/O devices: a 42-megabyte Micropolis hard disk, an Ethernet
controller, and six RS-232 serial ports.

Augmenting the standard Sun hardware, we have added additional I/O devices. The
video electronics consists of an Imaging Technology video digitizer, 2 Sony CCD camera, and
a Sony Watchman monitor. The digitizer has a resolution of 512 by 512 with 8-bit pixels.
Black and white images and graphics can be displayed using the on-board Watchman CRT or
pseudo-color images can viewed with an off-board RGB monitor. A Prose 2000 speech board
gives the robot the ability to synthesize speecli. This a single Multibus board that accepts
standard text from a serial line and uses a synthesis-by-rule algorithin to generate speech.



An LCD lap-top computer is mounted on top of the robot to serve as the console for the Sun
Workstation.

Low-Level Software Architecture

The lowest-level software that drives the robot runs in the motor controller and is written
in Z-80 assembly language. Implemented here are two PID servos that control the right and
left wheels independently. Fifty times per second, a new power level is computed for each
wheel, based on the values from the optical encoders and several parameters such as desired
velocity and acceleration. Also during this cycle, a packet of status information is built and
sent out over a serial line to the Sun. This continuous stream of data reports the robot’s
velocity, position, battery voltage, sonar data, and error codes. Because the Sun is constantly
receiving information about the robot’s state, little delay is introduced by acquiring this data.

The Sun instructs the motor controller by sending it command packets over the same serial
line. These command packets are used to set the motor controller’s internal parameters, to
stop and start the robot motion, and to poll the ultrasonic sensors. The parameters that can
be set include the rate of acceleration, the velocity, and the feedback constants used by the
servo algorithm. Two methods can be used to control the robot for discrete movements and
continuous motion. For discrete movements, a command instructs the right and left wheels to
each move a given distance and then stop. This primitive is used for moving along a straight
path or a circular path, or for rotating about the robot’s center. A separate command is used
for continuous motion, which takes signed velocities as arguments. This method is typically
used when the robot is servoed from ultrasonic or visual data.

The Sun uses a special character handler that collects the status packets and sends new
commands to the motor controller. Each character that is received from the motor controller
is added to the packet currently being built. When a full packet is collected, its integrity
is verified by comparing the checksum of the data with the expected value. After a valid
packet is received, the robot’s X, Y, theta location is computed by integrating the change in
position of the right and left wheels. This information, along with the packet received, is then
made available to the user process. Commands to the motor controller from the user process
are queued by the character handler and transmitted in the background. After the motor
controller receives a command, it acknowledges whether the packet was received incorrectly,
causing the Sun to retransmit if necessary.

All of the robot’s 1/O devices are accessed by user programs through calls to three libraries.
One library interfaces to the motor controller through the character handler, supporting all
the motion control and ultrasonic functions. Ultrasonic measurements can be requested two
in different ways: the Sun can poll each sensor individually, thus allowing random access,
but the propagation delays of this method, limit the total number of ultrasonics readings per



second to five. Alternatively, the Sun can provide the motor controller with a sensor polling
pattern. The motor controller then continuously samples the defined transducers and includes
the results along with a time and robot position stamp in the outgoing status packet. This
system increases the sampling rate to 16 readings per second. A combination of both methods
may also be used. ‘

A second library has a set of procedures that are used to interface with the speech server.
The speech server is organized with three queues for speech output. The queues are prioritized,
with the highest priority being for emnergency error messages, the middle for normal messages,
and the lowest for debugging information. The speech server runs as an independent process
that polls the three queues and drives the Prose 2000 synthesizer. The third library provides
primitive functions to control the video hardware, capture images, and display graphics.

Programming Environment

The robot’s programming environment centers around the UNIX operating system used by the
on-board computer. UNIX offers several advantages over a simple kernel. Properties such as
virtual memory and multiple processes are useful when developing large, complex systems such
as this. UNIX provides debugging facilities and supports numerous programming languages.
Having an on-board disk and a file system allows the robot to be self-contained by keeping
all of its programs and data files resident. Sun UNIX includes Ethernet support, making
communication with other computers simple and fast.

Programs written to control the robot can execute on its internal computer or on larger
off-board computers. Programs targeted to run on the robot directly are edited and compiled
on a Lisp machine or Sun Workstation. Executable code is downloaded to a file on the robot
using the Ethernet. The net is then disconnected, and the robot can load and run programs
saved on its disk. Debugging these as well as most real-time programs is often very difficult.
We have found three of our I/O devices to be useful as debugging aids. Having a fast disk
allows logging large amounts of data on-the-fly that can then be analyzed after completing an
experiment. The graphics hardware has proven to be very useful for displaying sensor data in
real-time using a format that is easy to visualize, such as points, line segments, and processed
images. When the robot is running, reading the console output in addition to watching the
graphics display and the robot itself is difficult. By directing console messages to the speech
synthesizer, programs can explain what they are doing in a2 manner that is not distracting.

Projects that require faster computers or different programming environments can make
use of the robot by controlling it remotely from an off-board computer. With an Ethernet
tether to the robot, other computers can make remote procedure calls to all of the primitive
functions defined in the robot’s I/0 libraries. From a Symbolics Lisp machine, about 40
remote calls can be made to the robot per second, fast enough to do simple servoing. This



method of controlling the robot offers its advantages at the expense of slower access to the
sensors and effectors and sacrifices in autonomy.

Acknowledgments

Stanley Rosenschein has provided considerable high-level guidance throughout the develop-
ment of this project. The contributions of Leslie Kaelbling and William Wells to the overall
design of the robot and specifically to the robot interface libraries have proven invaluable.
The insights of Arthur Crittenden and Ernest Lantz aided in solving many of the special
mechanical problems.



