THE SYNTHESIS OF DIGITAL MACHINES
WITH PROVABLE EPISTEMIC PROPERTIES

Technical Note 412

April 1987

By: Stanley J. Rosenschein
Director
Leslie Pack Kaelbling

Computer Scientist

Representation and Reasoning Program

Aftificial Intelligence Center

Computer and Information Sciences Division

and '

Center for the Study of Language and Information

nernational

APPROVED FOR PUBLIC RELEASE:
' ' DISTRIBUTION UNLIMITED

This research has been made possible by a gift from the System Development Founda-
tion, by FMC Corporation under Contract No. 147466, and by General Motors Research
Laboratories under Contract No. 50-13.

333 Ravenswood Ave. ¢ Menlo Park, CA 94025
{415) 326-6200 « TWX: 910-373-2046 » Telex: 334-486

Abstract

Researchers using epistemic logic as a formal framework for studying knowledge
properties of artificial-intelligence (Al) systems often interpret the knowledge formula
K(z,) to mean that machine x encodes ¢ in its state as a syntactic formula or can
derive it inferentially. If K (x,) is defined instead in terms of the correlation between
the state of the machine and that of its environment, the formal properties of modal
systern S5 can be satisfied without having to store representations of formulas as data
structures. In this paper, we apply the correlational definition of knowledge to machines
with composite structure and describe the semantics of knowledge representations in
terms of correlation-based denotation functions. In particular, we describe how epis-
temic properties of synchronous digital machines can be analyzed, starting at the level
of gates and delays, by modeling the machine’s components as agents in a multiagent
system and reasoning about the flow of information among them. We also introduce
Rex, a language for computing machine descriptions recursively, and explain how it can
be used to construct machines with provable informational properties.

Introduction

Many important computer applications involve the design of hardware and software that
are part of a larger system embedded in a physical environment. Applications of this kind
arise in process control, avionics, robotics, and artificial intelligence; in the typical case, the
computer’s principal task is to keep track of and react to conditions in the environment. For
the system to operate as desired, it must be designed to recognize the relevant environmental
conditions and to compute appropriate responses when required. As more open-ended
environments are considered and as conditions to be recognized and the responses to be
supplied become more complex, the job of designing real-time embedded systems becomes
correspondingly more difficult.

The problem is particularly acute in the design of highly reactive artificial-intelligence
(AI) systems, such as intelligent robots. A robot can be viewed abstractly as a complex
control system that monitors sensory inputs and acts to achieve or maintain certain goal
conditions in its environment. In simple control systems, facts about the environment can
often be encoded as a small set of numerical parameters. More complex kinds of information,
however, such as those needed by intelligent robots, require correspondingly more complex
data structures for their encoding. Moreover, real-time performance requires that there be
a constant bound on the number of computational operations performed between input and
output. .

The Artificial Intelligence Center at SRI International is designing and implementing a
mobile robot in the tradition of Shakey [19]. Tle aim of this project is to combine significant
perceptual, reasoning, and communicational abilities in an autonomous computer-controlled
device and to have it operate in real time. Because the concept of knowledge is a useful and
powerful abstraction for the design of complex agents, we are attempting to reconcile the
goal of manipulating complex information with that of real-time operation by adopting a
design approach based on the use of (1) epistemic logic in the formal analysis of the robot’s
information states and (2) a language for specifying real-time control programs that are
amenable to this type of formal analysis.

One useful abstraction in the design of such systems is the concept of knowledge. The
statement “system z knows " provides a compact description of the propositional content
of information encoded in z’s state without specifying the details of the encoding. Much
work on formalizing properties of knowledge has been done in philosophy [8,13], theoretical
computer science [6], and AI [18,15,12]. Most of the work in this tradition is carried out in
an abstract setting; the essential concept of knowledge is not given a concrete physical or
computational interpretation. When such interpretations have been given for Al systems,
they have typically involved encoding sentences of a formal language as data structures in
the machine. For instance, a system might be regarded as knowing ¢ if its knowledge base
contained a sentence expressing ¢, or if such a sentence could be derived computationally
from other sentences in the knowledge base. One important practical advantage in this
approach is the ease with which the designer can attribute propositional interpretations to
the machine’s states. However, there are two important disadvantages of this approach:

first, general inference is highly computationally complex and cannot be carried out in real
time; second, although the designer of a system may have in mind a particular interpretation
of the formal language he employs in the machine, it may not describe the machine’s state
of information about the world correctly.

The situated-automata approach attempts to avoid inferential complexity by providing a
concrete computational model of knowledge in a framework that does not depend on viewing
the system as manipulating sentences of a logic [20]. In the situated-automata framework,
the concept of knowledge is analyzed in terms of logical relationships between the state of a
process {e.g., a machine) and that of its surrounding world. Because of constraints between
a process and its environment, not every state of the process-environment pair is possible,
in general. A process 7 is said to know a proposition ¢ in a situation in which its internal
state is s, if in all possible situations in which 7 is in state s, ¢ is satisfied. This definition of
kuowledge satisfies the axioms of modal system S5, including deductive closure and positive
and negative introspection.

In its original formulation, situated-automata theory dealt with the state of a system as
an unanalyzed whole. Since machines designed for real applications can take on an enormous
number of states, they must be built hierarchically, with the size of the state set growing as
the product of the sizes of the state sets of the component machines. This paper extends
situated-automata theory to hierarchically constructed machines in order to facilitate the
epistemic analysis of composite machines. In particular, we use the situated-automata
model of knowledge to analyze synchronous digital machines by viewing their components
as elements of a multiagent system and reasoning about the flow of information among
tliese components.

Real-time performance has often proved difficult to achieve with traditional AI tech-
niques. This difficulty stems, in part, from a failure to distinguish between two types of
facts that are relevant to a robot’s operation. The first of these can be called dynamic
facts, as they involve moment-to-moment conditions of the environment. The second type
comprises permanent or static facts, that is, those that are better regarded as part of a
model of the environment in which the robot operates. The traditional AI approacl to the
encoding of information (“knowledge representation”} is to think about all these facts as
objects of the same sort and to encode them uniformly as symbolic data structures that
are manipulated by the program. This approach is attractive because it seems to offer the
possibility of reducing the problem of designing intelligent machines to the conceptually
simpler task of encoding knowledge in a logical language and constructing programs that
syntactically derive consequences of facts in a knowledge base.

As attractive as this strategy may be, its implementation involves serious technical
difficulties that derive from the computational complexity of inference. It is well recognized
that the more open-ended the environment, the more expressive is the logic needed to
describe it and the less tractable is the problem of reasoning explicitly in the logic. In some
applications, the moment-to-moment synchronization of the programs with conditions in
the surrounding world can be conveniently ignored. In such domains (e.g., theorem proving,
medical diagnosis, and geology), the time complexity of inference is not a critical problem;

thus, the implementation of intelligent information processing by means of conventional
symbolic inference techniques is feasible.

However, in the mobile-robot domain, the permanent facts relevant to time-critical, low-
level interpretation and decision-making are so complex that is it impossible to reason with
them explicitly in real time. This point is hardly controversial; the assumption is generally
made that, in applications of this sort, static knowledge must be “compiled in.” The work
described in this paper provides conceptual foundations upon which a formal theory of
krowledge compilation might be built.

Considerations of real-time performance and semantic rigor have led to the development
of Rex, a set of tools for constructing complex programs with formally definable epistemic
properties. Instead of constructing a description of the target machine directly, the designer
writes a program that, when run, computes a component-level logical description of the
machine. This description can then effectively realized as circuitry, as code for a parallel
machine, or as a program that simulates the machine on a sequential computer. Since
synchronization with the environment lies at the heart of our definition of knowledge, the
Rex tools have been desigued to guarantee real-time interaction between the target machine
and the environment. Of course, the Rex system itself need not be real-time since i is not
intended to be coupled to the plysical environment.

In the remainder of this paper we present a description of the theoretical background
of this work, an introduction to Rex with some simple examples, and the application of
situated-automata theoretic analysis to programs suggested by the mobile robot domain.

Theoretical Background

A useful theory of intelligent embedded systems must be capable of describing how certain
parts of the physical world encode information about other parts over time and how their
behavior exploits that information. We model this situation abstractly by constructing the
requisite concepts from a small set of primitives: space, time, possibility, and truth. Our
approach is to use a propositional language that is enriched with terms for processes and
the values they can take on (i.e., states they can be in) and is closed under various temporal
and epistemic operators. The semantic interpretation for this language is given in terms of
times, locations, and possible worlds. Processes are modeled as spatial “trajectories” with
cross-world identity — that is, they are identified with functions from world-time pairs to
complex spatial locations. Knowledge is modeled in terms of the relationship between the
states of a process and states of the environment. In the following sections, we shall discuss
these basic concepts, then introduce an epistemic and a denotational method for analyzing
the semantic content of states of machines; each type of analysis will be illustrated by a
simple example.

Basic Concepts

Let a universe U = (L, T, W), where the set L {atomic locations) is a topology suitable for
modeling physical space, T (tirmes) an ordered set of instants, and W (possible worlds) an
abstract set of indices of possibility, i.e. possible histories or ways the world could be.

We identify tle set of processes I with their spatial trajectories — that is, the set of
mappings 7 : W x T — 2P, 7(w,t) denotes the set of locations occupied by process 7 in
world w at time t. We will let IIp denote the set of atomic processes; a process 7 is atomic
if, for every world w and time ¢, #(w,1) is an atomic location. The set of processes inherits
the structure of L; it is closed under pointwise union, intersection, and complementation;
moreover, one process can be a subprocess of another. The null process is denoted by [],
and [#,...,%,] denotes a process tuple that is made up of subprocesses wi,...,7n. The
value domain of a process w, written as D, is a distinguished set of mutually exclusive
and exhaustive properties of that process. The atomic value domain, Dy, is defined to be
Umen, Dri» and complete domain D is the union [, ¢q; Dx; of the value domain of every
process. The function § : IIXW xT — D associates with each process, world, and time the
value (or state) of the process in that world at that time in such a way that §(m,w,t) € D,.

Epistemic Logic for Analysis of Machines
Language
We begin by defining the symbols of the language:

Symbols: P = {start, p1,pz,...} (atomic formulas),
' A={[],a1,az,...} (process constants),
C ={{(),e1,¢c2,...} (value constants),

F={f1,f2.-} (function symbols),

{Ac}eec (delay-element predicates),
{Ts}ser (function-element predicates),
= (equality symbol)

(11,41} (pairing functions),

Ay (Boolean connectives),
K,Ow,0r7,0 (modalities),

*, O (term operators).

Next we give the formation rules:

Terms:

If e is a process (respectively value) constant, then e is a process (respectively value) term.
If ey, ey are process (respectively value) terms, then so is [e; | e2] (respectively {e; | e2)).
If x is a process term, then *x is a value term.

If u is a value term and f is a function symbol, then f(u) is a value term.

If e is a term, then so is oe,

Nothing else is a term.

DU 0 b

Formulas:

1. If p is an atomic formula, then p is a formula.

2. If €1, e; are terms, then e; = eq is a formula.

3. If ¢ is a value constant, f is a function symbol, and z,y are process terms,
then A.(z,y) and I ¢(z, y) are formulas.

4. If ¢ and 4 are formulas, then so are (¢ A 9), =, Owe, Ore, and Oe.

. If z is a process term and ¢ is a formula, then K (z,¢) is a formula.

6. Nothing else is a formula.

ot

The connectives V, —, « are defined as follows: pV ¢ = (- A-¥), p = P =V Y,
and ¢ & ¢ = © — P A — ¢. A combined necessity operator can be formed from
the time and world modalities: O¢ = OwOpe. Dual modal operators can also be defined:
O = O, etc. We abbreviate (u; | (ug | ---(}---}) as {uy,ug,---yand [zy |[z2]---[]--]
as [z),Z2,- - -]. We sometimes take integers to be value constants and lowercase letters early
in the alphabet to be process constants. We also omit parentheses according to the usual
conventions.

Semantics

The semantics of our logic is given with respect to a model of space, time, possibility, and
state that is a specialization of the basic concepts presented earlier. Possibility is modeled
with the standard techniques of possible-worlds semantics. For each possible world and
instant of time, the model assigns an atomic state to every atomic location. We model
processes as occupying collections of atomic locations; these collections vary with time
and possible worlds. To conveniently name subprocesses, we impose additional structure on
space and state by closing the set of locations and the set of states under pairing operations.
Formally stated, if A is a set, we define pairs(A) to be the least set that contains A,
includes the distinguished element nil 4, and is closed under pairing: z,y € pairs(A4) implies
(z,y) € pairs(A). Processes can then be formally identified with functions that map (W xT)
into pairs(L) that, for each world and time, specify what structure of atomic locations is
occupied by a particular process.

Models: M = (U = (L,T,W), Do, q,I = (Ip,I4,Ic,IFr)), where .
W is a nohempty set of possible worlds. ‘

T is a nonempty set of {ime instants isomorphic to the natural numbers.

L is a nonempty set of atomic locations.

Dy is a nonempty set of atomic states.

g: L XW xT — Dgy assigns atomic states to atomic locations at every world-time pair.

Ip : P — 2WXT interprets atomic formulas as sets of world-time pairs.

I4:A— (W xT)— pairs(L)) interprets process constants as processes.

Ic : C — pairs(Dg) interprets value constants as value structures.

Ip 1 F' — pairs(Do) — pairs(Dp) interprets function symbols as functions on value structures.

CDOD‘HIO‘JCIIVRDJI\DI—*

We extend the function ¢ to pairs in the obvious way by defining § : pairs(L) x WXT —
pairs(Dyp) as follows:

g(nilp,w,t) = nilp,,
Ww,t) = atwt)orte L,
(j((SI)S?):w?t) = (é(slawst)fé(327w’t))

The denotation of a term e relative to a model and a world-time pair, written [e]]‘tM’w,
is defined as follows (reference to the model is suppressed):

[e]¥ = Ta(a)(w,t) if a is a process constant.

el = Ic(c) if ¢ is a value constant.

[[= |]I’ = (E=1y" . [w]y"), for [z | 9] a process pair.
[(u | o)) = ([uly, [v]}), for (= | ¥} a value pair.
[+l = 4([=]y, w, 1)

[(@] = Ir(([u]P)-

foe]y = [[e]lﬁl-

N R

Satisfaction of formulas is defined relative to a model M and a world-time pair w,1
(again we suppress reference to the model):

1. w,tE=pif {(w,t) € Ip(p), for p € P.
2. witle1= e if [e1]V = [ea]-
3. w,t = Az, y) if for all w' € W, ¢’ € T, §([y]¥’, w',0) = Ic(c) and
([l vt + 1) = (=1, ', 1)

4wt Tg(a,y) if for all w € Wt € T, 4([akit» v, #) = In(/) (@l ',).
5. w,itlE(pAY)fw,tE ¢ and w,t | .
6. w,t = pif w,t Fe.
7. w,t E Owe if w',t = ¢ for all w’' € W.
8. w,itEOrpifw,t' Eeforallt € T.
9 w,itEQpifw,t+lE .
10. w,t | K(z,¢) it w',t' Eeforalw e W,t'eT

such that §([z]¥’, w',?) = §([=]¥, w,).

This definition of satisfaction can be interpreted informally as follows: clauses 1 through
4 specify the interpretation of atomic propn=itions, with clauses 3 and 4, respectively, cov-
ering formulas that describe delay elemen 1 functional components of machines; clauses
5 and 6 define the interpretation of the Beo :an cenectives in the standard fashion; a stan-
dard treatment of possibility and linear-time temporal logic is specified in clauses 7 through
9; clause 10 can be viewed as defining the semantics of the modal knowledge operator K
in terms of an epistemic accessibility relation on the set of world-time pairs. A world-time
pair, (w',t), is epistemically accessible from another (w,t) if, for all the agent in (w,t)
knows, he might have been in (@', t'). In logics of this type, if the accessibility relation is an

equivalence relation, the logic will satisfy the axioms of modal system S5 [9], iucluding the
axioms of deductive closure, positive introspection, and negative introspection. We lave
operationalized the notion of “is the same as far as the agent knows” as “is indistinguishable
to the agent;” that is, the agent’s state is identical in each case. We identify ageuts with
processes, and define the accessibility relation for process =, written as a2, as follows:

(w, 1)~z (W', 1) = §(m, w, 1) = §(r, v, 1)

Under this definition, = is clearly an equivalence relation on W x T, and the S5 axioms
are satisfled [20].

A model M is said to simply setisfy a formula if and only if M,w,t = ¢ for all
w € W,t €T. A formula is velid if it is satisfied by every model. A set of formulas I entails
a formula ¢ (written T’ |=) if and only if every model that satisfies all the sentences of T’
also satisfies .

We do not present an axiomatic treatment of the logic; the interested reader is referred
to standard treatments of modal logic [9], logics of time and knowledge [16,14], and their
application to Al [18,20]. In a later section, we present informal proofs in the logical lan-
guage and appeal to valid formulas and entailments involving K and other modal operators.
Some of the more important ones are listed here:

1. Theorems of propositional logic and temporal logic [186,2].

2. EOwp—p

3. FOrp— ¢

4. E K(z,0) = ¢ (truth).

5. F K(z,¢p —) = (K(z,p) = K(z,%))) (consequential closure).

6. = I(z,p) = K(z, K(z,)) (positive introspection).
7. E-K(z,0)— K(z,~K(z,¢)) (negative introspection).
8. E+z=v— K(z,xz =) (self-awareness).

9. k= Az, y) & O(start — *y = cA %oy = %z) (delay-element axiom).
10. | Hg(z,y) « O(xy = f(*z)) (functional element axiom).
1. g, = EY (modus ponens).

12. ¢ = K(z,¢) (epistemic necessitation).
13. ¢ = Dwe (alethic necessitation).
14. o = O7¢p (temporal necessitation).
15. ¢ E Qp (succedent necessitation).
16. E K(z,0)A K(y,%) — K([z | y],eA) (spatial monotonicity).

Modeling Machines in the Logic

Physical processes (of which the processes in the logic are idealizations) can be described
in many ways. One class of descriptions specifies permanent structural relationships among
processes and their subparts. Behavioral descriptions, on the other hand, specify how
the states of processes vary over time. Epistemic descriptions comprise yet another class,
specifying the information carried by processes. These descriptions are not unrelated; in

general, structural constraints entail certain behavioral properties, which in turn entail
epistemic properties.

In designing computational systems, we are especially interested in discrete processes,
i.e., processes that can be described in terms of discrete sets of locations, states, and instants
of time. For example, registers in a digital computer are easily modeled as compound
processes made up of flip-flop subprocesses with value domain {H, L}, with H denoting the
property of being in a high-voltage state and L a low-voltage state.

A machine is modeled as a pair of possibly complex discrete processes subject to struc-
tural, behavioral, or epistemic constraints. The notation m(z,y) means that output process
¥ acts as a machine of type m with respect to input process z; that is, and vy satisfy the
behavioral constraints imposed by m. When we wish to be concrete, we refer to these
processes as storage locations, since they can be realized in digital hardware as physical
components, such as wires and flip-flops. The physical state of a storage location « can
then be modeled in the logic as the value, *z, of that process.

Just as complex physical machines are built up from primitive components of a few basic
types, complex machine descriptions are built up from primitive constraints corresponding
to the basic component types. Pure functional machines (e.g., logic gates), are modeled
in the logic by function-element predicates II¢, while delay components are modeled by
delay-element predicates A.. The component modeled by II¢(z,y) computes the primitive
function f : Dy — D, “instantaneously”; the delay component modeled by A (z,y) initially
has the constant value ¢ at its output location y; thereafter the value of y is the value that
z had one time unit ago. The behavior of these components is formally characterized in
formulas 9 and 10 of the previous section. Complex machines are ultimately made up of
storage locations constrained to act as machines of the primitive types and may be built
up through arbitrary interconnection or by means of composition operators. One complete
set of such operators consists of serial, parallel, and feedback compositions. These have
well-understood mathematical properties and have been studied extensively in the context

of the theory of automata and switching circuits [7]; they will be illustrated by examples in

following sections.

Epistemic Analysis of a Simple Machine

In this section we present a concrete example of applying the logic described above to a
very simple machine, namely, an and gate. Shown in Figure 1, it has two inputs and one
output. The value domain of each of the inputs and outputs is {0,1}, and the output is the
value of the function and applied to the inputs. The and function is described by

and(1,1}=1Aand(1,0)=0Aand(0,1)=0 Aand(0,0)=0. (1)
The diagram can be summarized as
Dena([X | Y1, 2)- 2)

We will now prove formally that, if X knows ¢ when it has the value 1 and ¥ knows ¢ — 2
when it has the value 1, then the output, Z knows 1 when it has the value 1. Thus, although

w

Y AND /1

Figure 1: An and gate.

the machine is only anding its values, it can be viewed as performing modus ponens at the
level of propositions. Our formal assumptions about the semantics of the machine’s inputs
are

+X=1 — K(X,p) (3)
Y =1 — K(Y,p—) (4)

From Theorem 9, which describes the behavior of functional machines, and the configuration
of this particular machine (Formula 2 above), we can deduce

O(+Z = and(*[X | Y])). (5)
From this and the definition of and (Formula 1) it follows that
* X =1A+Y =1 =+xZ=1. (6)

Then, invoking our assumptions about the knowledge of the inputs (Formulas 3 and 4), we
have
*Z =1- K(X,0)AK(Y,o—). (7)

By the epistemic axiom of truth (Theorem 4), this formula implies
*Z=1=(prp~ 1), (8)
and hence, b3f standard operations of propositional logic, also implies
$Z=1- 9. (9)
The following is an instance of Theorem 8, self-awareness:
*Z =1— K(Z,xZ =1). (10)
Next, we apply epistemic necessitation (Theorem 12) to Formula 9, obtaining

K(Z,+Z =1 —). (11)

Using the valid propositional transformation of strengthening the antecedent of the previous
formula, we have
*Z =1— K(Z,«xZ=1—1). (12)

Finally, we gather Formulas 10 and 12
xZ=1>K(Z,xZ=1)ANK(Z,xZ=1— 1), (13)

move the conjunction inside the scope of the K (the validity of this step follows from
Theorem 5, consequential closure) '

xZ=1—=K(Z,xZ=1A+2=1— 1), (14)
and then simplify by using modus ponens, which yields
xZ=1— K(Z,v). (15)

Thus we have shown that the output location Z knows 4 when it has the value 1.

The Semantics of Knowledge Representation

The need for formal semantics of knowledge representations is well recognized by Al re-
searchers. Usually, formal semantics are attributed in the Tarskian, truth-definitional man-
ner by specifying a denotation function that maps symbolic structures into their meanings.
Traditionally, these denotation functions have been stipulated uniformly, in the sense that a
symbol is viewed as meaning the same thing no matter where it is located in memory or what
state of the world caused it to be there. Furthermore, the relation between the operation of
the machine and the content of the representation is often ignored. In situated-automata
theory, a finer-grained approach to denotation is adopted. Meanings are associated with
values in a location-dependent fashion, and the denotation function depends crucially on
the behavior of the machine.

In addition to the modal K (X,) notation, we can use denotation functions that map
the values of a process to their propositional content. We define the set of propositions &
to be 2% *T: Each element ¢ € & is the set of world-time pairs in which that proposition
holds. @ has the structure of a Boolean algebra (of sets). The ordering T corresponds
to entailment: ¢ C ¢’ means that ¢ is less general than (i.e., entails) ¢'. The operations
M, U, and - correspond to intersection, union, and complementation of propositions. The
strongest postcondition operator S : & — & satisfies the formula: S{¢)(w,t + 1) = p(w, t).
This is the strongest proposition that must hold one time instant in the future, given that
o holds now.

For a particular process # and value v € D, we define the denotation of v for 7 as the
strongest proposition consistent with #’s having value v. This proposition corresponds to
the information that the process has about its environment when its value is v. We define
the denotation function from values to propositions p, : D — ® formally as

10

a(0) = {(w, 1) | §(m,w, 1) = v}

Denotations and knowledge are directly related in the following manner:

w,t ke K, @) iff pa(d(m, w,1)) C o

In the next section we will explore the relationship between denotation and machine
structure, as we did with knowledge.

Machines as Inducers of Semantic Transformations

A machine can be viewed as performing a transduction from the time series of values at its
input location to values at its output location. Correspondingly, at the denotational level,
each machine type has associated with it a higher-order function on denotation functions,
transducing the time series of propositions known at the input location to propositions
known at the output location. We call this function the semantic-transformation function
of the machine; it takes the denotation function of the input onto the denotation function of
the output. We will notate the semantic-transformation function associated with machine
type m by 7(m). Formally expressed,

m(z,y) = py & 7(m)(ks).

Tlie semantic-transformation function for any machine is determined entirely by the semantic-
transformation functions of its primitive machines and by their interconnections. For the
pure functional machines II ¢, the semantic-transformation function is defined in the follow-

ing way:
M) = |])
vEf~1(v)

Essentially, the denotation function of a particular value of the output location of a func-
tional machine is a disjunction over the denotations of all of the possible values of the input
location that could have given rise to that value in the output location.

For A,, the family of delay machines parameterized by ¢, the semantic transformation
function is defined as follows:

B ot S{p(v)) ifv=c
(A () (v) = { (rso(#(v))# otherwise

The proposition ¢p is taken to be the strongest proposition guaranteed to be true when
the machine is started; that is, ¢p = {(w,0) | w € W}. The denotation of a value » at
the output location is either the strongest postcondition of the denotation of v at the input
location if v # ¢ or, if » = ¢, the disjunction of that proposition with .

11

The denotation function of a complex storage location [X),...,Xy] is the intersection
of the denotation functions of its sublocations:

KX,,,\’n]([uh cesUn) = H #Xi(uf)'
1<i<n

It follows that information is spatially monotonic; if X is a subprocess of ¥ and X carries

the information that ¢, then so does ¥. Of course the converse is in general not true,
and much of the “inference” that takes place in an intelligent machine might be viewed as
information localization, i.e., causing information carried by a large collection of storage
locations to be carried by a smaller one.

In addition, all semantic-transformation functions induced by machines are monotonic.
This can be seen by observing that no negations occur in the definition of any of the
semantic-transformation functions; intersection and union are both monotenic functions -
on the domain of denotation functions. Even an inverter (i.e. a primitive II, ¢, where
not(0) = 1,n0t(1) = 0), induces a monotonic semantic transformation function:

g1 Cpz = 7(Mnoe)(p1) C 7(Inos)(pe2).

Nor is it generally the case that 7(IL,.)(1)(0) = =(u)(0); instead, 7(I0e)(1)(0) = u(1), a
different proposition entirely.

An Example of the Use of Denotation Functions to Describe Machines

In this section we will illustrate the use of denotation functions by redescribing the and-gate
machine shown in Figure 1 in terms of the informational semantics of its inputs and outputs.
We will suppose that, when X has the value 1, it carries that information that ¢ and that,
when Y has the value 1, it carries the information that ¢ — ; then we will show that,
when Z has the value 1, it carries the information that ¢». Note that the denotations of any
of these values may be stronger than we have indicated without its affecting the correctness
of the proof. Formally stated, we are assuming that

Hand([X] Y],Z), (16)
px()E g, (17)

and
py(1) B — 9. (18)

Using the semantic-transformation function of Il,,4, we can compute the denotation func-
tion of Z:

pz(v) = T(Wand)(ppxy)(o) (19)
= U exmw) (20)
u€and ™! (v) ’

12

For v = 1, the only value in the inverse image of end is < 1,1 >, so

pz(1) = pay(<1,1>) (21)
= px()Nuy(1) (22)
C eAp—7b (23)
C ¥ (24)

Thus, when its value is 1, Z carries at least the information that ¥ holds. Note that it also
carries the information that ¢ and ¢ — % holds.
Semantic-Transformation Functions for Compositions of Machines

Given machines m; and m, and their corresponding semantic-transformation functions, it
is possible to calculate the semantic-transformation functions of the compositions of these
machines. Let mjom, and m, || mq, respectively, denote the serial and parallel compositions
of m; and m,, and let ®m denote the feedback operator applied to m. These forms of
composition are illustrated in Figure 2, and can be described behaviorally as follows:

(myomo)z,y) = Jz.m(z,2) Ama(z,y)

(m1 ” mg)(:v,y) = 3.?.'1, 2.4 = [21 | .?.'2] A m]_(l‘, Zl) A mz(ﬂ:,zz)

(Om)(=,y) = m(z]|yl,y)

The semantic-transformation function of the serial composition of m; and m. is simply
the function composition of the semantic transformation functions of m; and mg; that is,

7(my 0 m2)(p)(v) = T(m2)(7(m1)(1))(v)-

In the parallel case, the semantic-transformation function of the composition of m; and
my satisfies the following equation:

T(ma || m2)(p)(v) = 7(ma)(u)(v) N r(mz)(p)(v)

The feedback case involves a fixpoint; 7(@m){u) satisfies the following:
r(Em)(1)(v) = T(m)()(v),
where ([un,) = () 1 m(©m)()).

The Semantics of Complex Representation Structures

Although the concepts presented in this paper are developed primarily at the level of assign-
ing informational semantics to simple registers and record structures, they can be applied
to the analysis of more complex data structures. Included among such data structures
are those that encode expressions in knowledge representation languages, like the ones em-
ployed in many Al systems. Designers of such systems frequently conceive of the state of the

13

—> H, R— H, g

Serial Composition

2
H, 4
Y
- B
M, P2
Parallel Composition
x
—i Y

LT

Feedback Composition

Figure 2: Serial, parallel, and feedback compositions

14

machine in terms of symbolic data structures that are interpreted semantically by the de-
signer and manipulated formally by the program in a manner consistent with the designer’s
interpretation. One much-studied instance of this approach is the use of the language of
first-order logic as a representation language and of first-order deduction as a processing
strategy.

Since the theoretical concepts presented in the preceding section can be used to analyze
the semantic properties of arbitrary machines, it follows a fortiori that they can be used
to analyze machines executing programs that manipulate interpreted symbolic expressions
drawn from some representation language. The theory determines how the denotations of
various locations vary as a function of (1) the denotations of other locations upon which
these locations depend and (2) the nature of the dependency (which is determined by the
structure of the machine.) ILet us recall that the denotation function maps values at a
possible complex location into the indexical propositions, that is, propositions whose truth
values depend on indices of time and possible world, that must be true when that location
takes on that value.

In practice, when these relationships become too complex, it becomes awkward to spec-
ify the denotation function directly. Instead, it may be more convenient to specify the
denotation function u indirectly by positing an auxiliary domain A and expressing u as the
composition of two functions d and e, where the first function d : Dy — A maps values of a
location into the auxiliary domain, while the other function, e : A — ®, maps the auxiliary
domain into propositions. The composite function is defined as pu(v) = e(d(v)).

This technique of using auxiliary denotation functions is most easily illustrated by cou-
sidering structured data domains, e.g. record structures. Let ¥ = [P, N] be a componnd
process, where the value domain of P is Dp = {man, boy, woman, girl} and the value
domain of N is Dy = {0,1,2,...}. (The symbols are boldfaced to emphasize that they
are to be regarded as simple data values.) Rather than define the mapping from [P, N] to
propositions in one piece, or even define it by using the conjunctive rule in terms of inde-
pendent propositional denotations of P and N, we choose two convenient nonpropositional
auxiliary domains. Let auxiliary domain A; be some set of properties of individuals, and -
let A; be the set of natural numbers. If d;(man) = man, etc., and dy(n) = n, then we can
specify the g function by defining

e([p,n]) = {(w, 1) | Ja. p(a)(w, 1) A age(a, w,?) = n}
and setting
py ([w,v]) = e([di(u), do(v)])-
This definition implies, among other things, that

py ([girl, 7)) (w, t) = Ja. girl(e)(w, 1) A age(a,w,t) = T.

This style of definition is easier for humans to understand, since intermediate-level ob-
Jjects can be thought of as belonging to any convenient semantic category and only at certain
meaningful levels of structure aggregation are actual propositional objects considered— even
though, in principle, propositional interpretations could have been attached at any level.

15

the same value as the other; behaviorally equivalent storage locations may be conveniently
realized as the same physical storage location. Constrained storage terms are composed of
a distinguished storage term and a wif that specifies the behavior of the location named by
that storage term with respect to the values of other storage locations.

We will specify the semantics of the Rex forms by defining them in Lisp. Before we do
this, however, we must describe some Lisp functions for manipulating the special Rex types
discussed above.

(make-cst st ¢) This function; taking st, a storage term, and ¢, a constraint, returns the
constrained storage term composed of st and c.

(storage-term c¢st) This is a simple selector function, returning the storage term associ-
ated with the constrained storage term ecst.

(constraint cst) This selector returns the constraint associated with constrained storage
term cst.

(make-delta init nezt result) This function creates a wif that specifies the initial value
of the storage location denoted by result to be init, and the rest of jts values to be
those of the storage location denoted by nexi, delayed by one time unit. The variable
init must represent a value of the type that may be contained in an atomic storage
location (in all of our examples we will use integers as the basic value type); next and
result are both storage terms. This function returns the list (DELTA init next result),
which expresses the same constraint as the logical formula A;,;(nezt, result).

(make-pi fen (arg, ... arg,) result) This function creates a wif that specifies that the
contents of the storage location denoted by result be the result of applying fern to the
contents of the storage locations of arg; ... erg,. The returned value is (PI fen (arqy

. arg,) result), which is equivalent to Iy {[aryy,..., arg,), result) in the logic.

(make-equiv st; st;) This function creates a wif that requires that the storage locations
referred to by st; and si; be behaviorally equivalent. The returned value is (== sf
stp), which is expressed in the logic by O{*st; = *st3).

{null-stg) This function returns the null storage term.

(make-stg-pair sf; st;) This function performs the pairing operation on storage loca-
tions. It returns a storage term that is the pair of storage terms st, and st;.

(conjoin ¢;...c,) This function takes an arbitrary number of constraints and returns
their conjunction.

In addition, we assume the existence of a set of standard Lisp functions, including
gensym, which returns a new, distinct atom each time it is called.

The following table has the Rex forms in the left column, with the corresponding Lisp
definitions in the right column.

17

(storage name) (make-cst name ())

(plusm [csty cslp] result) {conjoin (mmake-pi ’plus
(1ist (stoerage-term csli) (storage-term csip))
(storage-term resull))
(constraint cs?;) (constraint csfz)
(constraint resull))

(init-next inil next resull) (conjoin (make-delta inil
' (storage-term next)
(storage-term resuit))
{constraint nezt) (constraint resull))

0 (null-stg)

[est; | cstz) (make-cst (make-stg-pair (storage-term cst;)
(storage-term csiz))
{conjoin (constraint csi))
(constraint csiz)))

(== cs) csiz) {(conjoin (make-equiv (storage-term csi;)
(storage-term csiz))

(constraint cst))

(constraint csiz))

(some (v1...15) ¢1...cm) ((lambda (v ... v,) (comjoin ¢ ... cm))
(gensym) ... (gensym)) :

In the definitions above, plusm is just one example of a number of standard arithmetic
and logical primitives available to the programmer. Primitive functional machines follow
the convention of being given the name of the function they compute but with a suffixed
‘m.!

It is important to note that the Rex primitive forms define the way values are to be
computed when the machine being specified is ultimately run. It is also necessary, however,
to be able to control the specification of machines dynamically at compile time. We use
the Lisp form if to create machine specifications that are conditioned on the values of Lisp
expressions at compile time. Arguments that are not constraints or constrained storage
terms, referred to as value parameters, can be used in the condition part of if forms. Note
that this form is different from the ifm form, which describes a primitive functional machine
with three inputs that performs a conditional computation at run time. The output of an
ifm machine is the value of the second input if the value of the first input is 1, otherwise it
is the value of the third input.

Complex functions returning constraints or constrained storage terms may be built up
out of the Rex forms and defined by means of the Lisp defun form. Once such functions
have been defined, a low-level machine description is calculated in two steps. The first

18

Notice that, under the situated-automata approach, the semantics of the representation
is still regarded as being derivable from truths about the embedding of the machine in the
world and thus cannot be set by the designer at will in ways that ignore those connections.
For instance, in the previous example, if men are constrained to be over twenty-one years
of age and if m is a machine whose semantic transform is py, it is a theorem (not merely
a happy coincidence)} that ¥ never takes on the value [man,7]! Of course, in practical ap-
plications a designer may begin with an intended denotation function and work backwards
to synthesize a particular machine that guarantees agreement between the actual semantics
and the intended semantics. In the situated-automata framework, it makes no method-
ological sense to ignore the actual connections to the world and, consequently, to use the
designer-stipulated denotations in place of the veridical information-based semantics.

Rex : A Framework for Hierarchical Machine Specification

Every machine, no matter what language it is specified in, is amenable to epistemic and
denotational analysis. However, the ease of this analysis depends on the language iu which
the program is expressed. In this section we introduce the Rex language, which was designed
to facilitate epistemic and denotational analysis. Rex programs are easier to analyze because
their structure reflects the structure of the logical constraints on their behavior.

Rex is a language for the hierarchical specification of complex machines composed of
primitive delay and functional elements as discussed above. A low-level macline description
is computed from the Rex specification of a machine. This machine description, which
stipulates how tlie value of each atomic storage location is to be computed over time, may
then be instantiated in a variety of media (such as software and physical circuitry), making
an actual machine that satisfies the initial specification.

Description of Rex

The Rex language is most easily seen as an extension of the Lisp language [17] to include
forms that calculate the low-level description of 2 machine incrementally. This section will
provide a formal description of a simple subset of Rex, which, although it has the full power
of the language, is somewhat more tedious to program in than the complete version. A
more practical introduction to the latter is given in a separate reference manual [11].

Rex extends Lisp by adding of a number of forms that compute machine descriptions.
There are two types of Lisp values that we will use to represent these machine descriptions.
They are constraints and constrained storage terms. A constraint represents a conjunction
of wifs (well-formed formulas) that describe the behavior of storage locations with respect
to one another. Within a constraint, storage locations are named by storage terms, which
are typically represented by Lisp atoms. A wif may specify the way in which the value of
one location is to be computed from the values of other locations or, alternatively, they
may requi're that a pair of possibly complex storage locations be behaviorally equivalent.
Two storage locations are behaviorally equivalent if, at every point in time, each contains

16

step consists of evaluating a Rex form or function that returns a constraint. Although
this constraint is a machine description, it is not yet in conveniently usable form, because
there are typically a large number of equivalence wifs, making it difficult to ascertain which
storage terms are distinct from one another. The function makem takes a constraint as input
and caneonicalizes it, returning a useful low-level machine description.

The wifs in a noncanonical constraint can be separated into two types: equivalence
constraints and pi or delta constraints. From the equivalence constraints it is possible to
compute equivalence classes of storage ternis by using the unification algorithm. A canonical
‘member can then be chosen from each equivalence class; this is said to be the canonical
name of the storage location represented by that equivalence class. Canonicalization is the
process of computing the equivalence relation on storage terms, and substituting canonical
for noncanonical names of storage locatious into the rest of the wils of the constraint. This
process is illustrated by an example in the next section.

A Simple Example of Rex

In this section we present a simple Rex program and illustrate the process of computing
a low-level machine description from the high-level specification. The example will be a
machine with one input and one output. The input can range over integers; the output will
always be zero or one. The output will be one if the machine has ever had one, two, or
three as its input. The function definitions that make up the specification of the machine
are shown in Figure 3.

The constant function returns a wff term that requires the storage location of const
to always contain the value value. The memberm function recursively lays out circuitry to
compute the membership of an element in a fixed-length list at run time; length is an
integer specifying the length of 1ist, which is a list of constrained storage terms, and item
is a simple constrained storage term. The storage location of the result is constrained always
to contain a 1 if the contents of item are equal to the contents of one of the elements of
list, otherwise it will contain 0. The if is used at compile time to control the layout of the
run time computation structure. Note also the use of == to decompose 1ist structurally
in the case that we know that it is at least one element long. The everm function returns
a constraint that requires the storage location ever? to contain 1 if the contents of input
have ever been 1, else to contain 0.

Our top-level function ever-a-one-two-three? returns & constraint relating the be-
havior of the storage locations of input and output. If the contents of the storage location
of input have ever been a member of the list whose elements are the constants 1, 2, and 3,
the contents of the storage location of output will be 1, else 0.

The first step in creating a low-level description of a machine satisfying this specification
is to evaluate the form

(ever-a-one-two-three (storage ’input) (storage ’output)),
which will calculate a noncanonical constraint. The left column of Figure 4 contains a listing
of part of the noncanonical constraint. The symbols with numeric suffixes were generated

19

{defun ever—a-one-two-three? (input output)
(some (member? constl const2 const3)
{constant 1 constil)
{constant 2 const2)
(constant 3 const3)
{memberm 3 [constl const2 const3] input member?)
{everm member? output)))

(defun everm {input ever?)
{some {this—time-or-last)
{orm [input ever?] this-time-or-last)
(init-next 0 this-time-or-last ever?)))

{defun memberm (length list item member?)
(it (= length 0)

(constant O member?)

(some (head tail equal-head? member-tail?)
(== 1ist [head | taill)
(equalm [item head] equal-head?)
(memberm (- length 1) tail item member-tail?) -
{orm [equal-head? member-tail?] member?})))

(defun constant {(value const)

{(init-next value comst const))

Figure 3: Rex code for the ever-a-one-two-three machine.

20

((PI EQUAL (ITEM1023 HEAD1027) EQUAL1029) ((PI EQUAL (INPUT HEAD1027) EQUAL1029}

(PI OR (EQUAL1029 RESULT10301031) DR1048) (PI DR (EQUAL1029 DELAY1047) OR1048)
(PI EQUAL (ITEM1012 HEAD1016) EQUAL1018) (PI EQUAL (INPUT READ1016) EQUAL1018)
(PI OR (EQUAL1018 RESULT101891020) OR1049) (PI OR (EQUAL1018 OR1048) OR1049)

(PI EQUAL (ITEM1001 HEAD1005) EQUAL1007) (PI EQUAL (INPUT HEAD100S) EQUAL1007)
(PI DR (EQUAL1007 RESULT10081009) OR1050) (PI OR (EQUAL1007 DR1049) OR1050)

(PI DR (IBPUT1053 RESULT1055) OR1056) (PI OR (DR1050 OUTPUT) UPDATE1059)
(DELTA 1 DELAYS76 UPDATE973) (DELTA 1 HEAD1005 HEAD100S5)

(DELTA 2 DELAY986 UPDATE983) (DELTA 2 HEAD1016 HEAD1016)

(DELTA 3 DELAY996 UPDATES93) (DELTA 3 HEAD1027 HEAD1027)

(DELTA O DELAY1047 UPDATE1044) (DELTA O DELAY1047 DELAY1047)

(DELTA O UPDATE1059 DELAY1062) (DELTA O UPDATE1059 DUTPUT))

== INPUT IEPUT966) :

== QUTPUT OUTPUT965)

== (RESULT387967 RESULT387977 RESULT387987)

LTST1000)

== LIST1000 (EEAD100S . TAIL1006))

== TAIL1006 LIST1011)

== LIST1011 (BEAD1016 . TAIL1017))

.)

I'igure 4: Constraints resulting from definitions of ever-a~one-two-three machine. The
left column contains a partial list of the raw constraints, the right column, the complete set

of canonicalized constraints.

by gensym. Since there are 76 equational wffs, we exhibit only a few of them. The right
column contains the entire constraint after it has been canonicalized.

This can be interpreted as a linear description of the wiring diagram of the “circuit” dia-
grammed in Figure 5.

Machine Compositions in Rex

Various forms of machine composition, such as serial composition, parallel composition,
and feedback, are expressed naturally in Rex. (See Figure 2 for the schematics.) Serial
composition corresponds to simple relational composition:

(defun £ (x z)
(some (y)
(h x y)

gy z}N

Parallel composition is achieved through pairing:

{(defun f (x z)
(some (y1 y2)
(g x y12
(h x y2)
(== =z [y1 | y21O)»

Feedback is achieved through cyclically dependent variables:

21

!

:
Il

g

v

EQUAL

OR

EQUAL [P

EQUAL T3

Ay

. Figure 5: Wiring Diagram of ever-a-one-two-three machine

(defun £ (init x =z)
{some (y)
(init-next init y =)

(g x [2] y)N

By using higher-order definitions in which machine constructors are parameters of other
machine constructors, these compositions can be defined generically, though they are not
often used in this form. The definitions are as follows:!

(defun serial (ml m2 x =)
(some (y)
(ml x y)
m2 y 2)))

(defun parallel (mil m2 x 2z)
(some (y1 y2)
(ml x y1)
(m2 x y2)
==z [y1 | y21)»

{defun ¥ (m init x =)
(some (y)
(init-next init y z)

(m [x | 2] y)))

Epistemic and Denotational Analysis of Machines

We can carry out the analysis of a machine in terms of either denotations and the g operator,
or knowledge and the K operator. In this section we will present an example of each type
of analysis.

Example of Epistemic Analysis

In this section we present the Rex specification of a robot that intermittently senses the
location of a moving object in its 2-dimensional environment and tries to keep track of
whetlier the object is within shouting distance (a certain radius) of the robot. Because
information becomes degraded over time and by virtue of the object’s motion, the machine
will sometimes krow that the object is within shouting distance, sometimes &now that the
object is not within shouting distance, and sometimes not know either proposition. We
characterize the epistemic properties of this machine's outputs in terms of the epistemic
properties of its inputs and we outline a proof of this characterization.

'1f the implementation is in a version of Lisp that requires funcall, these definitions must be modified
slightly to include the call explicitly.

23

Description of the shoutm Machine

The machine constructor has three inputs, which we will refer to as x, y, and action. The
values of the storage locations denoted by x and y encode the Cartesian coordinates of the
object detected by the sensor in the robot’s current frame of reference; if no object is sensed,
the values of the storage locations denoted by x and y are equal to the value bottom. The
values of the storage location denoted by action encode the robot’s last action; it can take
on four possible values: move means that the robot has moved one unit in the direction it
was facing; rturn means that the robot has turned 90 degrees to the right; lturn means
that the robot has turned 90 degrees to the left; noop means that the robot has done
nothing at all.

The machine constructor has two other arguments, K-shout-dist and K-not-shout-dist
that denote output lines of the resulting machine. We will show that the storage location
denoted by K-shout-dist knows that the object is within shouting distance whenever its
value is 1 and that the storage location denoted by K~not-shout-dist knows that the
object is not within shouting distance whenever its value is 1.

The top-level Rex function specifies the relation between the storage locations denoted
by x,y, and action, on the one hand, and by K-shout-dist and K-not-shout-dist,on the
other, by introducing complex intermediate locations, denoted by queue, K-shout-dist-vec
and K-not-shout-dist~vec, and constraining them with respect to the top-leve] inputs and
outputs. The queue will contain the most recent several sightings of the object; the num-
ber of such sightings is specified by the value parameter size. Each sighting carries some
information about the current location of the object. In general, the older the sighting, the
weaker the information, as the object may have moved since it was sighted (it can move
one unit of distance per unit time). The queue of sightings is mapped into the storage
location denoted by K-shout-dist-vec, a vector of Boolean values, the ith of which has
the value 1 if the information in the ¢th element of the queue entails that the object is
within shouting distance. Similarly, the queue is mapped into the storage location denoted
by K-not-shout-dist-vec, a vector with elements that signify that the object is not within
shouting distance when they carry the value 1.

(defun shoutm (size x y action K-shout-dist K-not-shout-dist)
{some {queue K-shout-dist-vec K-not-shout-dist-vec)
(quene-~with-transform size [x y] action queue)
{(mapfn ’K~shoutable O size queue K-shout-dist-vec)
(mapfn 'K~not-shoutable 0 size queune K-not-shout-dist-vec)
{morm size K-shout-dist-vec K-shout-dist)
(morm size K-not-shout-dist-vec K-not-shout-dist)))

To illustrate the flexibility of Rex, we parameterize the specification of the vectors
K-shout-dist-vec and K-not-shout-dist-vec, along with their connection to queue, not
only by size, but also by the functional value parameters K-shoutable and K-not-shoutable,
which are applied to queue by mapfn.

24

Epistemic Properties of the shoutm Machine

The formal property we wish to prove of the shoutm machine specification is
I',shoutm(n, X,Y, A, 5, Ns), InputAzioms(X,Y,A) E *S = 1 — K(S5,wsd),

where T is a background theory—that is, a collection of wffs embodying general facts about
the robot world, shoutm(n, X,Y, 4,5, Ns) is the wff computed by Rex that describes the
shoutm machine, and InputAzioms(X,Y, A) are all the instances of the following schema:

(*# X, Y] ={z,y}Ae £ LAy # L — locf({z,¥),0)) A (A = @ — doing(a)),

where z,y € IN and ¢ € {move,lturn,rturn,noop}. The atomic formula wsd desig-
nates the proposition “the object is within shouting distance.” The formula designated by
locf({z;,1:),1) expresses the fact that ¢ time units ago the object was at what is location
z;,% in the current frame of reference. The formula doing(a) expresses the proposition that
the robot is doing the action referred to by a. We assume that I' contains, among other
things, axioms that relate locf to doing.

The truth of the epistemic specification of shoutm follows directly from three lemmas
that characterize the constraints imposed by queue~with-transform, mapfn, K-shoutable,
and morm. Only the proof of the third lemma will be presented; the proofs of the other two
lemmas are simnilar in structure. We also prove an auxiliary fact relating states of processes
and knowledge.

Lemma 1 I',queue-with-transform(n,[X,Y], 4,{E,..., E.]), InputAzioms(X,Y, A) £

V(*E,‘ = (a:,-,y;) —) I((E,', lOCf((:B,',y,'),i)))

This result relates the values {z;,#;) of each element E; of the queue to locf({z;,%:),1),
taking into account the fact that the values (z;,;) are interpreted relative to the robot’s
current frame of reference and are updated at each step as a function of the value of A.

Lemma 2 T',mapfn(K-shoutable,0,n,[Ey,..., E|,[F1,..., F3)),

n

\ (+E: = (2i,0i) — K(Esy locf((3, 30,) b \(+Fs = 1 = K(F, wsd))

=1 , . =1
The definition of mapfn is such that K-shoutable will be applied to each of the £, yielding
F;. This lemma asserts that, if the inputs to the K-shoutable machines always encode the
uncertain location of the object, then, when any of the outputs has the value 1, it carries
the information that the object is within shouting distance.

Lemma 3
morm{n, [Fy,..., F3], R), /\(*F, =1- K(F,¢))EOQ(*R=1- K(R,¢))
i=1

If each input to the morm machine knows the proposition ¢ when it has the value 1, then
the output also knows ¢ when it has the value 1.

25

Proof of Lemma 3

The following Rex definition is the specification of the morm (morm stands for “multiple or
machine”). It builds the definition of a machine that computes the n-ary or function by
accumulating » — 1 binary orm constraints, where = is the value parameter length.

(defun morm (length vector result)
(if (= length 0)
(constant O result)
(some (head tail resulti)
(== vectoxr [head | taill)
(morm (- length 1) tail resulti)
(orm [head resultl] result))))

The proof of Lemma 3 requires the following fact about moxrm,
morm(n,[F1,...,Fp, R)E O(+ 1 = 1V... VI, = 1] & +R =1},
which can be easily proved by induction on the size of the input vector, length.

By propositional reasoning,

Tl

AGE =1 EFo) E \ +F=1- \/ K(Fyp).

i=1 1=1 =1

Combining this with the previous fact about the values of morm, and substituting *R =1
for (xF7 = 1V...V*F, =1}, we derive

moxm(n, [F,..., o], R), \(xFi = 1= K(F;,) | xR = 1=) K(F;,)

t=1 i=1

It follows from the epistemic axiom of truth and the properties of disjunction that K(Fy,)V
... VE(F,, @) — ¢, so we can derive

norn(n, [, .., Fal, B), A\ (+Fi = 1~ E(Fy9)) b= (3R = 1 —).

i=1

Since P = OP and | (O(xz = v — ¢)) — (*z = v — K(z,¢)) (see proof below),

morm(n, (Fy, ..., Ful, R), /n\(*F; - 1—- K(Fi,e)E(xR=1— K(R,¢)).

i=1
All that remains is to verify the validity of
(O(xz = v — @)} — (xz = v — K(z,).

We begin by observing the general fact about the epistemic properties of machines that
all agents know all necessary truths: Op — OK(z,). As a consequence of this, we can
conclude

O(xz = v — @) = K(z,*z = v —)

26

This fact, together with the self-awareness axiom,
+z = v — N(z,*z = v),
implies that
Oxsz=v—p)Asx=v — K(z,4z = v —) A [[(z, %z = v).
As an instance of the consequential-closure axiom-schema of epistemic logic, we have
Kz, %z = v — @) A K {2z, vz = v) — K(z,¢).
Chaining the two preceding statements, we have
Oz = v — @) Asz = v — K(z,¢),
which directly implies the result

O(x2 = v — @) — (32 = v — K(z,¢)).

Informational Semantics of a Machine with Feedback

In this section we will describe a simple machine that continuously tracks the orientation of
a robot, and we will prove that our intuitive attribution of those semantics to its outputs
is in fact correct. We will assume the existence of a robot with the same motor capabilities
as the one in the previous example: at each time instant, it can move forward cone unit
of distance, turn 90 degrees to the left or right, or remain stationary. The following Rex
program specifies a machine that is intended to keep track of this robot’s orientation.

{defun orientation (cmd orient)
{some* (el e2 subl addl lmod4 rmod4 ifl if2)

(equalm cmd !lturn el)
(equalm cmd !rturn e2)
{minusm orient !1 subl)
{(plusm orient 11 addl)
{modm subl !4 1lmod4)
{modm addi !4 rmod4)
{(ifm e2 rmod4 orient if1)}
{(ifm el 1lmod4 if1 if2)
(init-next O if2 orient)))

We use the construction !val to abbreviate (constant val}, that is, to stand for a storage
location that always contains the value wal The full Rex programming language includes
functional expressions, such as (plusm (timesm a b) c), which make definitions less te-
dious and more compact, but complicate the analysis somewhat. The schematic diagram
of this program is shown in Figure 6; the canonical machine description for this program is

27

((p1
(PI
(PI
(PI

EQUAL (LTURN CMD) Ei1)
EQUAL (RTURN CMD) E2)
MINUS (ORIENT D1) SUB1)
PLUS (DRIENT D1i) ADD1)
(PI MOD (SUB1 D4) LMOD4)
(PI MOD (ADD1 D4) RMOD4)
(PI IF (E2 RMOD4 ORIENT) IF1)
(PI IF (E1 LMOD4 IF1) IF2)
(DELTA O IF2 ORIENT)

(DELTA ’Yturn LTURN LTURN)
(DELTA ’rturn RTURN RTURN)
(DELTA 1 D1 D1)

(DELTA 4 D4 D4))

The value domains of the machine’s input, cmd, and its output, orient, are

{move, lturn, rturn, noop}
{G’ 1’ 2, 3}

Deiwg =

Dorient =

We will stipulate the denotation function of cmd to be

tema(move) = moving
tema(lturn) = turning_ left
Hepd(rturn) = turning_right
temd(noop) = still

and assume the following facts about the environment:

wo LC facing_north

S(facing_north M moving) C facing_north
S(facing_east N moving) C facing_east

S(facing_south Fi moving) C facing_south
S(facing_west I moving) C facing_west

S(facing_north N still) T facing_north
S(facing_east M still) C facing.east

S(facing_south N still) C facing_south
S(facing_west N still) C facing_ west
S(facing_north N turning_left) C facing_west

S(facing_east I turning_left) C facing_north
S(facing_south I turning_left) C facing_east

28

Figure 6: Wiring diagram of orientation machine

29

__________ A ———
Lj EQUAL
AII!.l.l'n A
0
e
L, A EQUAL -
I | Mop
MINUS —
Ay) IF
d
| | MOD
PLUS
Ay
. . .

ORIENT
—

S(facing_west N turning_left) facing_south

S(facing_north N turning_right) facing_east
S(facing .east N turning_right) facing_south

S(facing_south N turning_right) facing _west

I mort i

S(facing_west N turning _right) facing_north

We also assume that the states moving, still, turning_left, and furning_right are exhaustive
and mutually exclusive—that is, for example,

moving C —still N —~turning_left N ~turning_right

Now we will prove that the denotation function of orient satisfies the following definition
~of porient,

Horient(0) LT facing_north
torient(1l) L facing.east
Borient(2) L facing_west
torient(3) C facing_south

k]

by showing that it is a fixpoint of the semantic-transformation function associated with
the orientation machine. We will proceed by assuming that orient, seen as an input
to the machine, has these semantics, and we will calculate the semantics of its output by
computing the denotation functions of each intermediate locations in the machine.

To avoid tedious details, we will assume that the locations LTURN, RTURN, D1 and D4
always contain the values lturn, rturn, 1, and 4, respectively, and that they carry no
information. We may assume that they carry no information, because they are consistent
with every possible state of the environment, and so do not provide the machine with
any further power for discriminating the actual state of the environment. Using these
assumptions, we can compute the denotation functions of el and e2:

pe1(0) C |_| ﬂ[lturn]cmd]('”')

u€equal~1(0)

tepa(rturn) U pepg(move) U pepa(noop)
turning -right U moving U still

in

—turning_left

Similarly,
te1(1l) C turning lef
te2(0) T -turning_right
te2(1) L turning_right

30

Now we use the assumed denotation function of orient to compute the denotation
functions of subl and addi:

,Uvsubl(_'l) C |_| #[orient]dl](u)

u€minus~!(—1)
C Horient(0)
C facing_north

Similarly,
usub1(0) L facing_east
pswpi(l) T facing_south
pswpi(2) T facing_west
taaa1(l) T facing_north
Haaa1(2) C facing_east
Kaaa1{3) L facing_south
Kaaa1{d) L facing_west

The values of 1mod4 and rmod4 are computed by taking the values of subl and addi
modulo 4; since no information is added by this operation, the denotation functions are
changed only slightly:

#1moas(0) C || suptjaqi(w)
uemod ™! (0)
C fsupi(0)
C facing_east
Similatly,

Pimoda(l) L facing south
Himoaa{2) C facing west
Mimoda{3) C facing _north
rurmodll(ﬂ) C facing_west
Hrmoda(1l) £ facing_north
Prmoda(2) L facing_east
Urmoda{3) T facing._south

31

Now we compute the denotation functions for the output of the first if machine:

pisa(0) T |]

Hle Z,modﬁorient](u)

u€if=1(0)
cC (#e2(1) M #rmodfl(o)) U (te2(0) M torient(0))
C (turning_right N facing_west) U (~turning _right M facing_north)

Similarly,

pif1(1)

iz1(3)

C (turning_right 1 facing_north) Ll (~turning_right N facing_east)
pif1(2) C (turning_right N facing_east) U (—turning_right N facing_south)
C (turning-right N facing_south) U (~turning_right N facing_west)

The denotation function for the second if machine depends on that of the first:

#ig2(0) C

in i

Similarly,

pir2(1) E

pif2(2) C

pig2(3) C

|_| Hle1,1modd,if1] (u)
ucif~1(0)

(#e1(1) M p1noas(0)) U (e1(0) M 11£1(0))
(turning_left N facing_east) L

(—turning_left N turning _right N facing_west) U
(—turning_left N ~turning_right N facing .north)

(turning_left N facing _south) U

(~turning_left N turning_right N facing_north) U
(—~turning_left N —~turning_right N facing _east)
(turning_left N facing_west) Ll

(—turning_left N turning _right N facing_east) U
(~turning_left N —turning_right N facing_south)
(turning_left N facing_north) U

(~turning _left N turning_right N facing_south) U
(~turning_left N ~turning_right N facing .west)

Finally, we compute the effect of the delta machine on the denotation function of if2,
making use of the assumed connections between the facings and actions of the robot:

,U'orient(o) C V’OUS(J”'i:m(O))

32

I

facing.north U

S((turning_left N facing.east) U

(=turning left N turning_right N facing_west) U
(~turning_left N —turning _right N facing_north))
facing_north U facing_north U facing_north U facing_north

M 1n

facing_north

‘To compute the function on the other values, we perform the same process as above, but
without disjoining in the condition q:
torient(1) C facing_east
Horient(2) L facing_south
-

Porient(3) facing_west

Thus, we have shown that the function defined above is a fixpoint of the semantic-transformation
function of the orientation machine and, therefore, is the denotation function of orient.

Related Work, Implementation, and Future Directions

Related Work

There has been much work on formalizing properties of knowledge in philosophy (8,13],
theoretical computer science [6,14], and AI [18,15,12]. Halpern and Lehmann have used
epistemic logics to characterize the states of knowledge of a collection of processors in a
distributed computer system as a result of communication between them; although their
motivations are different, their technical formulations are close to ours.

Our approach to circuit synthesis is somewhat similar to work by Johnson [10] on the
synthesis of digital circuits from recursion equations. Johnson’s work is based on the trans-
formation of recursive behavioral specifications of a circuit into realizations. The epistemic
and denotational analysis is new, however. Analogous methods have been employed by
Hillis and Chapman for circuit design [1], and by Goad for model-based vision [3]. Rex also
bears some resemblance to dataflow languages (e.g. Lucid [21]), although our semantics
is location-oriented rather than stream-oriented as in Lucid and other dataflow languages.
Mike Gordon has developed a higher-order-logic approach to the specification and verifica-
tion of hardware [4,5] that is functionally similar to the Rex method, allowing parameterized,
recursive descriptions of circuits.

Implementation of the Rex System

The Rex system has been implemented in Zetalisp and CommonLisp and is currently run-
ning on the Symbolics 3600, DEC 2060, and Sun workstation. Rex is implemented as
an extension to Lisp making use of Lisp’s macro facility for special syntactic forms. Rex

33

definitions result in the creation of Lisp functions that construct machine descriptions by
collecting and propagating constraints on storage locations of the target machine. Equa-
tional constraints are resolved by using a variant of the unification algorithm. An abstract
machine description computed by Rex may be realized in digital hardware, since it is vir-
tually a circuit diagram and seems well suited for implementation on fine-grained parallel
architectures, such as the Connection Machine. However, it is also suitable for realization
as code in conventional languages for sequential hardware. Qur current implementation, for
instance, supports code generation in Lisp, C, and MC68010 machine language.

Future Directions

We see at least three major directions in which the situated-automata approach to knowl-
edge representation can be extended and applied: compilation of knowledge, weakening
of knowledge to belief, and exploration of the connections between the usual notion of
“reasoning” and the localization of information within a machine.

Knowledge Compilation

Thus far, the only examples of the synthesis of machines that we have presented have been
performed manually, with their semantics justified by appeals to facts in the “background
theory,”—namely, to those things we assume to be true in the environment of the machine.
It would be of great utility to be able to specify formally the background theory, the
denotation function of the inputs, and the intended denotation function of the outputs, and
to use a Rex program to compile them into a fixed machine. It should be noted that truly
static processes, such as an unchanging assertional database or fixed grammar rules, carry
no information beyond g; hence they may be encoded directly as constraints among those
processes that do vary over time. This would allow us to use at compile time the static
structures that are typically employed in run-time symbolic processing, and thus create an
efficient machine that does no superfluous symbolic processing at run time.

Weakening the Notion of Knowledge to Belief

In many practical cases, when the concept of knowledge is too strong to describe a machine’s
actual information, we would prefer to work with the weaker notion of belief. There are at
least two ways of defining the concept of belief in the situated-automata theoretic framework:
exception hierarchies and probabilistic “degrees of belief.” These formulations have direct
analogues in standard Al practice.

In the exception-hierarchy approach, belief can be defined in terms of positive and
negative knowledge conditions, allowing us to build machines that “jump to conclusions™
based on lack of knowledge and then RETRACT them automatically as new knowledge
is gained. For example, working in a modal language, we can introduce axioms like the
following for each specific ¢ of interest:

B(X,0)= K(X,0)V (~K(X,0) A -K(X,~¢) A B(X,¢"))

34

where ¢’ is a condition that provides sufficient evidence for X to believe ¢. Eventually the
conditions ground out in positive and negative K formulas. B(X,y) is clearly nonmono-
tonic; increased information can falsify the B condition.

In the probabilistic approach, we define the correlation between states of a machine
and states of the world in statistical terms. An agent X in state v is said to believe ¢ to
degree o {written B,(X,)) if the conditional probability of ¢, given that X is in state
v, is at least ¢; this is the case if ¢ holds in 100e percent of X’s epistemically accessible
possible worlds. Of course, the property B(X,¢) — fails because ¢ can have a very high
conditional probability, given that state of z, and still be false.

The nonmonotonic nature of conditional probabilities is well known and one direct
consequence is the failure of the spatial monotonicity principle for the B operator, since
the conditional probability of a proposition ¢, given the states of z and y separately, bears
little relation, in general, to the conditional probability of ¢, given the joint state of z and
y. This fact increases the difficulty of systematic design of machines that rely on statistical
information. The nonmonotonicity of probabilities also seems closely related to recent
work in artificial intelligence on nonmonotonic reasoning as a model of defeasible inference.
Under the probabilistic interpretation of information, it is easily seen how one location, z,
can believe ¢ in isolation, and how - can be believed by some larger location that includes
z as a proper subcomponent. The net effect can be regarded as the overturning of z’s belief
in ¢.

It is also possible to extend informational denotation functions to the probabilistic case.
‘Probabilistic denotation functions would map values into mappings from propositions into
the interval [0, 1], thereby, given a particular value, providing a distribution of the probabil-
ities of all propositions. In practice, a probability-based denotational analysis is more tech-
nically difficult than non-probabilistic analysis, because there is no longer a single strongest
belief statement that can be made about an agent.

The Localization of Information

The deductive-closure axiom has been viewed as problematic by many Al researchers, who
have claimed that it could not possibly apply to agents with limited resources. These
researchers, on the whole, have adopted a very concrete view of representation, seeing
every ascription K(X,) as carrying a commitment to the explicit representation of ¢ as a
separate data structure. Clearly, finite agents do not have enough time or space to derive
an explicit representation of each known fact.

An immediate consequence of the situated-automata view is that, at any instant, the
inputs to the machine, together with its state, implicitly contain the most precise informa-
tion available to the machine. Any “circuitry” that merely arranges for some component
(or location) to contain a value that is a pure function of the inputs and state {computed in
negligible time) cannot increase the information content and will, in general, reduce it, since,
by mapping distinct information-carrying values to a single value, the result is disjunctive
in content and what was heretofore distinct is now blurred. In particular, “inference rules”
that syntactically map data structures to other data structures fall into this category; they

35

cannot be regarded as increasing the system’s information. .

What, then, is the role of such mappings and how do resource limitations enter the
picture? Rather than focus on what information is known, our attention should be focused
on which part of the machine knows what and when. A composite agent 2 may know
proposition ¢ even if none of its subcomponents carries any such knowledge of . Much of
what is conventionally regarded as “inference” may be thought of instead as localization of
information, that is, causing sublocations of the agent to know what only the agent as a

~whole knew previously. This is crucial for agents that act intelligently upon the world by
localizing information at effectors.

We have strong intuitions, too, that resource bounds limit our ability to introspect, and
yet the positive and negative introspection axioms seem to imply that the correlational
definition of knowledge gives an agent unlimited powers of introspection. Here, too, careful
attention to which part of the machine has the knowledge is crucial. The axiom asserts
that, if z knows ¢, then z as a totality knows that he knows it. It does not follow that
any proper subpart of z carries the information that all of z knows . We can define a
related property of proper introspection: an agent z is properly introspective if, whenever
z knows , there is a proper subcomponent of z that knows that £ knows . Clearly, finite
agents have only finite descending chains of proper subcomponents and thus cannot satisfy
iterated proper introspection.

Conclusions

Two of the challenging problems encountered in robot analysis and synthesis are (1) how
to relate the representations used in perceptual processing to the representations employed
in in higher-level reasoning and planning, and (2) how to process information from the
environment in real time. The framework presented in this paper appears to offer advantages
in both areas. Since the attribution of knowledge is based on objective behavioral properties
of the machine, the propositional content of different representational structures can be
expressed in a common framework. Furthermore, since the attribution of content does
not depend on general-purpose deduction mechanisms, much of the system’s permanent
knowledge can be compiled into the structure of the machine, thereby decreasing the amount
of computation required at run time.

Acknowledgments

We have profited greatly from discussions with David Chapman as well as from comments
by Fernando Pereira on a previous draft.

References

[1] David Chapman. Personal communication. 1986.

36

[2] Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the temporal anal- |
ysis of fairness. In Proceedings of the Seventh Annual ACM Symposium on Principles
of Programming Languages, pages 163-173, 1980.

[3] Chris Goad. Special purpose automatic programming for 3d model-based vision. In
Proceedings of the Image Understanding Workshop, pages 94-104, Arlington, Virginia,
1983.

[4] Mike Gordon. A Machine Oriented Formulation of Higher Order Logic. Technical
Report 68, University of Cambridge Computer Laboratory, Cambridge, England, 1985.

[5] Mike Gordon. Why Higher-Order Logic is a Good Formalism for Specifying and Veri-
fying Hardware. Technical Report 77, University of Cambridge Computer Laboratory,
Cambrldge England, 1985.

[6] Joseph Halpern and Yoram Moses. Knowledge and common knowledge in a distributed
environment. In Proceedings of the 3rd ACM Conference on Principles of Distributed
Computing, pages 50-61, 1984. A revised version appears as IBM RJ 4421, 1984.

[7] J. Hartmanis and R.E. Stearns. Algebraic Structure Theory of Sequential Machines.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1966.

[8] Jaako Hintikka. Knowledge and Belief. Cornell University Press, Ithaca, New York,
1962.

[9] G. E. Hughes and M. J. Cresswell. An Introduction to Modal Logic. Methuen and Co.,
London, England, 1968.

[10] Steven D. Johnson. Synthesis of Digital Designs from Recursion Equations. MIT Press,
Cambridge, Massachusetts, 1984.

[11] Leslie Pack Kaelbling. Rez Programmer’s Manual. Technical Report 381, Artificial
Intelligence Center, SRI International, Menlo Park, California, 1986.

[12] Kurt Konolige. A Deduction Medel of Belief and its Logics. Technical Report 326,
Artificial Intelligence Center, SRI International, Menlo Park, California, 1984.

[13] Saul Kripke. Semantical analysis of modal logic. Zeitschrift fur Mathematische Logik
und Grundlagen der Mathematik, 9:67-96, 1963.

[14] Daniel Lehmann. Knowledge, common knowledge, and related puzzles. In Proceedings
of the 3rd ACM Conference on Principles of Distributed Computing, pages 62-67, 1984.

[15] Hector J. Levesque. A logic of implicit and explicit belief. In Proceedings of the
National Conference on Artificial Intelligence, pages 198-202, 1984.

37

[16] Zohar Manna and Amir Pnueli. Verification of concurrent programs: the temporal
framework. In R. S. Boyer and J. S. Moore, editors, The Correctness Problem in
Computer Science, Academic Press, London, England, 1981.

[17] John McCarthy, P. W. Abrams, D. J. Edwards, T. P. Hart, and M. I. Levin. Lisp 1.5
Programmer’s Manual. MIT Press, Cambridge, Massachusetts, 2 edition, 1965.

[18] Robert C. Moore. A formal theory of knowledge and action. In Jerry R. Hobbs
and Robert C. Moore, editors, Formal Theories of the Commonsense World, Ablex
Publishing Companey, Norwood, New Jersey, 1985.

[19] Nils J. Nilsson. Shakey the Robot. Technical Report 323, Artificial Intelligence Center,
SRI International, Menlo Park, California, 1984,

[20] Stanley J. Rosenschein. Formal theories of knowledge in ai and robotics. New Gener-
ation Computing, 3(4):345-357, 1985.

[21] William W. Wadge and Edward A. Ashcroft. Lucid, the Dataflow Programming Lan-
guage. Academic Press, London, England, 1985.

38

