REASONING AND PLANNING IN DYNAMIC
DOMAINS: An Experiment with a Mobile Robot

Technical Note 380

Aprtl 1987

By: Michael P. Georgeff
Amy L. Lansky
Marcel J. Schoppers™

Representation and Reasoning Program

Artificial Intelligence Center

Computer and Information Sciences Division

and

Center for the Study of Language and Information

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED

This research has been made possible by a gift from the System Development Founda-
tion, by the Office of Naval Research under Contract No. NO0014-85-C-0251, by the
National Aeronantics and Space Administration, Ames Research Center, under Contract
No. NAS2-12521, and by FMC Corporalion under Contract No. FMC-147466.

The views and conclusions contained in this paper are those of the author and should not
be interpreted as representalive of the official policies, either expressed or implied, of the
Office of Naval Research, NASA, or the United States Govermment.

* Now affiliated with Advanced Decision Systems, Mountain View, California.

Abstract

In this paper, the reasoning and planning capabilities of an autonomous mobile robot
are described. The reasoning system that controls the robot is designed to exhibit the
kind of behavior expected of a rational agent, and is endowed with the psychological
attitudes of belief, desire, and intention. Becanse these attitudes are explicitly repre-
sented, they can be manipulated and reasoned about, resulting in complex goal-directed
and reflective behaviors. Unlike most planning systems, the plaus or intentions formed
by the robot need only he partly elaborated hefore it decides to act. This allows the
robot to avold overly strong expectatious about the environment, overly constrained
plans of action, and other forms of overcomumitment common to previous planuers.
In addition, the robot is continuously reactive and has the ability to change its goals
and intentions as situations warrant. Thus, while the system architecture allows for
reasoning about means and ends in niuch the same way as traditional planners, it also
possesses the reactivity required for survival in highly dynamic and uncertain worlds.
The system has been tested with SRI’s autonomons robot (Flakey) in a space station

scenario involving unavigation and the performance of emergency tasks.

1 Introduction

The abilily to act appropriately in dynamic environments is critical for the survival of
all living creatures. For lower life forms, it seems that sufficient capability is provided
by stimulus-response and feedback mechanisms. Higher life forms, however, must he
able to anticipate future events and situations, and form plans of action to achieve
their goals. The design of reasoning and planning systems that are embedded in the
world and must operate eflectively under real-time constraints can thus be seen as

fundamental to the development of intelligent autonomons machines.

In this paper, we describe a system for reasoning about and performing complex
tasks in dynamic environments, and show how it can be applied to the control of an
autonomous mobile robot. The system, called a Procedural Reasoning System (PRS),
is endowed with the attitudes of belief, desire, and intention. At any given instant,
the actions being considered by PRS depend not only on its current desires or goals,
but also on its beliefs and previously formed intentions. PRS also has the ability to
reason about its own internal state — that is, to reflect upon its own beliefs, desires,
and intentions, modifying these as it chooses. This architecture allows PRS to reason
about means and ends in much the same way as do traditional planners, but provides

the reactivity that is esseniial for survival in complex real-world domains.

For our task domain, we envisaged a robot in a space station, fulfilling the role of an
astronant’s assistant. When asked to get a wrench, for example, the robot determines
where the wrench is kept, plans a route to that location, and goes there. If the wrench
is not where expected, the robot may reason further about how to obtain information
as to its whereabonts. It then either returns to the astronaut with the desired tool or

explains why it could not be retrieved.

In another scenario, the robot may be midway throngh the task of retrieving the
wrench when it notices a malfunction light for one of the jets in the reactant control
system of the space station. It reasons that handling this maifunction is a higher-
priority task than retrieving the wrench and therefore sets about diagnosing the faunlt
and correcting it. Ilaving done this, it resumes its original task, finally telling the

astronaut.

To accomplish these tasks, the robot must not only be able to create and execute

plans, but must be willing to interrupt or abandon a plan when circumstances demand

it. Morcover, because the robot’s world is continuously changing and other ageuts and
processes can issue demands at arbitrary times, performance of these tasks requires an

architecture that is both highly reactive and goal-directed.

We have used PRS with the new SRI robot, I'lakey, to exhibit much of the behavior
described in the foregoing scenarios, including both the-navigational and malfunction-
handling tasks. In the next section, we discuss some of the problems inherent in
traditional planning systems. The architecture and operation of PRS are then de-
scribed and Flakey’s primitive capabilities delineated. We then give a more detailed
analysis of the problems posed by this application and a review of our progress to date.
We concentrate on the navigational task; the knowledge base used for jet malfunction
handling is described elsewhere [16,17].

2 Previous Approaches

Most existing architectures for embedded planning systems consist of a plan construc-
tor and a plan executor. As a rule, the plan constructor formulates an entire counrse
of action before commencing execntion of the plan [12,29,31). The plan itself is typi-
cally composed of primitive actions — that is, actions that are directly performable by
the system. The rationale for this approach, of course, is to ensure that the planned
sequence of actions will actually achieve the prescribed goal. As the plan is execnted,
the system performs these primitive actions by calling varions low-level routines. Exe-
cution is usually monitored to eusure that these routines will culininate in the desired
effects; if they do uot, the system can return control to the plan constructor so that it

may modify the existing plan appropriately.

Various techuiques have been developed for monitoring the execution of plans and
replanning upon noticing plan failnre {12,31]. The most connnon approach is to retain
an explicit description of the conditions that must hold for plan execution to proceed
correcily. Throughout execution, these conditions are checked periodically. If any one
of them turns out to be unexpectedly false, a replanning module is invoked. This mod-
ule uses various plan modification operators to change the plan or, alternatively, it can
return to some earlier stage in the plan formation process and attempt to reconstruct

the plan in accordance with the changed conditions.

One problem with these schemes is that, in many domains, much of the information
about how hest to achieve a given goal is acquired during plan execntion. For example,
in planning to get from home to the airport, the particular sequence of actions to be
performed depends on information acquired on the way — such as which tnrunoff to take,
which lane to get into, when to slow down or speed up, and so on. Tradi.tiona.l planners
can cope with this uncertainty in only two ways: (1) by building highly conditional
plaus, most of whose branches will never be used, or (2) by leaving low-level tasks to
be accomplished by fixed primitive operators that are themselves highly conditional
(e.g., the intermediate-level actions (ILA) used by SHAKEY [24]). The first approach
only works in limited domains — the environment is usually too dynamic to anticipate
all possible contingencies. The second approach simply relegates the problem to the
primitive operators themselves, aud does not provide any mechanisin by which the

higher-level planner can control their hehavior.

To overcome this problem, at least in part, there has been some work on developing
planuing systemns that interleave plan formation and execution [9,10]. Such systems are
better suited to uncertain worlds than the kind of system described above, as decisions
can be deferred until they have to be made. The reason for deferring decisions is that
an agent can acquire more information as timme passes; thus, the quality of its decisions
caun be expected only to improve. Of course, because of the ueed to coordinate some
activities in advance and because of practical restrictions on the amount of decision-
making that can be accommodated during task execution, there are limitations on the

degrec to wlich such decisions may be deferred.

Real-time constraints pose yet further problemns for traditionally structured sys-
tems. I‘irst, the planning techniques typically used by these systems are very time-
consuming, requiring exponential search through potentially enormous problem spaces.
While this may be acceptable in some situatious, it is not suited to domains where
replanniug is frequently necessary and where system viability depends on readiness to
act. In real-world domains, unanticipated events are the norm rather than the excep-
tion, necessitating {requent replauning. The real-time constraints imposed by dynamic
environments also require that a situated system be able to react quickly to environ-
mental changes. This means that the system should be able to notice critical changes
in the environment within an appropriately small interval of time. However, most em-
bedded planning systems provide no mechanisims for reacting in a timely manner to

new situations or goals during plan execution, let alone during plan formation.

4

In addition, most existing systems are overcommitted to the planning phase of
their operations; no matter what the situation or how urgent the need for action, these
systeins alwoeys spend as much time as necessary to plan and reason about achieving a
given goal before performing any external actions whatsoever. They lack the ability to
decide when to stop planning or to reason about possible compromises between further

planning and longer available execution time.

Furthermore, existing systems are usually committed to one particular planning
technique, aund thus canuot opt for different methods in different situations. For ex-
ample, in some situations it may be best to ignore the possible side effects of actions,
whereas, in other cases, reasoning about these may be critical to success of the plan.
Tndeed, some plans are more efficiently constructed in representational spaces that are

quite different from those used to guide the robot’s activities in the real world [3].

Traditional planning systems also rely excessively on counstructing plans solely from
ltnowledge about the primitive aclions performable by the robot. However, many plans
are not constructed {rom first principles, but have been acquired in a variety of other
ways — {or example, by being told, by learning, or through training. Furthermore, these
plans may be very complex, involving a variety of control constructs (such as iteration
and recursion) that are normally not part of the repertoire of conventional planning
systems. Thus, although it is obviously desirable that an embedded system be capable
of forming plans {from first principles, it is also important that the systen: possess a

wealth of precompiled procedural knowledge about how to function in the world [16].

Another disadvantage of most systems is that they commit themselves strougly to
the plans they have adopted. While such systems may be reactive in the limited sense
of being able to replan so as to accomplish fixed goals, they are unable to change their
focus completely and pursue new goals when the situation warrants. Tudeed, the very
survival of an autonomous system may depend on its ability to modify its goals and
intentions according to the sitnation. For example, in the scenario described above,
the robot must be capable of deferring Lhe task of fetching a wrench when it notices
something more critical that necessitates immediate attention (such as a jet failure).
The robot thus needs to be able to reason about its current intentions, changing and
modifying these in the light of its changing beliefs and goals. While many existing
planners have replanniug capabilities, none have accommodated modifications of a
system’s underlying set of goal priorities. Even systems that iuterleave planning and

execution are still strongly conunitted to achieving the goals initially given them.

[y]

A number of systems developed for the control of robots do have a high degree
of reactivity [1,2]. Even SHAKEY [24] utilized reactive procedures (ILAs) to realize
the primitive actions of the high-level planner (STRIPS). This idea is pursued further
in some recent work by Nilsson [25]. Auother approach is advocated by Brooks [6],
who proposes decomposition of the problem into fesk-achieving units whereby distinct
behaviors of the robot are realized separately, eaclh making use of the robot’s sensors,
effectors, and reasoning capabilities as needed. This is in conlrast to the traditional
approach in which the system is structnred according to functional capabilities, result-
ing in separate modules for perforining such tasks as perception, planning, and task
execution. Kaelbling [19] proposes an interesting hybrid architecture hased on similar

ideas.

These kinds of architectures could lead to more viable and robust systenis than the
{raditional robot-control systems. Yet most of this work has not addressed the issues
of general problem-solving and conmonsense reasoning; the research is instead almost
exclusively devoted to problems of navigation and the execution of low-level actions.
These techniques have yet to be extended or integrated with systems that can change
goal priorities completely, modify, defer, or abandon its plans, and reason abont what

is best to do in light of the iimmediate situation.

In real-world environments in which it is necessary to process continuous streams of
sensory information and to control devices without interruption, the ability to perform
multiple activities concurrently is also crucial. Although some traditional planning sys-
tems do generate plans that allow for parallel execution (e.g., SIPE [30]), they are not
designed for allocating the planning and reasoning functions to separate subsystems.
Some recent work, however, has concentrated on some of these issues. For example,
Durfee, Lesser, and Corklill [11] show that, by reasoning about the local plans of other
subsystems, individual subsystews can form partial global plans that lead to satisfac-
tory performauce, even in rapidly changing environments. Lansky’s GEMPLAN system
also explicitly partitions the planning search space and plan representation according
to regions of activity [22].

In sum, existing planning systems iucorporate many useful tecliniques for con-
structing plans of action in a great variety of domains. However, most approaches to
embedding these planners in dynamic environments are not robust enough nor suffi-
ciently reactive to be useful in many real-world applicatious.- On the other hand, the

more reactive systems developed iu robotics are well suited to Irandling the low-level

sensor and effector activities of a robot. Nevertheless, it is not yet clear how these
techniques could be used for performing some of the higher-level reasoning desired of
complex problem-solving systemns. To recoucile these two extremes, it is necessary to
develop reactive reasoning and planning systems that can utilize both kinds of capa-

hilities whenever they are needed.

3 A Reactive Planning System

The system we used for controlling and carrving out the high-level reasoning of the
robot is called a Procedural Reasoning System (PRS) [16,17]. PRS consists of a dafa
base containing current beliefs or facts about the world, a set of current goals or desires
to be realized, a set of procedures {which, for historical reasons, are called Knowledge
Areas or KAs) describing how certain sequences of actions and tests may be performed
to achieve given goals or to react to particular situations, and an interprefer (or in-
ference mechanism) for manipulating these compounents. At any given moment, the
system will also have a process stack (containing all currently active KAs), which can
be viewed as the system’s current infentions for achieving its goals or reacting to some

observed situation.

The basic structure of PRS is shown in Figure 1. A briel description of each

component and its nsage is given below.

3.1 The System Data Base

The contents of the PRS data base may be viewed as representing the current beliefs
of the system. Some of these beliefs may be provided initially by the system user.
Typically, these will include facts about static properties of the application domain
— for example, the structure of some subsystem or the plhysical laws that must he
obeyed by certain mechanical components. Other beliels are derived by PRS itself as
it executes its KAs. These will typically be current observatious about the world or
conclusions derived by the system from these observations. For example, at some times
PRS may believe that it is in a particular hallway, at other times in another. Updates

to the data base therefore necessitate the use of consistency maintenance technigues.

The data base itself consists of a set of slale descriptions describing what is [be-

lieved to be] true at the current instant. We use first-order predicate calculus for the

|

ENVIRONMENT

DATA
m INPUT MONITOR
DATA BASE KAS
(Beliefs) (Plans)
SENSORS
SYSTEM INTERPRETER
INTERFACES (Reasoner)
EFFECTORS

GOALS PROCESS STACK]
(Desires) (Intentions)

| DpaTa || COMMAND

OQUTPUT GENERATOR

Figure 1: System Structure

state description language. I'ree variables, represented by symbols prefixed with §, are

assumed to be universally quantified. The statement
(Vv (=~ (on $x table)) (red {(color $x)))

for example, represents states of the world in which every object on the table is red.

State descriptions that describe internal system states are called metalevel expres-
sions. The hasic metalevel predicates and functions are predefined by the system. Ior

example, the metalevel expression {goal g) is true if g is a current goal of the system.

3.2 Goals

Goals appear both on the system goal stack and in the representation of KAs. Unlike
most Al planning systems, PRS goals represent desired behaviors of the system, rather
than static world states that are to be [eventually] achieved. Hence goals are expressed

as conditions over some interval of time (i.e., over some sequence of world states).

Goal behaviors may be described in two ways. One is to apply a lemporal predicaie
to an n-tuple of terms. IZach temporal predicate denotes an action type or a sel of state
sequences. That is, an expression like “({walk a b)” can be cousidered to denote the

sel of state sequences that embody walking actious from point a to b.

A Dbehavior description can also be formed by applying a temporal operator to a
state description. Three temporal operators are currently being used. The expression
(!p}, where p is some state description (possibly involving logical connectives), is true
of a sequence of states il p is true of the last state in the sequence; that is, it denotes
those behaviors that achieve p. Thus we might use the behavior description (! (walked
a b)) rather than decide to use (walk a b). Similarly, (?p) is true if p is true of the
first state in the sequence — that is, it can be considered to denote those behaviors that
result from a successful tes? for p. Finally, (#p) is truc if p is preserved (maintained

invariant) throughout the sequence.

Behavior descriptions can be combined by means of the logical operators A and V.
These denote, respectively, the intersection and union of the component behaviors. Ifor
example, (!(walked a b) A #(holding cupl)) describes those behaviors in which

one walks [rom a to b while holding a particular cup.

As with state descriptions, behavior descriptions are not restricted to describing
the external environment, but can also characterize the internal behavior of the sys-
tem. Such behavior specifications are called metalevel behavior specifications. One
important metalevel behavior is described by an expression of the form (=> p). This
specifies a behavior that places the state description pin the system data hase. Another

way of deseribing this behavior might be (! (believe p)).

3.3 Knowledge Areas

Knowledge about how to accomplish given goals or react to certain situations is repre-
sented in PRS by declarative procedure specifications called I{nowledge Areas (K{As).
Each KA consists of a body, which describes the steps of the procedure, and an inwve-

cation condifion thai specifies under what situations the KA is useful.

The body of a KA is represented as a graphic network and can be viewed as a plan
or plan schema. However, it differs in a very important way from the plans produced
by most AT planners: it does not consist of possible sequences of primitive actions, but
rather of possible sequences of subgouls to be achieved. Thus, the bodies of KAs are
much mnore like the high-level “operators” used in snch planning systems as NOAH
[27] and SIPE [30]. They difler in that (1) the subgoals appearing in the body can
be described by complex temporal expressions and (2) the allowed control constructs
are richer and include conditionals, loops, and recursion. One important advantage of
using abstract subgoals instead of fixed calls to actions is that the kuowledge expressed
in any given KA is largely independeut of other I{As, thereby providing a very high
degree of modularity. It is thus possible to build domaiu knowledge incrementally,

with each component KA lhaving a well-defined and easily understood semantics.

The invocation part of a KA contaius an arbitrarily complex logical expression
describing under what conditions the KA is useful. Usually this consists of some
conditions on current system goals (in wlich case, the KA is invoked in a goal-directed
fashion) or current system beliefs (resulting in data-directed or reactive invocation),
and may involve both. Together the invocation coudition and body of a KA express
a declarative fact about the effects of performing certain sequences of actions under

certain conditions.}

"More specifically, a KA can be viewed as a statement altesting that, if the facts described in the

invocalion part of the KA hold at the beginning of execution, achieving the sequence of goals described

10

The set of X As in a PRS application system not only consists of procedural knowl-
edge about a specific domain, but also includes metalevel KAs — that is, informa-
tion abont the manipulation of the beliefs, desires, and intentions of PRS itself. For
example, typical metalevel KAs encode various methods for choosing amoung mnulti-
ple relevant IKAs, determining how to achieve a conjunction or disjunction of goals,
and computing the amount of additional reasoning that can be undertaken, given the
real-time constraints of the problemn domain. Metalevel KAs may of course utilize
knowledge specifically related to the problem domain. In addition to user-supplied
KAs, eachh PRS application coutains a set of system-defined default KAs. These are

typically domain-independent metaleve] I{As.

3.4 The Process Stack and System Interpreter

The PRS iuterpreter runs the entire system. From a couceptual standpoint, it operates
in a relatively simple way. At any particular time, certain goals are active in the system
aud certain beliefs are leld in the system data base. Given these extant goals and
beliefs, a subset of KAs in the system will be relevant (i.e., applicable). Oue of these

relevant KAs will then be chosen for execution by placing it on the process stack.

In determining KA applicability, the interpreter will not automatically perform
any deduction. Both beliefs and goals are matched by using unification only. This
allows appropriate KAs to be selected very quickly and guarantees a certain degree
of rveactivity. If we allowed arbitrary deductions to be made, we could no longer
furnish such a guarantee. However, PRS is always able to choese whether or not to
deduce (1) further consequences of the set of explicit beliefs held iu the data bhase
or (2) what other goals would imply attainment of any goals already decided upon.
Any snch deductions, however, would have to be made by appropriate metalevel KAs,
which themselves would be interruptible. In this way, the reactivity of the system is

retained.

In the course of executing the chosen KA, new subgoals will he posted and new
beliefs derived. When new goals are pushed onto the goal stack, the interpreter checks
“to see if any new KAs are relevant, chooses one, places it on the process stack, and

begins executing it. Likewise, whenever a new belief is added to the data base, the

by some path in the KA body will also achieve the goals given in the invocation part. A more complele

description of the declarative and operational semantics of PRS can be found elsewhere [16].

11

interpreter will perform appropriate consistency maintenance procedures and possibly
activate other relevant KAs. During this process, various metalevel KAs may also
be called upon to make choices aimong alternative paths of execution, choose among
multiple applicable I{As, decompose composite goals into achievable components, and

malie other decisions.

This results in an interleaving of plan selection, formation, and execution. In
essence, the system forms a partial overall plan, determines a nieans of acconiplishing
the first subgoal of the plan, acts on this, further expands the near-term plan of action,
executes further, and so on. At any time, the plans the system is intending to execute
(i.c., the selected KAs) are both partial and hierarchicel — that is, while certain general
goals have been decided upon, the specific means for achieving these ends have been left
open for future deliberation. By finding and executing relevant procedures only when
needed and only when sufficient information is available for making prudent decisions,

the system stands a better chance of aclhieving its goals under real-time constraints.

Unless some new {act or request activates some new KA, PRS will try to fulfill any
intentions it has previously decided upon. But if some important new [act or request
does become known, PRS will reassess its goals aud intentions, and then perhaps
choose to work on something else. Thus, not all options that are considered by PRS
arise as a result of means-end reasoning. Changes in the environment may lead to
changes in the system’s beliefs, which in turn may result in the consideration of new
plaus that are not means to any already intended end. PRS is therefore able to change
its focus completely and pursue new goals when the situation warrants it. In the
space station scenario, this happens quite {frequently as emergencies of various degrees
of severity occur in the process of handling other, less critical tasks. PRS can even
alter its intentions regarding its own reasoning processes — for example, it nay decide
that, given the current situation, it has no time for furtlier reasoning and so must act

immediately.

PRS has also been designed to operate under a well-defined measure of reactivity.
Because the interpreter continuously attempts to match KAs with any newly acquired
beliefs or goals, PRRS is able to notice newly applicable KAs after every primitive action
it takes. Given that each such primitive action has an execuilon time of at most 2,
and given that the PRS interpreter takes at most time s to unify KAs with its current
beliefs and goals, PRS las a gnaranteed recctivily delay of at most 1 + s. Of conrse,

this represents only the maximum amount of time PRS may take to nolice requests

12

from other agents or changes in the environment. It may take longer for PRS to decide

whal to do and to perform some appropriate action.

3.5 Multiple Asynchronous PRSs

In some applications, it is necessary to monitor and process many sources of informa-
tion at the same time. Because of this, PRS was designed to allow several instantiations
“of the basic system to run in parallel. Each PRS instantiation has its own data base,
goals, and KAs, and operates asynchronously relative to other PRS instantiations,
communicating with them by sending messages. ‘The messages are written into the
data base of the receiving PRS, which must then decide what to do, if anything, with
the new information. As a rule, this decision is made by a [act-invoked I{A (in the
receiving PRS), which responds upon receipt of the external message. In accordance
with such factors as the reliability of the sender, the type of message, zud the be-
liefs, goals, and current intentions of the receiver, it is determined what to do about
the message — for example, to acquire a new belief, establish a new goal, or modify

intentions.

4 Flakey the Robot

Flakey, designed and built in SRI’s Artificial Intelligence Center, is being used by sev-
eral research teams to test a number of ideas on software organization. It contaius two
onboard computers, a Sun IT workstation (with 42 Mbyte disk) and a Z80 micropro-
cessor. The Z80 is the low-level controller, receiving instructions from and returning
current information to the Sun. The Sun, in turn, can be connected to an Ethernet
cable, allowing the robot to operate in either stand-alone or remote-control modes.

The Sun can also be accessed from a small console on Flakey itself.

The Z80 controls 12 sonars, 16 bumper contacts, and 2 stepper motors for the left
and right wheels. Voice output and video input are managed by the Sun. A robot
arm will be added in the future. The application described here uses only the sonars,

voice, and wheels.

The 12 sonars are located approximately 5 inches off the ground — four facing

forward, four backward, and two on each side. To obtain a sonar reading, the Sun

13

must issue a request to the 780 and then wait until the result has heen returned.
While waiting, the Sun can continue with other processing. At present, the Sun can

obtain no more than a few sonar readings per second.

The motors for the left and right wheels can be controlled independently, again
by having the Sun send a request to the Z80. For each wheel a desired distance, a
maximum forward speed, and a desired acceleration can be specified. The Z80 nses the

given acceleration to achieve the maximum speed compatible with the desired distance.

Directional changes are accomplished by requesting different speeds for the two
wleels. When the robot is stationary, this can be reduced to a simple rotation; when
the robot is moving, more complex algorithms are required. Changes in direction
are mich more diflicult to program when they must be negotiated during a forward

acceleration.

As well as rcceiving the desired values of distance, speed, and acceleration {rom
the Sun, the Z80 transmits current actual values to the Sun. This is done by means of
interrupts that occur at a rate of approximately fifty times per second. The Z80 also
runs a position integrator, thus making available the robot’s position and orientation
relative to particular reference axes. In line with our desire to avoid reliance on dead
reckoning, however, we did not use the position integrator for the top-level navigation
task; it was employed, however, for such low-level tasks as estimating the robot’s

alignment within a hallway.

There is siguificant noise in every measurement available to the Snn. The sonars,
while generally accurate to within 5 millimeters, can occasionally return invalid read-
ings and can also fail {o see an object if the angle of incidence is too high. Furthermore,
Flakey’s sonars sense the closest object within a 30-degree cone, so that open doorways
are not seen until the sonars are well past the doorpost.- Similarly, Flakey will stop
within about 5 millimeters of the requested distance and will travel at speeds that vary

by up to 10 millimeters per second above and below the requested maximuin speed.

5 The Domain Knowledge

The scenario described in the introduction includes problems of route planning, navi-

gation to maintain the route, and such tasks as malfunction handling and requests {or

14

AT-ROOM

" (8 (office $person Stroom) (in-hall Stroom Sthall $tside $tpos)
(in-wing $thall $twing))

(" {& (robot-in-room $froom) (in-hall $froom $fhall $fside $fpos)})

N?_

(=> (destination $troom Sthall $twing))
N3

(! {vocalized "Just B moment, I'm planning my path.”))

i

@‘

(! (planned-path $thall $troom))

f

@_

(! (room-left $froom))

Y

N6

(! {followed-plan))

()

THVOCATIOR-PRART: ((¥GOAL {1 (AT-ROON $PERSON
it T
-

Figure 2: The Top-Level Strategy

tuformation. We shall concentrate lierein on the tasks of route planning and naviga-
tion. However, it is important to realize that the knowledge representation provided

by PRS is used for reasoning abonut all tasks performed by the system.

The way the robot (Flakey, that is, under the control of PRS) solves the tasks of

the space station scenario is roughly as follows. To reach a particular destination, it

-

15

knows that it must first plan a route and then navigate to the desired location (see
the KA depicted in Iigure 2). In planning the route, the robot uses knowledge of the
station’s topology to work out a path to the target location, as is typically done in
navigational tasks for antonomons robots [7,23]. The topological knowledge, however,
is of a very high-level form, stating which roowms are in which corridors and how the
latter are connected. The route plan formed by the robot is also high-level, typically
having the following form: “Travel to the end of the corridor, turn right, then go to
the third room on the left.” The robot’s knowledge of the problem domain’s topology
is stored iu its data base, while its knowledge of how to plan a route is represented in
various rounte-planning KAs (see Figures 4, 5, and G}. This is quite different from the
approach adopted by traditional Al planners, which would find a route by symbolically
executing the actual operators that specify potential movements through rooms and

along hallways.

A different set of KAs is nsed for interpreting and traversing the route mapped out
by the route-planning KAs (see Figures 7, 8, 9, and 10). The navigational KAs carry
out such tasks as sensing the environment, deciding when to turn, adjusting bearings

where necessary, and counting doors and other openings.

Yet other KAs perform the various other tasks required of the robot. Many of these
are described by us elsewhere [17]. Metalevel KAs choose among different means of
realizing any giveu goal and determine the respective priority of tasks when mmtually
inconsistent goals arise (such as diagnosing a jet failure and fetching a wrench). 1f
the robot’s route plan fails, the route-planning I{As can again take over and replan a
new route to the target destination. In the implementation described herein, however,
we have not provided any KAs for re-establishing location once the robot has left its
room of departure. Consequently, it does not possess any replanning capability at the

present time,

5.1 The Planning Space

As stated above, the robot’s route planning is done in a very abstract space containing
only topological information about how the rooms and hallways connect. It is in fact
the kind of map found in street or building directories, stripped of precise distances
and angles. This is quite natnral: when one thinks of going home from the office, one

considers primarily the topology of the hallways, {ootpaths, and roads to be followed,

16

not precisely how long each of them is, nor the consequences of lateral drilt; such
factors involve too low a level of detail to be taken into account before setting out

along the chosen ronte.

The three primary KAs used to plan paths are shown in Figures 4, 5, and 6.
Given knowledge of the starting and end points, they first select some intermediate
point. They then repeat the process for the two resnlting subpaths until all paths have
been rednced to strajght-line trajectories along single hallways. Although it is not the
planner we would advocate for more general route planning, it is quite sufficient for our
purposes. Indeed, top-level route planning is the simplest aspect of the navigational

task.

The topological information needed for route planning is stored in the system data
base as a set of facts (beliefs) about the way wings, hallways, and rooms are connected.
These include facts of the form (conn j1 k1 j4 direct) (i.e., hallway j1 is connected
to hallway k1 directly via hallway j4), (in-wing j1 jwing) (i.e., hallway jl is in wing
jwing), and (in-hall ej225 ji east 14) (i.c., room €j225 is in hall j1 on the east
side of the hall, fourteen rooms from the end). A typical ronte plan constructed by
the path-planning KAs is shown in IFigure 3. This plan, formed to satisfy the goal of
reaching a target room (ej270 in wing j2) from the robot’s location alter it exits its
current roow (i.e., just outside room ¢j233 in wing j1), was produced in less than a

second. No further predictive planning is required for the robot to negotiate the path.

{path hall j1 j4)
(path hall j4 j2)
{path hall j2 j270)

Figure 3: Route from ¢j233 to ej270

1t 1s important to emphasize that, even during this relatively short route-planning
stage, the robot remains continuously reactive. Thus, for example, should the robot
notice indication of a jet failure on the space station, it might well decide Lo interrupt

its route planning and attend instead to the task of remedying the jet problem.

PLANNED-PATH

? (roebot~in=hall $fhall)}

(=> (path hall $thall $troom))

H B
INVOCATION-PART: ((xGOAL (| {PLARMED-PATH $THALL $TROOH

=it O
I

Figure 4: Route-Planning KA

18

HAVE-HALL-PATH

(? (in-wing $fhall $fwing))

NT
(? (in~wing $thall $twinp))

(? (= $fwing $twing)) {? (- (= $fwing Stwing)))

(! (Found-path $fhall $thall hall)) (! (found-path $fwing Stwing wing))

e——

[HAVE-HBLL-PATH
THVOCATION-PART: ((*GOAL (1 {HAVE-RALL-PATH §FHALL $¥THALL}J})
Exit LJ

Figure 5: Route-Planning KA

19

FOUND-PATH

» .
(? (conn $from $to $via $hoy 2 (~ (conn $from $to Svia $Show)))

(? (= Show indirg 2 (= $Show direct))

N4 .
(=> (path $type $from $via))

Y

(! {(found-path $from $via $Stype))
(w> (path $type $from $to))

FOURD-PRTH
INVOCATION-PART: ((sGGAL (I {FOURD-PATH $FROH $70 $TYPE})Y)

Exit 3
I

Iigure 6: Route-Planning KA

20

5.2 Reactive, Goal-Directed Behavior

The KAs used to navigate the route fall into three classes: (1) those that interpret
the ronte plan and establish intermediate target locations, (2) those that are used to
follow the path, and (3) those that handle critical tasks such as obstacle avoidance
and reacting to emergencies. Each KA manifests a self-contained behavior that may
inclnde both sensory and effector components. Moreover, the set of KAs is partitioned
natnrally according to its level of functionality [6]: low-level functions (emergency re-
actions, obstacle avoidance, etc.), middle-level functions (following already established
paths and trajectories), and higher-level fnnctions (route planning and figuring onut
how to execute a topological route). Many of these KAs can be simultaneously ac-
tive, performing their function whenever they may be applicable. Thus, while the
robot is trying to follow a path down a hallway, an obstacle avoidance procedure may

simultaneously cause the robot to veer slightly from its original path.

Quce a ronte plau has been decided upon it must be converted into some usable
form. One approach would be to represent the plan shown in I'igure 3 as a procedural
XA containing the goals “go to the j1-j4 junction,” “go to the j4-j2 junction,” and so on.
Another approach - the one we have adopted - is to define a gronp of KAs that react
to the preseice of a route plan (in the data base) by translating it into the appropriate
sequence of subgoals. Each leg of the original route plan generates subgoals — such as
turning a corner, travelling along the hallway, and updating the data base to indicate
progress. The second group of navigational KAs reacts to these goals by actually doing
the work of reading the sonars, interpreting the readings, counting doorways, aligning

the robot in the hallway, and watching for obstacles up ahead.

For example, let us consider the KAs in Figures 7 8, and 9. After having used the
KA in Figure 2 to plan a path, the robot acquires the goal (! (room-left $froom)),
where the variable $froomis bound to some p_a.rticu_la,r constant representing the room
that the robot is trying to leave. The KA in Figure 9 will respond, causing the robot
to perform the steps for leaving the given room. The last step in this KA will insert a
fact into the system data base of the form (current-origin $froom $fhall), where
the variables are again bound to specific constants. Next, the KA in Figure 2 issues the
command (! (followed-plan)). This activates the KA in Figure 7, which repeatedly
activates the KA in Figure 8, following each leg of the plan until the goal destination is

reached. Beliefs of the form (current-origin $locale $spot) are repealedly used

21

to readjust the robot’s bearings and knowledge about its whereabouts.

A third group of KAs reacts to contingencies encountered by the robot as it in-
terprets and follows its path. TFor example, these will include KAs that respond to
the presence of an obstacle aliead (see I'igure 10) or the fact that an emergency light
has been seen. These reactive IKAs are invoked solely on the basis of certain facts’
becoming known to the robot. Implicit in their invocation, liowever, is an underlying

goal to “avold obstacles” ar “remain safe.”

Since a fact-invoked KA can be executed as soon as its triggering facts are known,
the KAs invoked by these contingencies can interrupt whatever else is happening.
Of course, this may not always be desirable. ldeally, domain-specific metalevel KAs
should ascertain wlhetlier and when pre-emption is appropriate, but, at this stage of the
project, we have not used metalevel KAs other than those provided as PRS defanlts
(which result in immediate pre-emption}. An alternative to pre-emption is to send
a contingency message to another PRS instantiation that can process that message

concurrently.

5.3 Parallelism and Mediation

Because of real-time constraints and the need for performing several tasks concurrently,
it is desirable to use multiple instances of PRS running in parallel. lu particular,
parallelism can be used for handling contingencies without interrupting other ongoing
tasks. Multiple PRS instantiations can also serve as information filters to protect
other instantiations fromn a barrage of uninteresting sensory information. Moreover,

parallelism provides for robustness and reliability.

For example, as the robot rolls down a hallway, it fires its sonars to determine
how far it is from the walls, and also to count doors. Suppose it decides that the
walls are too close and that, consequently, a change in course is warranted. Because
the actions of speeding up and slowing down are not accomplished instantaneously,
changing course may take as long as two seconds. This is long enough for the robot
to roll past a doorway. If the procedure that monitors sonar readings is interrupted to
effect the course change, the robot might completely miss sensing a door. Conversely,
delaying course changes for the sake of sonar monitoring could make a collision with
a wall inevitable. Of course, travel at lower speeds would solve the problem — but it

would also render the robot too slow to be useful.

22

FOLLOWED-PLAN

(? (destination Stroom $thall $tuwing))

N1

(? (current-origin $Slocale $spot))

A

2. (& (= $thall Slocale) (= $troom $spot))))

(! {followed=hext-leg))

sthall $locale)(= $troom $spot)))

UED-PE AN
INVOCATION-PART: {(sGOAL {1 (FOLLOUED-PLAN)}J)

Exit [
A

Figure 7: Plan Interpretation KA

23

FOLLOWED-NEXT-LEG

sta

(? (in-hall $newspot $Scurrentiocale $newside $newpos))

(? (& (coming-from $fside) (in-hall $from $currentlocale $fside $fpos)))

EoRE

(! (= Sturn (x (signum (- $tpos $fpos)) (sign-of $fside})))

(! (rotated (x 1.57 $turn)))

PERD
=1

(! {moved {// (wheelbase) 3}))

-

{=> {coming-from (new-pole $fside $turn)))

_.@_ﬂ

N
r(! (door-count (abs (- $fpos $newpos))))

(2]
4l

N4
{=> (current-origin $currentlocale $rewspot})

)

[FOLLOHED-REXT -LEG

IHUBCATIOR-PART: ((AND {sGOAL (| {FOLLOHED-HEKT~LEG tFRCT {CURRERT-ORIGIN $FROH SCURREHTLOCALE
Enit O (tFACT (PATH HALL $CURREMTLOCALE SHENSPOT)) 3)

Figure 8: Plan Interpretation KA

24

ROOM-LEFT

S,

{t (& (moved B) {speed {maxv)) {acceleration (maxa))))
NO
(! (at-coords B 8))
[A1]
V(! (at-dg-bearing 188))

[~z

Y {! {moved (+ (elbowroom) (wheelbase)))}
A5]

1 (w> (= (robot-in-room $froom)))

[&4]
r(? {in-hall $froom $fhall $side $pos))

[~z]

(w> (coming-from $side))

N6

(w> (current-origin $froom $fhall)}

()

ON-LEFT
INVOCRTION-PART: ((*GOAL (] {RODH-LEFT $FRODH})})

Exit 1

Figure 9: A Route Navigation KA

HALL-BLOCKED

{! (m $d (fw~clearance)))
(7 (> sd 480)) (? (<= $d 488))

(! (vocalized "please mab

(! {voghlized ~please clear my path.”))

= K
INVOCATION=PART : sFACT (PATH-CLEAR NIL
Exit 4

Figure 10: A Reactive KA

26

The most effective way to handle this problem is to allow multiple PRS instanti-
ations to act concurrently. Running several instantiations asynchronously entails its
own problems, however. For examnple, it is desirable to have one PRS instantiation de-
voted to the task of keeping the robot int the center of the hallway, while another drives
the robot to the target location and adjusts speed commmensurately (e.g., slowing down
when approaching the target). Changes in course are effected by changing the relative
velocities of the two wheels, depending on their current velocity; changes in speed are
effected by changing the acceleration of the wheels. The problem is that, if both tasks
need to be performed at once, the required wheel operations may interfere with one
another. This is an interesting example of a situation in which domain-independent
decomposition operators will not wark: because of the real-time constraints of the do-
main, it is not suitable to achieve one goal (say, a change in direction) and subsequently
achieve the other (change in speed); neither can each goal be attained independently,

as the means for doing so interact with one another.

To mediate between these interacting goals, we chose to implement a third PRS to
control the wheels. This PRS instantiation can be viewed as a virtual controller that is
capable of accepting requests for changes in either speed or direction asyuchronously,
and can fulfill both kinds of requests simultaneously. In this respect, it serves as a
special-purpose solution to a particular kind of conjunctive goal; goals to change both
speed and direction are decomposed into independent goals to change the speeds of

the left and right wheels respectively.

Related to the problem of interacting goals is thal of goal conflict: just as one
may have possibly conflicting beliefs about a situation that needs to be resolved (the
problem of situation assessment), one may also have conflicting goals (or desires) that
require mediation [19]. For example, the virtnal controller often gets couflicting speed
requests from KAs: the hallway-traversal KA might request that a certain velocity
e maintained, the XA that detects proximity to the target may request a decrease iu
velocity, and the I{A that detects obstacles could request that the robot stop altogether.
At the same time, other KAs might request changes in direction to stay in the center
of the hall or to pass around small obstacles.

To reconcile these conflicting goals, the virtnal controller has to be able to reason
about their relative urgency and criticality. This, in turn, may involve fnrther commu-
nication with the goal-requesting systems. Qur present solution is to define domain-

dependent mediators wherever necessary; at present, however, no general technique for

27

solving this problem has been attempted.

5.4 Coping with Reality

In our initial implementation of the robot application, we used a single PILS instan-
tiation interacting with a robot simulator, all running on the Symbolics 3600. This
worked well, confirming the system’s ability to control complex autonomous devices.
We then began work on driving the real robot. Speed constraints and requirements
led to the use of multiple PRS instantiations. Indeed, this transfer process took con-
siderably longer than estimated. Two major problems caused this divergence between

expectations and reality.

Tirst, because PRS was implemented on a Lisp machine, interaction with Flakey
could be effected only via an Ithernet cable. Software for remote procedure calls over
the ethernet limited communication to 15 function calls per second - too slowly for a
timely response to sensor mput. Consequently, we had to transfer much of the PRS
functionality to Flakey’s Sun. This required translating the functionality of the lower-
level KAs into C code, as well as into explicit coding for handling messages and clock
signals. Unfortunately, Flakey’s operating system also did not support interprocess
communication at the bandwidth and with the efficiency we wanted. We were thus
compelled to implement communication through shared memory, with all the cou-
comitant synchronization code thereby entailed. After these efforts, the information
flowing over the Ethernet was at the level of “move N doors” (PRS to Flakey) and
“I'm stopping for an obstacle” (Flakey to PRS). Obviously, the translated system is no
longer constructed solely from instances of PRS. As a result, our final implementation
is considerably niore constrained than the sinmulation version in its capacity to reason

about its low-level actions and to react appropriately to changing goals.

The second obstacle to translating from our simulated application to one that
could function m the physical world is the nature of the real world itsell. A realistic
environment is simply not controlled enough to allow efficient debugging. It is diffi-
cult to repeat experiments (and get the same bugs), time-delays become critical, and
the behavior of real sensors and effectors can differ significantly {from their simulated

connterparts.

The configuration of our current application system is shown is Figure 11. Three

machines are involved: a Symbolics 3600, a Sun, and a Z80, running six application

28

processes. The wheels and sonars, which may be regarded as physical processes, are
also depicted. The rectangular box represents the Sun’s shared-memory area; arrows

represent interprocess communication.

pra planner — SArver
virtual
I / \ sonar

controfler
poller

scraen ’
. sonar
| \ monltor / whesls
- » I— — ¢controller

Figure 11: Processes Used iu the Iimplementation

6 Discussion

The primary purpose of this researclh was to show that the abstract architecture of
PRS was suited to reasoning and planning in dynamic and uncertain worlds. The
experiments we performed with Flakey proved quite successful, and tlie robot man-
aged to accomplish a considerable portion of the two scenarios described in Section 1,

including both the navigational and malfunction-handling tasks.

In particnlar, the robot managed to plan a path to the target room, maneuver
its way out of the room in which it was stationed, and navigate to its destination
via a variety of hallways, intersections, and coruers. It maintained alignment in the
hallways, avoided obstacles, and stopped whenever its path was completely blocked. If
it noticed a jet malfunction on the space station (simulated by liuman interaction via
a keyboard), it would interrupt whatever it was doing (route planning, navigating the

hallways, etc.) and attend to diagnosing the problem. The diagnosis performed by the

29

robot was quite complex and followed the actnal procedures as nsed for NASA’s space
shuttle [17].

The features of PRS that, we believe, contributed most to this success were (1) its
partial planning strategy, (2) its reactivity, (3) its use of procedural knowledge, and
(4) its metalevel {reflective) capabilities. As mentioned earlier, wlen one operates in
these kinds of environments it is simply impractical to plan in advance when there is
a substantial prospect of plan invalidation. It is usually wiser to form a partial plan,
then wait to see what the world will be like before expanding it further. The partial
lierarchical planning strategy and the reflective reasoning capabilities of PRS proved
to he well suited to the robot application, yet still allowed the system to plan ahead
when necessary. By finding and executing relevant procednres only when suflicient
information was available to make wise decisions, the system stood a better chance of

achieving its goals under the stringent real-time constraints of the domain.

For example, the speed and direction of the robot were determined during plan
execution, and depended on such things as the proximity of obstacles and the actual
course of the robot. Even the method for determining the course depended on the im-
mediate sitnation, such as whether the robot was between -two hallway walls, adjacent
to an opeu door, at a T-intersection, or passing an nunknown obstacle. Similarly, the
choice of how to normalize fuel or oxidant tank pressure while handling a jet failure

depended on observations made during the diagnostic process.

Becanse PRS expands plans dynamically and incrementally, there were also fre-
quent opportunities for it to react to new sitnations and changing goals. The system
was therefore able to modify its intentious rapidly on the basis of what it perceived
al any given moment as well as upon what it already believed, intended, and desired.
For example, when the system noticed a jei-fail alarm while it was attempting to fetch
a wrench, it had the ability to reason ahout the priorities of these tasks and, if it
so decided, to suspend the wrench-fetching task while it attended to the jet failure.
Indeed, the system even continued to mounitor the world while it was planning its route

and could interrupt the planning whenever the situation demanded.

The wealth of procedural knowledge possessed by the system was also critical in
allowing the robot to operate effectively in real-time and to perform a variety of very
complex tasks. In particular, the powerful control coustructs allowed in KAs {such

as conditionals, loops, and recursion) proved highly advantageous. Iov example, the

30

iterative constructs in PRS allowed us to specify plans such as “maintain speed at 400
mm /sec until N doorways have been observed.” We were thus able to dispense with
coordinate grids and dead reckoning: we could specify the robot’s behaviors relative

to conditions that changed over time.

PRS also makes it possible to have a large number of diverse KAs available for
achieving a goal. Each may vary in its ability to accomnplish a goal, as well as in its
applicability in particular situations. Thus, if there is insufficient information abont
a given situation to allow one KA to be used, another {perhaps one less reliable)
might be available instead. For example, if a topological map of an area had been
unavailable for planning pnrposes, its absence would not necessarily have rendered
the robot ineflective; there might, for example, have been some other KA that would
have set the robot off in the general direction of the target. Parallelism and reactivity
also helped in providing robnstness. FFor example, if one PRS instantiation were busy
planning a route, other instantiations could remain active, monitoring environmental

changes, keeping the robot in a stable configuration, and avoiding dangers.

The metalevel reasouing capabilities of PRS were particularly important in manag-
ing the application of the various KAs in different situations. Such capabilitics can be
critical in deciding liow best {o meet the real-time constraints of a domain. However,
the current system was really oo simple to serve as an adequate test of the system’s
metalevel reasoning abilities; indeed, the system performed quite well with ouly a few

[well-chiosen] metalevel KAs.

PRS also meets many of the criteria of rational agency that have been advanced
in the philosophical literature on practical reasoning [4]. Impelled by the need to
explain resource-boundedness and inter- and intra-agent coordination, recent work
in the philosophy of action has moved beyond belief-desire architectures for rational
agents to consideration of the nature of plaus and intentions, as well as the nature of

intention formation.

In particular, plans are viewed as heing subject to two kinds of coustraints: consis-
lency constrainisand those that require means-ends coherence. Consistency constraints
specify that an agent’s plans must be both internally consistent and consistent with its
beliefs and goals. Moreover, it should be possible for an agent’s plans to be executed
successfully {that is, it should choose truly applicable plans) in a world in which its

beliefs are true. Means-ends cohereunce is required when a particular plan of action is

31

adopted. Though they are partial, plans have to be filled in to a certain extent, as time
goes by, with subplans that concern such plan elements as means, preliminary steps,
and relatively detailed courses of action. These subplans must be at least as extensive

as the agent believes is necessary for successful plan execution.

These counstraints on the beliefs, desires (goals), aud intentions of an agent are
largely realized by PRS aud, as such the system can be viewed as an implementation
of a rational agent. In addition, our notion of inteuntion satisfies the major requirements

put forth by Bratman [4], who cousiders mtentions to have the following properties:
¢ Tley lead to action
¢ They are parts of larger plans
s They involve connitment
¢ Tley constrain the adoption of other intentions
¢ They are adopted relative to the beliefs, goals, and other intentious of the system.

Of course, the system we used for controlling Flakey did not conie close to man-
ifesting the behavioral complexity of real rational ageunts; nevertlieless, it did cope

remarkably well with the dynamic and uncertain world in which it was embedded.

PRS also achieves the same kind of task decomposition advocated by Brooks [6],
in which distinet behaviors of the robot are realized separately, eaclh making use of
the robot’s sensory, effector, and reasoning capabilities as needed. Each KA defines
a particular behavior of the system; that behavior caun involve both the processing of
sensory information and the execution of effector actions. In the robot application,
for example, we used a KA that manifested a behavior to remain clear of obstacles,
another KA whose behavior was to keep a straight course in a corridor, and yet another

that chosc and traversed routes {rom one room to another.
PRS thus provides the same positive bencfits as the system proposed by Brooks

[5):

¢ “There are many parallel paths of control through the systemn [Many different
procedures can be used in a given situation]. Thus, the performance of the system

in a given situation is not dependent on the performance of the weakest link in

32

that situation. Rather, it is dependent on the strongest relevant behavior for the

situation.”

e “Often more than one behavior is appropriate in a given situation. The fact that
hehaviors can be generated by parallel systems [multiple PRS instances| provides
redundancy and robustness to the overall system. There is no central bottleneck

[through which all the processing or reasoning must occur].”

s “With some discipline in structuring the decomposition, the individual task-
achieving behaviors can run on separate pieces of hardware. Thus, [the design]
leads to a natural mapping of the complete intelligent system onto a parallel
machine. The benefits are threefold: (1) redundancy again; (2) speedup; and (3)

a naturally exteusible system.”

The main difference between PRS and the Brooks arcliitecture is that we employ
a more general mechauism for selectinug among appropriate behaviors than he does:
wlereas Brooks uses inhibitory and excitatory links to integrate the set of beliaviors
defined by each of the system’s functional components, we use general metalevel pro-
cedures and communication protocols to perform the selection and integration. Of
course, such generality will likely preclude meeting some of the real-time constraints
of the environment, in which case the metalevel procedures might have to be compiled
into a form closer to that envisaged by Brooks. Similarly, while our system maps
naturally onto coarse-grained parallel machines, sophisticated compilation techniques

would be required to map the lower-level functions onto highly parallel architectures.

Finally, we wish to emphasize that the abstract architecture of PRS, not its actual
implementation, was our primary coucern. That is, while we believe that attributing
beliefs, desires, and intentions to autonomons systems can aid in specifying complex
behaviors of these systems, and can assist in communicating and interacting with them,
we are not insisting that such systems actually incorporate distinct data strnctures that
explicitly represent these psychological attitudes. We can instead view the specification
of the PRS system, together with the various metalevel and object-level KAs, simply as
a description of the robot’s desired behavior. This description, suitably formalized,?

could be realized in (or compiled into) any suitable implementation we choose. In

2While the semantics of the I{As is formally defined [16,18], we have yet to formally specify the
operation of the interpreter undexlying PRS. If this were done, we would then have a completely formal
specification of the robot’s desired behavior.

33

particular, the beliefs, desires, and intentions of the robot may no longer be explicitly
represented within the system. Some interesting work on this problem is now being

done by Rosenschein and Kaelbling [26].

7 Limitations of the Current Implementation

The primary thrust of this work has been to evaluate an architecture for antonomons
systems that provides a means of achieving goal-directed, yet reactive behavior. We
have made enough progress to show that this approach works. However, the research
is only in its initial stages and there are a nuniber of limitations of the current imple-

mentation that still need to be addressed.

First, there is a class of facts that the current system must be told - for instance,
the robot’s starting location. I the robot is initialized in some unknown position on
the topological map, the planner will abort. It would be easy to solve such problems
by including KAs that ask {or the missing information, but a completely autonomous
recovery would be a much more challenging task. Possible approaches might involve ex-
ploration of the terrain (including movement within the neighboring area) and pattern

matching onto known landmarks.

Second, there are many assumptions behind the procedures (KAs) used. For ex-
aniple, we have assumed that hallways are straight and corners rectangular; that all
hallways maintain a fixed width for their entire length (except for doorways and inter-
secting halls); that there is only one layer of obstacles in front of any wall (nowhere,
for instance, is there any unexpected object in front of a cupboard); that all doors
are open and unobstructed; and that other objects move much more slowly than the

robot.

We have also made assumptions that limit the robot’s reactivity. For example, we
assume that the robot does in {act arrive at the junction it planned to reach. If the
robot miscounts the doorways, it will stop in the wrong place, turn, and start the next
leg of its journey without realizing its mistake. The result is generally that the robot
will be found begging a wall to “please make way.” If the robot realized it was in the
wrong position, it could replan to achieve its goals. However, because we assume that

the door count is always right, the route planner is never reinvoked.

34

In addition, some goals are not made as explicit as one would like, but are implicit
in the KAs used by the robot. I'or example, the robot is designed to move as fast as
possible without miscounting doorways, and to travel aloug the center of the hallway.
Such goals are not represented explicitly within KAs. Handling the first kind of goal
(“move as fast as possible”} would be relatively straightforward, requiring simply that
the system be provided' with axioms relating robot speed and perceptive capabilities.
However, it is not clear just liow one should explicitly represent the second kind of goal,
whereby the system attempts to maintain a particular condition but at best expects
only to approximate jt.

The present system also does not reason about other subsystems (i.e., otlier PRS
instantiations) in any but the most elementary manner. However, the message-passing
mechanisms we have employed should allow us to integrate more complex reasoning
about interprocess communication, such as described by Colien and Levesque [8]. Rea-
soning about process interference and synchronization is also important when concur-
rency is involved. The mechanismns developed by us for reasoning about these problems
[14,15,13,20,21,28] could also potentially be integrated within PRS. Qur future research
plaus include work both on communication and on synchronization within the PRS

framework.

Finally, a greater variety of KAs and increased parallelism would have been prefer-
able, allowing the robot to perform its tasks under more demanding conditions. For
example, we could have included many additional low-level procednres for, say, avold-
ing dangers and exploring the surroundings. This would have provided a much more
severe test of the system’s ability to coordinate various plans of action, modify inten-

tions appropriately, and shift its focus of attention.

Acknowledgments

Pierre Bessiere, Joshua Singer and Mabry Tyson lelped in the development of PRS and
extended the implementation as needed. Stan Reifel and Sandy Wells designed Flakey
and its interfaces, and assisted with the implementation described herein. We have also
benefited greatly from our participation in aud interactions with members of CSLI’s
Rational Agency Group (RATAG), especially Michael Bratmanu, Phil Cohen, Kurt
Konolige, David Israel, and Martha Pollack. Leslie Pack Kaelbling, Stan Rosenschein,

and Dave Wilkins also provided helpful advice and interesting cominents.

35

References

[1]

(2]

[3]

[6]

[9]

(10]

J. S. Albus. Brains, Behavior, and Robotics. McGraw-Hill, Peterborough, New
Hampshire, 1981.

J. 5. Albus, A. J. Anthony, and R. N. Nagel. Theory and practice of hierarchical
coutrol. In Proceedings of the Twenty-Third IEEE Computer Societly International
Conference, 1981.

S. Amarel. On representations of problems of reasouning about actions. Machine
Intelligence 3, 1968. D. Michie, (ed.), Edinburgh University Press, Edinburgh,
Scotland.

M. Bratman. Inienlion, Plans, and Practical Reason. Harvard University Press,

Cambridge, Massachusetts, forthicoming.

R. A. Brooks. Achieving Arlificial Intelligence Through Building Robots. Tecl-
nical] Report 899, Artificial Intelligence Laboratory, Massachusetts Institute of
Techinology, Cambridge, Massaclhusetts, 1986.

R. A. Brooks. A Robust Layered Conirol Sysiem for a Mobile Robol. Technical
Report 864, Artificial Intelligence Laboratory, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts, 1985.

R. A. Brooks. Visunal map making for a mobile robot. In Proceedings of IEEE
Conference on Robotics and Aulomation, pages 324-829, St. Louis, Missouri, 1985.

P. R. Cohen and II. J. Levesque. Speech acts and the recognition of shared
plans. In Proceedings of the Twenty Third Conference of the Association for
Computational Linguistics, pages 49-59, Stanford, Califoruia, 1985.

P.R. Davis and R.T. Chien. Using and reusing partial plans. In Proceedings
of the Fifth International Joint Conference on Artificial Intelligence, page 494,
Cambridge, Massachussets, 1977.

E. H. Durfee and V. R. Lesser. Incremental planning to control a blackboard-
based problem solver. In Proceedings of the Fifth National Conference on Artificial

Intelligence, pages 58-64, Philadelphia, Pennsylvania, 1986.

36

[11]

[12]

[13]

[14]

L. . Durfee, V. R. Lesser, and D. D. Corkill. Increasing colherence in a distributed
problem solving network. In Proceedings of the Fighth International Joint Con-
ference on Artificial Intelligence, pages 1025-1030, Los Angeles, California, 1985.

R. L. Fikes and N. J. Nilsson. STRIPS: a new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2:189-208, 1971.

M. P. Georgeff. Actions, processes, and causality. In Reasoning cboul Actions
and Plans: Proceedings of the 1986 Workshop, Morgan Kaufmann, Los Altos,
Califoruia, 1987.

M. P. Georgeff. Communication and interaction in multiagent planning. In Pro-
ceedings of the Third National Conference on Artificial Intelligence, pages 125—
129, Washington, D.C., 1983.

M. P. Georgeff. A theory of action for multiagent planuing. In Proceedings of the
Fourth National Conference on Artificial Intelligence, Austin, Texas, 1984.

M. P. Georgeff and A. L. Lansky. Procedural knowledge. Proceedings of the IEEE
Special Issue on Knowledge Representation, 74:1383-~1398, 1986.

M. P. Georgeff and A. L. Lausky. A System for Reasoning in Dynamic Domains:
Fault Diagnosis on the Spacc Shutile. Technical Note 375, Artificial Intelligence
Center, SRI International, Menlo Park, California, 1986.

M. P. Georgeff, A. L. Lansky, and P. Bessiere. A procedural logic. In Proceedings
of the Ninth International Joint Conference on Artificial Intelligence, Los Angeles,
California, 1985.

L. P. Kaelbling. An architecture for intelligent reactive systems. In Reasoning
about Actions and Plans: Proceedings of the 1986 Workshop, Morgan Kaufmann,
Los Altos, California, 1987.

A. L. Lansky. Behavioral Specification and Planning for Multieageni Domains.
Technical Note 360, Artificial Intelligence Center, SRI International, Menlo Park,
California, 1985.

A. L. Lansky. A Representation of Parcllel Aclivity Based on Fuvents, Siruc-
turc, and Causality. Technical Note 401, Artificial Intelligence Cenuter, SRI In-

ternational, Menlo Park, California, 1986. Also in “Reasoning about actions and

37

[22]

[23]

[24]

[25]

[27]

[28]

plans,” Proceedings of the 1986 Workshop, Timberline, Oregon, M. P. Georgell
and A. L. Lansky (eds), Morgan Kaufmann, Los Altos, California, 123-160, 1987.

A. L. Lansky and D. S. Yogelsong. Localized representation and planning meth-
ods for parallel domains. In Proceedings of the National Conference on Artificial
Intelligence, AAAI-87, Seattle, Washington, 1987.

H. P. Morave. The stanford cart and the emu rover. In Proceedings of the IEFE,
pages Volume 71, pp. 872-884, 1983.

N. J. Nilsson. Shakey the Robot. Technical Note 323, Artificial Intelligence Center,
SRI1 International, Menlo Park, California, 1984.

N. J. Nilsson. Triangle Tables: A Proposal for ¢ Robot Programming Language.
Technical Note 347, Artificial Intelligence Center, SRI International, Menlo Park,
California, 1985.

S. J. Rosenschein and L. P. Kaelbling. A formal approach to the design of intelli-
gent embedded systems. In Proceedings of the Conference on Theoretical Aspects

of Reasoning about Knowledge, Monterey, California, 1985.

E. D. Sacerdoti. A Structure for Plans and Behaviour. Elsevier, North Holland,
New York, 1977.

C. J. Stuart. Synchronization of Multieagent Plans Using A Temporal Logic Theo-
rem Prover. Technical Note 350, Artificial Intelligence Center, SRI Tnternational,
Menlo Park, California, 1985.

S. Vere. Planning in thine: windows and durations for activities and goals. IEFE
Transactions on Pattern Analysis and Machine Intelligence, 5(3):246-267, 1983.

D. E. Wilkius. Dowmnain independent planning: representation and plan generation.
Artificial Intelligence, 22:269-301, 1934.

[31] D. E. Wilkins. Recovering from execution errovs in SIPE. Computational Inielli-

gence, 1:33-45, 1985,

38

