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Using Generic Geometric Knowledge to Delineate
Cultural Objects in Aerial Imagery

ABSTRACT

We present a paradigm for discovering the outlines of arbitrarily complex cultural objects
in aerial imagery. The approach starts with a low-level image partition and and generic (as
opposed to specific or template-like) object descriptions. We then use geometric reasoning
and context knowledge to suggest corrections to the discrepancies between the segmenta-
tion boundaries and the object models. Finally, when the corrections appear consistent
with the generic cultural object model, we resegment the partition to produce new labeled
regions with clear semantic interpretations. The general features of our approach appear
to be applicable to a number of other domains.

1 Introduction

We describe a knowledge-based approach to the construction and labeling of regions corre-
sponding to cultural objects in aerial imagery. Such a paradigm is necessary because typical
low-level scene segmentation techniques cannot reliably generate regions that have unam-
biguous correspondences with object labels. The regions produced by a syntactic image
segmentation method are typically either undersegmented, with cultural objects merged
into background features, oversegmented, with semantically distinct objects broken into
many confusing pieces, or both.

A low-level image partition will always contain errors with respect to the task of ob-
ject delineation, no matter how much the process is refined. Algorithms based on edges
alone, on the other hand, lack the strong constraints and context information provided by
segmentation regions. We therefore suggest that the most effective approach to the object
delineation problem is a knowledge-based architecture that uses semantic knowledge about
edge geometry to correct an initial segmentation.

The current work concentrates on the detection of building-like cultural objects in
aerial imagery. This is both a useful domain in terms of potential practical applications,
and one that has clear geometric signatures that can be exploited [see, e.g., Shirai, 1978].
Furthermore, the accuracy of a result is easily checked for the purposes of evaluating the
success of the paradigm.

Among the previous efforts relevant to our approach, we note the work of Tavakoli [1980]
and Hwang et al [1985], which incorporates primitive concepts of generic shapes; Binford
[1982], which surveys model-based object recognition methods; Burns et al [1984], and
Reynolds et al [1984], which employs innovative edge segmentation techniques; McKeown
et al [1985], which utilizes knowledge-based region-growing and sophisticated geometrical



context knowledge; Shafer [1985] and Medioni [1983], which studies evidence available from
shadows; Nazif and Levine [1984], which attempts a conventional production-rule approach
to low-level segmentation; Nagao et al [1980] and Ohta et al [1979], which gives ambitious
approaches to the region-labeling problem; and Nevatia and Huertas [1985], which explores
geometric primitives similar to ours and makes extensive use of shadows.

Improved performance in difficult and ambiguous scenes has been attained in the cur-
rent work because of the following features of our approach:

¢ Introduction of a significant generalization of the notion of a rectangular structure
to support the concept of a generic cultural object model.

e Support for models of composite objects having arbitrary intensity characteristics
relative to the background.

e Choosing corrective strategies based on explicit knowledge about the behavior of the
segmentation process.

» Exploitation of knowledge about the interaction of edges and the segmentation re-
gions to which they belong.

o Incorporation of rules and goal-directed edge-finding procedures that handle the
splitting of regions containing undersegmented objects.

e Incorporation of rules that support the knowledge-driven grouping of oversegmented
object parts.

The next section gives an overview of our system design philosophy. We then discuss
the rules and geometric reasoning methods that underlie the approach. Finally, we show
the results that we obtain on a complex cultural scene.

2 System Design

We have found that simple edge-parsing methods are too ambiguous to be generally effec-
tive for our work, We therefore provide a strong initial context for edge-based geometric
reasoning by choosing an Ohlander-style segmentation as the starting point of our system
design [see Ohlander et al, 1978, as well as Laws, 1982, 1984]. The main characteristic of
such a segmentation is that it groups together contiguous pixels belonging to a particular
intensity range in a histogram that has been derived from recursive splitting of histograms
of parent regions. As a result, region boundaries tend to lie on contours with high intensity
derivatives; it is thus appropriate to use simple operators such as the Sobel derivative to
study the characteristics of Ohlander-style region boundaries.

We have made no special effort to tune the segmentation parameters to our application
in the images we have studied; our objective is to prove that, in the presence of the
inevitable errors produced by segmentation processes, knowledge and geometric reasoning



can be used effectively to overcome the segmentation anomalies and produce meaningful
object delineations.

A significant characteristic of edges belonging to region boundaries is that they may be
assigned a topological direction that provides additional consistency constraints on edge
combination processes. Such constraints continue to be useful even for edges belonging to
distinct neighboring regions or islands {interior boundaries assigned to large regions that
completely enclose a smaller region).

One of the unique properties of our design is the use of composite edge structures
to compensate for the fact that semantically meaningful straight lines bordering cultural
objects tend to be zigzagged as well as broken up by photometric anomalies. Even more
critical for the achievement of building recognition is the fact that, when a building “side”
is allowed to be one of our composite edge structures, a “box” built of four such mutually-
perpendicular structures can in principle correspond to any object composed of adjoined
rectangles. Thus, what our rule system treats as 2 “box” semantically encompasses objects
that are perceived as boxes, L’s, T’s, crosses, U’s, zigzags, and s0 on.

Our basic system architecture for identifying and labeling objects in a scene using
knowledge-based resegmentation is the following:

o Compute Single-Region Structures. Given a segmentation and the values of
the Sobel derivative, we first accumulate atomic edges composed of adjacent region-
boundary pixels that satisfy particular semantic criteria for the problem at hand. To
identify buildings, we use a straight line extractor.

Next, we collect together sets of atomic edge elements belonging to a single region
to form composite edges. For buildings, we choose sets of straight atomic edges that
share a geometric direction; the weighted average direction of the straight edges is
the direction of the composite.

Finally, we construct semantically-meaningful geometric structures. Generic models
for object features are used to produce geometric structures that characterize the
presence of a cultural object. Typically, there is a hierarchy of such geometric evi-
dence, with the different levels giving increasing confidence that an object is indeed
present. Boxes and U’s built of composite edges give strong generic supporting evi-
dence for the presence of buildings. These structures work equally well in the context
of multiple regions and islands, except that additional semantic constraints are usu-
ally required to replace the strong intrinsic constraints present in the single-region
context.

e Group Structures Across Regions. Cultural objects are typically broken up in
predictable ways by the segmentation process. Thus, we must check for evidence of
such fragmentation and attempt to verify the existence of reasonable links among
structures that might have arisen from a single object. The system checks for com-
mon edges in structures belonging to adjacent regions, and groups the structures to-
gether if they pass various consistency tests. In this way, multiple region information



provides support for composite structures that would be neglected if we restricted
ourselves to the single-region domain.

¢ Use Model-Driven Prediction to Correct the Segmentation. Comparing the
geometric structures with their underlying models in the context of the segmentation
now provides predictions about the probable locations of missing structure segments.
These are fed into an edge-finding procedure, and the resulting new boundaries
remove extraneous structures from undersegmented regions. Conversely, knowledge
of the object model permits regions belonging to an object that has been broken
up by the segmentation to be grouped into a more meaningful composite structure.
Among the methods that might be used to test hypotheses about correcting the
segmentation in order to better match the object models we note:

— path finders such as F* [Fischler et al, 1981]; this is the method utilized in
the current system to determine the probable location of missing segmentation
boundaries.

— region growers [e.g., McKeown et al., 1985].

— path predictors and extrapolators, such as would be required to deal with oc-
clusion. '

— reiterating the original segmentation process {or another selected for its special
properties) over the region or a particular subregion that is known to be of
interest. In this case, scoring functions evaluating any of several levels of se-
mantic content could be used to make segmentation iterations effectively “goal-
directed.”

Finally, when all meaningful clustering and partitioning has been carried out, we
attach semantic labels that could be used by abstract, image-independent query
Pprocesses.

Each step of the processes described above makes use of our system’s library of general
geometric reasoning tools. In our experience, new bodies of semantic information can
be easily added to the system by developing procedural rules based upon the power and
flexibility of these fundamental tools.

3 Rules for Geometric Reasoning about Cultural Struc-
tures

3.1 General Issues

The first step in constructing a system to reason about generic cultural structures in aerial
imagery is the introduction of a spatial vocabulary. The next step is to accumulate knowl-



edge and heuristics derived from a wide variety of experiments and empirical observations
and use that information to construct viable rules.

We list below some of the observed geometric features that characterize buildings, and
thereby influence the form of the rules we use:

Cultural objects such as buildings are characterized at the lowest level by straight
edges. However, region edges are often ambiguous, broken by photometric anomalies,
and zig-zagged due to the existence of multiple structural parts.

In order to accommodate edge ambiguities, we construct composite edges. These
edges are the key to making the shape model more truly generic. Semantically
significant clusters of edges are often collinear, but laterally displaced. The direction
that we assign to a cluster of two or more collinear or parallel edges is a weighted
average of the directions of each individual edge, rather than the direction produced
by fitting a line to the complete collection of points. We illustrate the construction
in Figure 1.

Complex cultural objects are formed from many adjoined rectangular sections, so
looking for simple rectangles and L-shapes will not be sufficient. Generalized rect-
angles made from composste edges, however, can describe any shape in this generic
category.

The basic vocabulary of geometric entities relevant to building extraction, ranked in
order of precedence for the purposes of backtracking and redefining a structure, are:

atomic edge — a statistically-determined contiguous set of pixels making a straight
line in a region boundary.

composite edge — a set of atomic edges with mutually consistent directions, along
with a composite direction derived from the directions of the edges, not from the
union of the set of edge points.

corner, T-corner — two perpendicular composite edges; an ordinary corner has the
two closest ends arranged so that their head-to-tail directions in the region boundary
agree, and so that neither intersects the other (with some tolerance) when extrapo-
lated; T-corners have a significant intersection upon extrapolation.

parallel - two parallel composite edges.

U - a parallel structure each of whose elements form a corner or a T-corner with the
same end element.

box — a structure built from two perpendicular sets of parallel structures.

In our system as it is currently implemented, rules are procedurally encoded in a set
of 50 or 60 functions. The basic structure of each function is
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IF | Pattern Match|
THEN | Operate on Data Structure|.

The pattern-matching procedure is typically so complex that it has proven much easier to
obtain reasonable performance and control using procedurally-encoded rules rather than
declarative rules. The data structures that are manipulated by a rule consist mainly of the
trees of associations that build semantically meaningful statements from atomic edges.

We have followed a customary “expert system development” philosophy to evolve the
capabilities of the software. There is a basic set of rules and capabilities that are fully
automated, plus appropriate junctures at which the operator can be asked to supply a
judgement currently beyond the capabilities of the automated rule base. By noting such
judgements and their semantic explanations, we acquire the information required.to add
corresponding rules to the fully automated system.

3.2 Rule Examples

We now present several examples of the rules and reasoning processes that must be carried
out for our application — the discovery of building outlines.

Avoiding a Composite Edge. Onesimple example of a rule is illustrated in Figure 2.
The knowledge upon which the rule is based is the fact that regions whose boundaries
“double back” on themselves almost inevitably behave that way because a piece of yard or
sidewalk adjacent to a building has been included in the segmentation, but semantically is
an appendage to the region representing the building sought. Thus, if two line segments
appear to overlap, they should not be joined into a composite edge.

Motivating a Composite Edge Using a Neighboring Parallel. Next, we look at
a typical rule involved in the construction of parallels. In Figure 3, we show the case where
the three edges of Figure 2 have a common paralle] edge in the same region. Using the
knowledge that spatial proximity of the two parallel elements may be used to recognize the
existence of the unwanted region appendage, probably resulting from a yard or sidewalk,
the procedure eliminates the more distant parallel, assuming if is an appendage, and merges
the two nearer edges into a single composite line to complete the parallel structure.

Making a Better Structure by Breaking a Composite Edge. An existing com-
posite edge should be broken when doing so results in the successful construction of a more
complex structure, such as a U-shape. In Figure 4, we illustrate such an action in the case
of a region whose interpretation is that of a building segment merged with an adjacent
irrelevant structure. By breaking off the extraneous structure, we recover a U that is more
consistent with the geometric expectations of a structure belonging to a building.

Resegmenting by Prediction of Border Completion. Another form of rule in-
volves recognizing where a missing segment of a geometric structure should lie, and feed-
ing the predicted location to a likelihood-based edge finder. In Figure 5, we show how
such a process would rediscover a weak edge missed in the original segmentation. The



same basic rule works both for structures in a single region and for structures whose ele-
ments are spread across multiple regions or island regions, as illustrated in Figure 6. The
tight constraints available in the single-region case must of course be supplemented in the
multiple-region case by knowledge of probable scales and domain-dependent features.

Completing a U in an Associated Region. In Figure 7, we illustrate a multiple-
region splitting rule. The parallel at the bottom may suffer from noisy edges that prevent
the component lines from extending to the true end of the building; the upper U structure
provides an improved context for predicting the path to be used to close one end of the
lower parallel.

Grouping Using Sun Angle. In Figure B, we illustrate the process that checks for
regions on the shady side of atomic edges comprising a good high-level structure such
as a U or 2 Box. Once a good structure belonging to the sunny portion of the roof
is recognized, an hypothesis for the location of the shaded roof portion and the shadow
itself is formed and tested. Then the structures belonging to the tentative shaded roof
are examined, and other applicable rules invoked to close off relevant structures to make
good boxes delineating the roof portions. An important feature of the shaded roof location
process is the fact that only regions on the shady side of edges belonging to structures with
strong cultural indications are examined. One should not examine all of the region border,
since irrelevant sidewalk appendages would find darker grassy regions on their shady side,
and so forth.

4 Using Generic Models to Discover Buildings

In this section, we illustrate both the general power of the paradigm presented in Section 2,
and the effectiveness of the particular set of rules that are used within this context to
discover and label buildings.

This work is currently in progress, with significant additions still being made to the
rule base. We have therefore chosen illustrations that reflect a combination of totally
automated rule structures such as those illustrated above in Section 3 with interactively-
guided heuristic choices. The use of human interaction is in fact an essential step in
acquiring the knowledge necessary to build such a system - by making judgements and
choices that are quickly reflected in the resulting segmentation, the human user develops
the intuitive knowledge necessary to state and encode rules that embody general principles
of the problem.

Virtually all of the interactively-guided choices made in the examples presented here
will be translated into automated rule invocations in the near future.

4.1 Example: The Structure of a Single Building

Our first example is an image containing a single, complex building shown in Figure 9.
It contains a heavily shadowed, approximately L-shaped, composite building. The seg-



mentation shown in Figure 10 mixes roofs and sidewalks, and has a large, confused region
" that contains both vegetation and shaded roof portions. Figure 11 shows the atomic edges
extracted from the boundaries of the image partition, and Figure 12 shows the significant
geometric structures that are built from the edges.

The system next invokes a set of rules that take the observed geometric structures
and search for neighboring regions that are semantically consistent with the identification
“building with sunny roof plus shady roof.” The structure-completion rules then run the
edge-finder and complete the delineation of the sunny and shady roof portions shown in
Figure 13.

4.2 Example: A Cluster of Buildings

We now let the system run on a large image, shown in Figure 14, which contains a cluster
of buildings. Examining the initial segmentation boundaries shown in Figure 15, we note a
large region that is virtually unsegmentable, with shaded rooftops, grass, roads, and other
vegetation indiscriminately merged into the region. Thus one needs semantic knowledge
to distinguish relevant structures within this region.

In an image such as this with low sun elevation, several very simple criteria such as
intensity, size, and the existence of edge structures parallel to the sun azimuth serve to
identify uniquely the shadow-like regions shown in Figure 16. For the three buildings
with sunlit roofs in the central part of the image, shadow information is superfluous due
to the existence of strong geometric evidence. However, the shadow information may be
used to predict the presence of the other, noisier, buildings. Alternatively, a procedure
may be invoked to generate hypotheses about the locations of other sunlit roof regions by
comparing the intensity signature of the clean sunlit roofs to other unlabeled regions.

Using the shadow identifications and probable directions of shaded roofs relative to
sunlit roofs and shadows, we apply our usual rules to construct and resegment the building-
like groups shown in Figure 17.

5 Conclusions and Remarks

We have described a framework for a knowledge-based system to delineate and label objects
in an image when supplied with a reasonable but highly erroneous partition. Choosing as
an example the domain of cultural structures in aerial imagery with shapes corresponding
to generalized rectangles, we have derived and tested a series of rules that successfully
implement the proposed framework.

Given our fundamental model for carrying out geometric reasoning about the features
of cultural objects within the context of a low-level image partition, we have found it
straightforward to extend the hierarchy of knowledge to include the implications of higher-
level concepts such as shadows, peaked roofs, and backyards. While considerable effort



may be involved in developing the necessary additional rule bases, we believe that this
approach can be applied to at least the following domains:

¢ Raised rectangular cultural objects. This includes primarily buildings of the
kind the current system already handles successfully.

¢ Circular cultural objects. Various kinds of storage structures have circular shapes.
To account for possible obliqueness of the camera angle, such a system would need
to deal with ellipses as well as circles.

e Linear cultural structures. This category includes roads, sidewalks, and parking
lots.

¢ Natural linear structures. Streams, rivers, canyons, dry gulleys, and eroded areas
should be recognizable by the non-cultural signature of their region edges.

¢ Natural irregular objects. Vegetation, individual trees, and forest boundaries
should be recognizable also by the irregular signature of the edges of their regions.
Preliminary work with characteristics of vegetation boundaries indicates that requir-
ing either good fractal measures or large variances in edge directions (indicating
chronic crookedness) are extremely effective in ranking scene regions according to
the amount of vegetation in the region boundaries. Replacing straightness of edges
in the house-delineation paradigm by fractal crookedness of edges and appropriately
readjusting the rest of the resegmentation algorithm appears to produce reasonable
vegetation regions.

We hope in future work to extend the basic object delineation approach we have pre-
sented here and to develop a broad, knowledge-based scene segmentation and labeling tool.
We would like to develop rule bases for a selection of the domains noted above, and to
install a general interactive architecture and explanation system to support the existence
of such multiple contexts. The output of such a system would then provide a firm basis
upon which to build much more abstract intelligent systems, such as planners, that need
detailed symbolic knowledge extracted from imagery before they can function.
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Figure 1: Each thick arrow represents one of a set of
straight edge segments lying in a region bound-
ary. This set of atomic edges forms a compos-
ite edge for geometric reasoning purposes. The
long arrow denotes the semantically correct di-
rection of the composite edge, computed from
a weighted average of the directions of each
atomic edge.
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Figure 2: In the first stage of composite edge accumula-
tion, the two contiguous edges enclosed in the
box at the top are associated. However, a sec-
ond stage checks the consistency of the geome-
try and discovers that the next edge in this re-
gion boundary lies to the right of the leftmost
end of the tentative composite line. This is the
signal to dissociate these atomic edges from the
composite structure, as shown at the bottom.

13



Figure 3: Here there are three short edges that might be
logically linked with the bottom long edge, ex-
cept that two short edges overlap because one
belongs to an appendage. Using the knowledge
that such an appendage is probably due to a
neighboring part of a yard or patio, rather than
the building itself, we choose to merge only the
closest short edge into the composite line, form-
ing the final parallel structure shown.
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Figure 4: Backtracking by breaking a composite line to
form a U-shaped structure. The U-shape is pre-
ferred because it provides strong evidence for a
cultural object.
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Figure 5: The existence of a good U structure here serves
to predict that the missing portions of the cor-
ner should be constructed if possible. If the
line finder successfully finds a good path in the
predicted geometric vicinity, the erroneous ap-
pendage is removed and the is region split in
two along the resulting linking path.

16



O vy

Figure 6: One may use the same geometric rules as for
single regions when dealing with multiple inte-
rior boundaries of regions with holes because
the orientation of edges in these “island” re-
gions is reversed. In the case shown here, two
neighboring island regions have edges that can
be combined to form a U, and the enclosed re-
gion is resegmented along the predicted path to
close off the U.
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Figure 7: The upper U closure determines the path pre-
dicted for a meaningful closure of the lower par-
allel, both of whose ends are open.
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Figure B: A sumlit roof portion with a U structure. The
edge elements on the shaded side of the struc-
ture are used to look for regions that might be
the shaded portion of a peaked roof.

19



Figure 9: Image of complex building, showing shaded
roofs, shadows, sidewalks, and roads.

Figure 10: Initial segmentation of the building-containing
image.
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Figure 11: The straight edges used to produce the geomet-
ric structures characteristic of the cultural ob-
Jject.
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Figure 12: The geometric structures used to parse the re-

gions belonging to the building. (a) All the
edges belonging to structures. (b) A parallel
belonging to the lower right sunny roof. {¢) A
U belonging to the upper right shady roof. (d)
A U belonging to the upper left shady roof.
Each of these structures can be used to pre-
dict where missing pieces of the object bound-
ary should fall.
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Figure 13: Final results of splitting the regions and clos-
ing off the cultural structures. Structures such
as narrow sidewalks are split off to produce a
cluster of regions corresponding precisely to a
building with sunny and shady sides of the roof.
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Figure 14: A large image containing the previous example
as a subimage.
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Figure 15: The segmentation boundaries of the large im-

age.
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Figure 16: Shadow region boundaries extracted from the
large region by applying simple criteria based
on alignment with the sun, intensity, and size.
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Figure 17: Final results of running the system on the entire
image. The initial segmentation produces good
candidates for three sunlit roof portions and
all shadows. The sunlit roofs, or, conversely,
the shadows, then predict the location of the
shaded roof portions in the large unsegmentable
region.
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