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ABSTRACT

This paper presents a general criterion for measuring the degree to which any
given theory can be considered a good explanation of a particular body of data. A
formal definition of what constitutes an acceptable explanation of a body of data is
given, and the length of explanation used as a measure for selecting the best of a set of
competing theories. Unlike most previous approaches to inductive inference, the length
of explanation includes a measure of the complexity or likelihood of a theory as well as
a measure of the degree of fit between theory and data. In this way, prior expectations
about the environment can be represented, thus providing a hypothesis space in which
search for good or optimal theories is made more tractable. Furthermore, it is shown
how theories can be represented as structures that reflect the conceptual entities used
to describe and reason about the given problem domain.



1 Introduction

The capacity to form a good theory or explanation for a given body of data is an
important component of intelligent behavior and has considerable practical significance

in many technological applications.

The essence of most approaches to this problem is to define some criterion for
what constitutes a good or useful theory, and then to search the space of all possible
theories for the one that, under this measure, best describes the given data. One
possible criterion is to consider the best theory to be the one that has highest joint
probability with respect to the data. This leads to Bayesian decision methods [8,13].
Another approach is to consider the best theory for a given set of data to be the least
complex theory that explains the data [8,15].

The hypothesis spaces considered in most of these cases are very general, and
include theories based, for example, on grammars or vector spaces. However, although
such theories are suitable for describing a wide range of data, they often have no
simple conceptual interpretation. This is a serious problem when the user wants not
only to find good theories, but ones that provide explanations in terms of the entities
and constructs he is accustomed to reasoning about. Furthermore, it is difficult to
provide the required a priori probabilities or complexity measures, as problem-specific
information is not eastly expressible in the theory description language.

In contrast, recent work in Al has recognized the need for structural theories that
better match human conceptualizations [3]. However, most of these approaches have
two drawbacks. First, they are suited only to problems in which the theories are deter-
ministic and cannot be applied in domains where a significant element of probability
or noise is involved [7]. Second, and more critical, is the fact that the criterion used
for selecting good or optimal theories is based solely on the closeness of fit between
theory and data. These methods thus have no way of accounting for the complexity or
likelihood of theories; consequently, they can always improve the data fit by generat-
ing increasingly complex theories. In particular, they will even generate “acceptable”
theories for totally random data.

In this paper we provide a framework for inductive inference that can be ap-
plied to arbitrarily complex hypothesis spaces containing either deterministic or non-
deterministic theories. The selection ecriterion we propose incorporates a measure of
theory complexity and likelihood as well as a measure of the degree of fit between
theory and data. This allows prior expectations about the environment to constrain
and shape the hypothesis space, so that search for a good theory within this space be-



comes tractable. Furthermore, we show how theories can be structured to match the
conceptual entities used in describing and reasoning about the given problem domain.

2 The Nature of Theories

We consider a theory or concept to be an abstraction of a class of data. For example,
consider the collection of points in two dimensional space as shown in Figure 1(a). This
data could be viewed abstractly as comprising two circles with specified centers and
radii (Figure 1{b}). Note that the points themselves need not actually lie on the circles
—- from the point of view of the abstraction, this “scatter” is unimportant. Similarly,
the position a point may occupy on the circumference of the circles is immaterial.

To describe any particular element or instance of data, we need not only to specify
an appropriate theory, but also to provide information that identifies that element
within the class of data represented by the theory. For example, the data of Figure
1{a) could be abstractly represented by the two circles given in Figure 1(b). To describe
this particular element (i.e., the actual data in Figure 1(a), as distinct from other data
that can be viewed abstractly as the two circles of Figure 1(b)), for each point we need
to specify to which circle it belongs, its radial angle with respect to the center of this
circle, and its distance from the circle perimeter (to a given level of accuracy). We
will call this additional information the data specification with respect to the given
theory, or, when no ambiguity can arise, simply the data specification. The theory
specification and the data specification, taken together, are called an ezplanation of the
data.

Let us now assume that there are several possible theories for representing some
particular element of data. We would like some measure that would enable us to order
these theories on the basis of how well they explain this data. The measure we propose
is the length of explanation of the given data, and we say that one theory is better than
another if it yields a shorter explanation.

Of course, the length of an explanation will depend on the languages or codes
used for describing both the theory and the data with respect to that theory. These
languages should reflect our prior expectations about the environment, and descrip-
tions of common or important objects should be shorter (simpler) than deseriptions
of unusual or unimportant objects. We will therefore require that these languages be
“efficient,” i.e., that they provide optimal encodings of theories, with respect to their a
priori probability of occurrence, and of data, with respect to each theory. Indeed, this




{a) (bl (c

Figure I: Data and Theories

is just what happens in both everyday and technical languages — the most common
or useful entities are, on the whole, given shorter descriptions than rare ones.

For example, consider again the data shown in Figure 1{a). ‘One might represent
this data as two circles with specified centers and radii {Figure 1{b}), or, alternatively,
as a dumbell-like shape with specified position and size (Figure 1(c)}. In general, for
efficient data specification languages, the better the fit of data to theory, the shorter
the specification. Thus, by virtue of the better fit in this case, the data specification
according to the circle theory can be expected to be shorter than the one according to
the dumbell theory. If it is assumed that the specifications of the two theories are of
equal length, then the explanation based on the theory that the data comprises two
circles would be shorter than that based on the dumbell theory. The circle theory
would therefore be the better one for representing this data.

On the other hand, if we know a priori that most of the objects under consideration
are dumbell-shaped rather than circular, our language for describing theories should
make it harder to describe circles than dumbells. Similarly, if we know what sizes of
objects to expect, and in what positions to expect them, the descriptions of theories
that place the objects close to these expected values should be simpler than the de-
scriptions of theories that place the objects far away. In the particular case given in
Figure 1, the explanation based on the dumbell theory may then turn out to be shorter
than the one based on the two-circles theory, despite the poorer fit of the data. The
dumbell theory would then be considered the better theory for describing the data in
the light of our expectations regarding the problem domain.



This means that what constitutes a good theory will always be dependent on our
expectations about the world. From an objective point of view, this might seem dis-
appointing. But it 1s exactly these expectations that make the induction problem
tractable.

3 Formal Description

Let D be a given class of data. Then a theory T is considered to be an abstraction of
a subset D of D, namely, that subset that might be expected to be observed if T were
true. Each element of D has an associated probability of occurrence under the theory
T. The subset D is called the data represented by T.

Now consider a language for describing (denoting) the elements of D, given the
theory T. Such a language will be called a data specification language for T. A data
specification language is said to be efficient if and only if it is an optimal encoding of
the data in D (i.e., the encoding minimizes the expected message length of data, given
the associated probabilities of elements in D under T'). For a given theory T, the set
of sentences in the data specification language that describe some data element d in D
will be denoted s(T, d}. Obviously, if the data specification language is efficient, s(7T, d)
will be a singleton set for all d in D. In such cases, we will not distinguish between
singleton sets and the element that each contains.

A hypothests space H is a countable set of theories over the data space J in which
each theory has an associated probability of occurrence in H. We will call a language,
the sentences of which describe the theories in H, a theory specification language. A
theory specification language is said to be efficient if and only if it is an optimal
encoding of the theories in H. For a given H, the set of sentences in the theory
specification language that describe some theory T in H will be denoted h(H,T). If
the theory specification language is efficient, A(H,T) will be a singleton set for all T
in H.

An ezplanation of an element d of D in terms of a theory T, denoted e(H,d,T), is
then defined to be

e(H,d,T) = h(H,T) . s(T,d)} |,

where “.” represents concatenation.



Consider that a given hypothesis space H is described by an efficient theory descrip-
tion language and that all theories in H use an eflicient data specification language. A
theory 7} is then said to be betier than a theory T, for describing some data d in D if

length(e(H,d, T1)) < length(e(H,d, T2))

where length(z) represents the length of z (or, strictly, the length of the one element

in the singleton set z). !

We are interested only in theories that capture some useful structural properties
of data or, equivalently, in encodings of data that shorten its description. Thus, a
theory T in H is said to be a null theory if length(e(H,d,T)) = length(d). I T is such
that length(e(H,d,T)) > length(d), then we say that d is no! ezplained by T — what
structure T may have captured is more likely to be the result of chance.

Note that, if we interpret length(h(H,T)) as the log probability of T and
length(s(T,d)) as the log conditional probability of d, given T, then length(e(H,d,T)
is exactly the [unnormalized| log conditional probability of T, given d, as determined
by Bayes’ theorem.

One way of viewing the relatioﬁship between hypothesis spaces, theories, and data
is as follows. Assume that, for a given hypothesis space H, we have a compiler C(H)
that takes as input the description of a theory in a theory specification language and
outputs a program P(T). This program in turn accepts a description of some data d in
a data specification language and outputs d. Thus C and P together form a decoding
device for data encoded in two parts: a so-called theory specification part and a data
specification part. If the theory specification language is efficient and, for all theories,
the data specification language is efficient, the best theory for describing d will then
be the one for which the total length of input (i.e. to both the compiler C and the
resulting program P) is a minimum. If for some theory the input is longer than the
output, then that theory does not provide a reasonable explanation of the given data.

In their work on classification techniques, Michalski and Stepp [9] similarly dis-
tinguish between theory and data descriptions. So-called I|-complexes are considered
to denote sets of data, and thus correspond to theory specifications. A measure of
“sparseness” is used to determine the degree of fit between data and theory, and cor-
responds to the length of data specification under the assumption that the probability
distribution over data elements is uniform. However, the goodness of an I-complex

'In comparing languages, we will assume them to be over the same alphabet.



(theory) is determined solely according to this measure of sparseness, and thus the
approach takes no account of prior knowledge about the likelihood of theories within
the hypothesis space.

Failure to take proper account of theory likelihood usually gets one into trouble.
In the learning system LEX, for example, Mitchell [11] found it impossible to give any
Justification for the “inductive leaps” attempted by the generalizer. Thus, given two
integral expressions differing only in that one contains a 3 whereas the other contains
a 5, Mitchell notes that the system has no basis for generalizing 3 and § to “any
integer,” rather than “any prime integer,” or, for that matter, “any integer except
251”. Indeed, under Michalski’s sparseness measure, the last generalization would be
preferable to the first. The reason for this is not the “syntactic” nature of the task
[11], but rather the lack of a selection criterion that exploits prior knowledge about

possible generalizations.

Another serious deficiency of selection criteria that do not include a measure of
theory complexity is that it is then always possible to improve the data fit by making
the theory more complex. In particular, this can result in the attribution of structure

to totally random data.

4 Structural Descriptions

While the preceding section provided a formalism for choosing a best theory in a given
hypothesis space, it does not offer much guidance in constructing theory and data
specification languages.

There are various approaches one could adopt. For example, one could choose to
specify theories in terms of probabilistic Turing machines, then to specify data (relative
to a given Turing machine) by prescribing the moves required of the Turing machine
to produce that data. This sort of approach underlies much work in grammatical
inference [5,8]. Alternatively, one could describe theories by selecting a point in some
vector space, and then describe the data (relative to the selected point) by giving its
distance from the point. This approach is the basis for standard statistical classification
techniques [13].

However, by representing theories in this manner, it often becomes very difficult
to determine efficient encodings of the theories and data appropriate to the particular
problem domain under consideration. The difficulty is that the kind of problem-specific
knowledge essential to providing this information is not readily expressed in terms of
such general structures.



It is therefore preferable to consider theories to be composed of several simpler
parts, each of which has some clear conceptual interpretation. The theory description
is then the concatenation of a sequence of component descriptions. Typically, the com-
ponents will correspond closely to features and concepts which would be mentioned in
a natural-language description of the theory. In the theory description language, the
existence and type of each component is specified by a deseription of length minus-
the-log-probability of finding such a component, given the existence and types of com-
ponents already described. Where there are no strong prior expectations about the
relative probabilities of different types of components, this length is essentially just the
log of the number of different components which might have been described, given the
previously specified components.

Where a component requires specification of real-valued parameters, the number
of different possible components is, of course, uncountably infinite. In such cases, it
can be shown that the parameter values stated in the component deseription should be
stated to a precision (number of significant digits) consistent with the error expected
in estimating the parameter values from the given data,

These rules generally suffice to define an efficient theory specification language.
However, it may frequently happen that the order of the description of some set of N
components affects neither the meaning of the description nor the way in which each
component is described. The language is then redundant, since N! different, equally
long descriptions of the same theory can be given. We do not need actually to construct
the coded description of a theory and data, but rather need only to calculate the length
of the description. Hence, rather than trying to avoid such simple redundancies, we
merely correct the calculated length of the redundant description by subtracting log
N

A similar approach can be adopted for specifying the data for each theory in the
hypothesis space. That is, the data can be represented as a structure with associated
component probabilities, and a data specification language chosen so that the length
of any sentence in the language will be equal to the sum of minus-the-log-probability
of the occurrence of each of the structure’s components.

Structured theory descriptions can be viewed as “frames” {10] in which each com-
ponent represents a different “slot” value. However, they are more general in that the
notion of a single slot default value is extended to be a probability distribution over
all possible slot values. This way of representing theories or concepts also generalizes
the ideas of concept modeling proposed by Cohen and Murphy [2], and avoids most of
the difficulties associated with classical and prototype theories of representation.



5 Inference of Line Segments

L.et us consider the problem of trying to best fit one or more straight line segments to
a set of data points in a two-dimensional field, where some points may be noise and
the number of line segments is unknown.

We suppose the data to comprise N coordinate pairs {z;,¥;), ¢+ = 1,..N, of points
in a square field of size R by R, where each coordinate is measured to precision ¢.
Since each coordinate can be specified by a word of length log{ R/¢), the data can be
specified directly by a sentence of length 2N log(R/¢). Assuming no coincident points,
this is the best one can do in the absence of any theory about the data.

However, a possible class of theories about the points of interest in the scene may
be that many of the points form one or more straight line segments. Each such theory
could then be described by giving the following component descriptions:

1. A statement of the number of line segments in the scene. The length of this
component will depend on the number of lines expected in such scenes.

2. A statement of the approximate number of points treated as “background noise,”
i.e., not assigned to any line. The coding of this component may incorporate a
prior expectation about the frequency of noise points (given, say, the character-
istics of the sensors).

3. Tor each line, a statement of the coordinates of its center, its angle, and its
length. The coding of this component will depend on the expected values of
these attributes (given, say, the physical world) and the degree of precision to
which these attributes are specified.

In the example given below, we assume that any numbers of lines are equally
likely, and thus take the length of the first component to be a constant. Therefore, in
comparing theories, the contribution of this component can be disregarded. We assume
the fraction f of noise points to have a beta prior distribution of form 10(1 — f)'?,
with mean 0.1, and assume the expected values of position, angle, and length of the
line segment to be uniformly distributed.

Given a theory (specifying one or more line segments, their location, angle and
length, and the number of noise points), the description of each point {z;,y;) in the
scene then has two parts. The first declares the point 1 to be either noise or a member
of one of the lines specified by the theory. If it is noise, the second part specifies {z;, y;}
using a code word of length 2 log{(R/¢). If point 1 is a member of a line segment, the



Explanation iength = 294.9

Figure 2(a): Best One-Line Theory

Explanation length = 298.7

Figure 2(b): Best Two-Line Theory
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second part specifies its position along the line and its distance therefrom. The length
of the specification of these two attributes will depend on prior expectations about the
scatter of points along and about the line, respectively. In the example given below, we
assume a uniform distribution of position along the line and a Gaussian distribution
of distance normal to the line.

In Figure 2 we show one such set of points together with the best single-line theory
(Figure 2(a)) and the best two-line theory (Figure 2(b)). The points treated as noise
by the explanations are shown solid. The length of the data when no lines are assumed
(that is, the “null” theory), is 317.7, the length of the one-line explanation is 294.9
and the two-line explanation 298.7. As both explanation lengths are shorter than the
null theory length, both are reasonable theories for the data. The one-line theory is
the one preferred, as the corresponding explanation is shorter.

More details about the encoding of the theory and data specifications can be found
in one of our earlier reports [17]. However, it is important to note that the fine details
of the encoding (e.g., the value chosen for the standard deviation of the Gaussian
distribution, the Gaussian distribution itself, or the assumption of equal expectations
as to the number of line segments) have a relatively small effect on code length. The
major determinant of code length (and hence of goodness of theory) is the complexity
of the theory structure. For example, independently of how much of a message must
be used to specify the number of line segments, a theory consisting of a large number
of lines requires a long message just to describe the characteristics of each line, and in
the data specification part, the particular line to which each point helongs. So there
is a strong bias against theories with a large number of components — a bias that
can only be countered either by prior knowledge that such complex theories are highly
likely or by very compelling evidence in the data.

6 Inference of the Structure of Automata

The second example we will consider is the problem of inferring the structure of a
probabilistic finite state automaton (PFSA) from a data string. Because it is not a
“real-world” problem, we can bring very little problem-specific information to bear on
its resolution. Thus, choosing appropriate a priori probabilities for the components of
the PFSA, or finding useful heuristics for searching the hypothesis space, is made ex-
ceedingly difficult. Nevertheless, grammatical inference has received a lot of attention
in the research literature, and it is appropriate to show how our approach deals with
the problem.
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A PFSA, M, is a finite-state automaton with a stochastic transition function. It
has no input, but emits a symbol on each state transition. Let £ps(s,c) be the value of
its transition function when moving from state s and emitting symbol ¢. For each state
s and symbol ¢, tpr(s,¢) is a pair < §',p > called a move, where s' is the next state
and p is the probability that, when in state s, M will make this move. For all s, the
sum of p over all ¢ is 1. Such a PFSA is shown in diagrammatic form in Figure 3(b).
(The transition probabilities have been replaced with relative frequencies labelling the
ares.)

The PFSAs we consider are restricted to have at most one transition arc from each
state labeled with a given output symbol. These PFSAs represent the theories in our
hypothesis space H.

Now assume that, for some data string d, a PFSA, M, is chosen as a possible theory
for d. The first part of an explanation for d under this theory will therefore consist
of a description of the machine M. This description consists of three components:
(1) a specification of the number of states n; (2) for each state, a specification of the
transition probability for each output symbol; and (3} for each state and output symbol
in that state, a specification of the destination state of the transition labeled with that
output symbol.

To describe fully the data string d, we now need to include in our explanation a
specification of how to select this particular string from all the others generated by
M. This can be done by specifying the sequence of moves that M needs to make in
order to generate d. This specification has to be efficient — that is, it should take
into account the probabilities of the moves as contained in the specification of Af.
Thus, we take the length of the data specification part to be simply the sum of minus-
the-log-probabilities of all the transitions made. Details of both the theory and data
specifications can be found elsewhere [17].

For example, consider the data string

CAAAB/BBAAB/CAAB/BBAB/CAB/BBB/CB

where “/” is a delimiter (that is known a priori to return to the initial state). Figure
3(a) shows how the length of explanation of the hest n-state machine varies with n
over the range 1 to 7, and Figure 3(b) shows the structure of some of the best n-state
machines. It is clearly seen that the best theory overall, according to our measure, is
the four-state machine.

In comparison, for a given data string d, Gaines |7] prefers that PFSA that min-
imizes the length of the data specification alone, and does not take into account the

12
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Figure 3(a): Length of Explanations of Automata Output

Figure 3(b): Structure of Best Automata of 1,2,3,4 and 7 States
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contribution of describing the PFSA chosen. He is thus unable to formally compare
machines that have different numbers of states. In this example, Gaines finds PFSAs
of up to 7 states with, of course, increasing probability that the machine will generate
the given data string. On intuitive grounds, Gaines suggests that the four-state model
is the most satisfactory. The four-state machine also corresponds to the grammar de-
rived by Feldman et al. [6] and Evans [4], who employed heuristic schemes for this
particular data,

Note that the length of the data specification part of the seven-state machine is the
minimum over ail machines. An increase in the number of states thereaflter produces
no further decrease in length. Thus it is only the great complexity of the seven state
theory that prevents it from the being the best theory for the data. In fact, the machine
is so complex that the total length of the explanation exceeds the “null” theory length
of 66 — in eflect, the seven-state machine does not explain the data at all. On the other
hand, the one-state machine is so simple that, despite a very short theory description,
it requires a very long data specification; it likewise provides no explanation of the
data.

The approach described herein has also been applied to a variety of other problems,
including numerical taxonomy and classification [1,16], theory discrimination [12], and
linear feature matching [14].

7 Theory Generation and Search

The aim of this paper has been to provide a selection criterion for inductive inference
based on conceptual structures rather than undifferentiated metrics. However, this
is only part of the inductive-inference problem. In addition, one needs techniques for
generating new theories and searching efficiently for good or optimal ones [3]. Although
we offer no solutions for these other problems, we indicate below how the selection
criterion we propose can help significantly in restricting the number of theories that
need be generated and in reducing the search.

The fact that the selection criterion incorporates a measure of a theory’s complexity
and likelihood as well as the fit between theory and data means that unlikely theories
will have a high associated cost, even before comparison with the data, and conse-
quently never need be generated. Furthermore, unlike most other measures used, the
length of explanation provides a measure by which theories can be rejected. Thus, in
cases where the search cannot guarantee optimality, we can compare the length of the
explanation under the theory with the length of the original data string, and thereby

14



at least determine whether or not the theory is acceptable. In particular, this prevents
the assignment of structure to random data.

A rejection criterion is particularly important for staged search, where the most
probable or simplest theories are considered first, and others examined only if necessary.
In this approach, it is essential to have some means of deciding whether or not to
proceed to the next stage; the length of explanation provides a basis for doing this.
In the extreme case, comparison of the length of explanation under the currently best
theory with the length of the data under the null theory determines whether one has
a theory at all. If the theory does not result in a reduction in coding, it clearly does
not explain the data and one must go on and consider other theories. One can stop
when the reduction in coding is substantial enough to be satisfactory, depending on
the resources that one has available for further searching. Of course, it may be that
no theory in the hypothesis space can provide an explanation for the data.

The selection criterion proposed herein can also be employed with hierarchical
representations. Explanation length can be used to select among competing subtheories
at some low level of abstraction, which in turn can form the basis (i.e., the “data”) for
theories at a higher level] of abstraction. There is no guarantee that such an approach
will lead to the best global theory, but it is reasonable to expect in most natural
domains that the resulting global theory will be at least near-optimal.

For example, in object recognition, the approach described in Section 5 could first
be used to find straight-line segments in a set of points. The resulting lines could then
be further “explained” by a higher-level theory that describes the lines in terms of
regions or shapes. At still higher levels in the hierarchy, these regions or shapes would
form the data to be explained by theories about objects. Just as for the lowest level
in the hierarchy, the length of explanation could be used to choose among alternative
higher-level descriptions.

8 Conclusions

In this paper we have provided a general selection criterion for inductive inference. The
approach allows the construction of structured theories that can provide explanations
of phenomena in terms of abstract entities and concepts. Prior expectations about
the environment can be readily expressed, and thus the search for an adequate theory
made tractable.

In particular, we have introduced a measure of the complexity of a theory (the
length of the theory specification) that is compatible with the measure of fit of the

15



theory with the data (the length of the data specification). Other measures of fit and
model complexity have been proposed, but it is not clear how they might or should
be combined to provide an overall criterion of selection among competing theories.
Because our measures are compatible, we may simply add them to give a measure
(the length of explanation) that can be used to choose the best of a set of theories.
Moreover, our measure provides an absolute criterion for rejecting theories.

With the introduction of the theory specification language, we have clarified the
role and construction of prior probability distributions over families of theories. We
have shown how structured theories that reflect the conceptual entities of the problem
domain provide a natural framework in which expectations about the domain may be
utilized and combined to define a prior distribution over a complex family of theories.
This in part indicates why general theory specification languages (such as Turing ma-
chines, grammars, or vector spaces) have proved to be unsuitable for concept learning;
it is simply too difficult to express prior knowledge about the problem domain under
consideration. Furthermore, this framework makes it clear that any reasonable assign-
ment of prior probabilities to theories is dominated by the latter’s relative complexity
rather than by subjective expectations.

16
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